Faculty
Learn more about the diverse backgrounds and research interests of our faculty!
Linda Bandini, PhD
Dr. Bandini‘s research interests include:
- childhood Obesity
- energy expenditure in children
- health promotion
- dietary intake and physical activity in children with developmental disabilities
Jan Blusztajn, PhD
Dr. Blusztajn‘s research interests include Alzheimer’s disease and prenatal programming of brain development and aging by essential nutrient availability during gestation.
Jude Deeney, PhD
Dr. Deeney‘s research is designed to discern the nutrient-derived metabolic signals leading to glucose-and fatty acid-induced insulin exocytosis from the pancreatic ß-cell. FA acutely stimulates glucose-induced insulin secretion (GSIS) while chronic exposure to elevated FA and glucose can result in glucolipotoxicity (GLT) with basal hypersecretion and inhibition of GSIS. Despite the adverse effects of chronic exposure, FA is known to be required for normal exocytosis from the ß-cell. Current research includes:
- Deciphering the dual effects of FA on GSIS to lead to the possible development of therapies that would reduce the inhibitory effects while sparing the stimulatory effects of FA on the ß-cell.
- Identifying the lipids or lipid classes involved in enhancing and suppressing GSIS and assessing their effects on lipid-modulated or modulating proteins.
Gerald Denis, PhD
The overall goal of the Denis lab is to understand the fundamental mechanisms of transcriptional control of growth and development, and particularly, how chromatin-based disruptions of the eukaryotic cell cycle can lead to malignancy. Research techniques utilized in the lab range from basic molecular biology techniques, to proteomic analyses, to transgenic and knockout mouse models. Results to date have broad significance for our understanding of:
- Adaptive immunity
- B cell proliferation
- Non-Hodgkin’s lymphoma (NHL)
Stephen R. Farmer, PhD
The overall focus of the Farmer laboratory is to understand the molecular mechanisms controlling the formation and function of adipocytes with a focus on identifying the signaling pathways and transcription factors that regulate adipogenesis. Current projects are investigating:
- The role of PPARgamma (peroxisome proliferator-activated receptor gamma) and the C/EBPs (CCAAT/enhancer binding proteins) in regulating the sequential expression of the adipogenic factors that control the differentiation of preadipocytes into adipocytes and expression of genes that control various adipocyte functions including insulin-dependent glucose uptake and production of adiponectin.
- The mechanisms by which the adipocyte responds to changes in energy balance by focusing on role of the NAD-dependent deacetylase, SIRT1, and the hypoxia-induced factor-1 alpha (HIF-1alpha) in regulating adipocyte gene expression.
Davidson Hamer, MD, FACP, FIDSA
Davidson Hamer is a Professor of International Health and Medicine at the Boston University School of Public Health and School of Medicine. He has twenty years of field experience in neonatal and child survival research including studies of micronutrient interventions, maternal and neonatal health, malaria, pneumonia, and diarrheal diseases. Major current projects include:
- A large neonatal survival study, community-based interventions to reduce neonatal and under-5 child morbidity from common diseases
- Determining the role of specific micronutrients in reducing the burden of disease due to malaria in pregnancy
- An evaluation of the association of vitamin D deficiency with pneumonia in Ecuadorian children.
Michael F. Holick, PhD, MD
Dr. Holick and his team of researchers continue to be leaders in the field of vitamin D, osteoporosis, metabolic bone disease, psoriasis and hair research. Dr. Holick’s work explores the nature of vitamin D deficiency and concludes it to be one of the most commonly unrecognized medical conditions, a condition that leaves millions at risk of developing not only osteoporosis and fractures but also numerous serious and often fatal diseases, including several common cancers, autoimmune diseases, infectious diseases and heart disease.
Because the skin is an important source of vitamin D, a human skin equivalent and a liposomal model have been developed to mimic the photoproduction of vitamin D in human skin. Using these models systems, researchers demonstrated that during exposure to solar simulated-sunlight, a unique membrane-associated mechanism stabilizes the previtamin D3 in a cis,cis-conformation and results in its rapid conversion to vitamin D3. It has now been demonstrated that human skin also produces several photoproducts including tachysterol and lumisterol, which may have important biologic functions in the skin.
Dr. Holick has initiated a program to evaluate the effect of vitamin D deficiency in advancing colon tumor growth.
Zhen Jiang, MD, PhD
The Jiang lab focuses on how insulin signaling networks and innate immunity regulate metabolic functions. Current research in the lab includes:
- Studying a protein called CDP138 and the signaling networks related to glucose and lipid metabolism.
- Exploring the role of neutrophils and neutrophil elastase in the development of obesity-related adipose inflammation, insulin resistance, and cardiovascular dysfunction.
Konstantin V. Kandror, PhD
Diabetes mellitus represents one of the major health threats to modern civilization and its worldwide prevalence is increasing at an alarming rate. In diabetes, insulin cannot stimulate glucose entry into the cell, as it does in normal individuals. As a result, extra glucose stays in the blood and causes multiple health problems. The main focus of the Kandror lab is insulin-regulated glucose transport, as it is the major molecular defect in diabetes. Current studies include:
- Determining the regulation of exocytosis of synaptic vesicles in neurons, insulin-containing granules in the pancreas, water channel-containing vesicles in the kidney, etc., which is example of a widely spread type of the biological regulation.
- Examining the signal transduction pathway that connects the insulin receptor in the plasma membrane and intracellular Glut4-vesicles. Second, the cell biology (i.e. the protein composition, biogenesis, intracellular trafficking) of Glut4-vesicles may be impaired.
- Using the wide arsenal of modern techniques that include molecular biological methods, protein biochemistry, subcellular fractionation, microscopy and in vivo studies.
Matthew Layne, PhD
The primary goal of the Layne laboratory is to identify novel pathways that control fibroproliferation with the goal of developing therapeutic inhibitors. Current research interests include:
- Defining the pathways that control vascular adventitial remodeling
- Inhibiting organ fibrosis through targeting Aortic carboxypeptidase-like Protein (ACLP), a secreted, collagen-binding protein that enhances fibrosis and myofibroblast differentiation through mechanisms that involve stimulating the transforming growth factor ß (TGFß) receptor signaling complex and controlling mechanical signaling and ECM remodeling
- Developing systems to understand the stomal reaction in breast cancer (in collaboration with the Kirsch lab).
- Uncovering new mechanisms that control adipose tissue fibrosis (collaboration with Farmer lab).
Carine Lenders, MD, ScD
Dr. Lenders has been the medical director of the NFL Program (Pediatrics – Nutrition & Fitness for Life) since 2003. She also heads the Pediatric Nutrition Support Services at Boston Medical Center, and she serves as attending physician for the Nutrition Support Team at the Children’s Hospital of Boston.
Dr. Lenders is a former family practitioner with a master’s degree in tropical medicine, who graduated with honors from the State University of Liege, Belgium. She spent several months in the Congo with Médecins sans Frontières and three years in Bangladesh at the International Center of Diarrheal Diseases and Research.
Her current research interests include the relationship of selective dietary components and medications to weight gain and obesity-related conditions.
Lynn L. Moore, DSc, MPH
Dr. Moore directs the Framingham Children’s Study, which has shown how lifestyle factors starting early in life relate to the development of obesity during childhood and later cardiovascular risk. Much of Dr. Moore’s recent research has dealt with key analytic questions related to obesity and diabetes:
- The effect of obesity and diabetes, including gestational diabetes, on pregnancy outcome
- Effects of sustained and non-sustained weight loss on the risk of adult-onset diabetes, hypertension, and cardiovascular disease
- Effects of weight and weight gain on cancer risk (colon, breast, prostate, lung)
- The causes and consequences of obesity in childhood
- The effects of anemia on the risk of heart failure and cardiovascular disease
Elizabeth Pearce, MD, MSc
Dr. Pearce has received national and international recognition for her research, has published many original articles, reviews, and editorials, is a sought-after lecturer, and has received multiple awards and honors. Her main areas of clinical and research expertise are:
- Dietary iodine sufficiency in the U.S.
- Thyroid function in pregnancy
- Effects of environmental perchlorate exposure on the thyroid
- Cardiovascular effects of subclinical thyroid dysfunction and thyroid disease
Valentina Perissi, PhD
The Perissi lab investigates how different inputs are integrated and translated in fine-tuning of transcriptional regulation via the action of signal transduction pathways, ubiquitin conjugating machineries and chromatin remodeling enzymes.
Techniques used include:
- in vitro biochemical and cellular experiments
- in vivo modeling using tissue-specific mouse models
- high throughput next generation sequencing approaches
Current research is focused on:
- Understanding how different components of the NCoR/SMRT corepressor complex contribute to broadly regulate the cellular responses to external stimuli
- Understanding changes in bioenergetic needs through transcriptional and non-transcriptional functions
Richard T. Pickering, PhD
Dr. Pickering’s research expertise is in adipose tissue differentiation and fibrosis. He is interested in examining the links between dysfunctional adipose tissue and the development of cardiometabolic diseases using both both biomarker data from large scale cohort studies and more mechanistic experiments using in-vitro models of adipocyte development.
Francesca Seta, PhD
Dr. Seta is an Assistant Professor of Vascular Biology at the Boston University School of Medicine. Although she teaches Vascular Biology she has been trained in Pharmacology and Cardiovascular Physiology as well. Her current research is on genetic and molecular mechanisms of vascular smooth muscle function and stiffening and novel therapeutic targets for aortic aneurysms and dissections. Her research interests are Arterial Stiffness, Aortic Aneurysm/Dissection, Cardiovascular Physiology, Cardiovascular Disease Related to Metabolic Syndrome, Hypertension, Oxidative Stress, Pulmonary Hypertension, Vascular Biology, and Vascular Diseases.
Shanshan Sheehy, ScD
Dr. Sheehy‘s research interests include: pregnancy complications, cardiovascular disease, and modifiable risk factor to reduce cardiovascular health disparity.
Nicole L. Spartano, PhD
Nicole Spartano, PhD serves as the Director of the Glucose Monitoring Station at the Framingham Heart Study. Her research interests include exploring:
- Glucose patterns using continuous glucose monitoring in non-diabetic populations that may predict the development of diabetes (R01 NIDDK, PI Spartano)
- Determinants of glucose patterns in non-diabetics, such as carbohydrate quality, gut microbiome, and genetics
- Using mobile (m)Health devices (including continuous glucose monitors) in intervention studies in underserved patient populations
- Physical inactivity (measured using accelerometry) and brain aging, dementia, and Alzheimer’s disease
Keith Tornheim, PhD
Dr. Tornheim has spent year studying the spontaneous oscillatory behavior of glycolysis in muscle extracts. These oscillations involve the regulatory properties of the key control enzyme, phosphofructokinase, which was therefore the object of related kinetic studies. Current research in the lab includes:
- Testing the hypothesis that such oscillatory behavior of glycolysis and the ATP/ADP ratio underlies glucose-stimulated oscillations in intracellular free Ca2+ and insulin secretion in pancreatic islets. Such oscillations can increase the potency of insulin, and loss or derangement of these oscillations may contribute to the development of type 2 diabetes.
- Determining fuel metabolism and AMP-activated protein kinase in vascular tissue, muscle and other tissues.
In collaboration with other members of the Diabetes and Metabolism Unit, research on the metabolic changes that may be responsible for the frequently occurring vascular complications of diabetes.