Weining Lu, MD

Associate Professor, Medicine

Weining Lu
(617) 414-1770
650 Albany St Evans Biomed Research Ctr

Biography

The primary research interests in Dr. Lu’s laboratory focus on four scientific areas: 1. Molecular genetics of renal tract development and birth defects in the kidney and urinary tract; 2. Biological functions and disease mechanisms of the renal tract birth defect genes and their roles after birth in common kidney disease; 3. SLIT-ROBO and ZEB signaling in kidney development and disease; 4. Discover and develop novel drug targets and therapeutics for patients with kidney disease.

Congenital anomalies of the kidney and urinary tract (CAKUT) is a complex birth defect with a diverse phenotypic spectrum, including kidney anomalies (e.g. renal agenesis, multicystic dysplastic kidney (MCDK), renal cystic disease, hydronephrosis), and ureteric anomalies (e.g. vesicoureteral reflux (VUR), reflux nephropathy, and obstructive uropathy) (Ref 1, 2). CAKUT is a genetically heterogeneous disorder with an incidence of 1 in 100 infants and accounts for up to 50-60% of the diagnoses underlying chronic kidney disease among the 0 to 12-year age group. CAKUT is also the leading cause of chronic kidney disease and renal failure in children and may manifest as primary renal diseases in adults as increasing numbers of children with congenital or inherited renal tract birth defects are surviving to adulthood. Despite the high incidence of CAKUT in children with chronic kidney disease, the genetic and molecular bases of CAKUT remain largely unclear.

Dr. Lu’s translational research program has adopted combined human and mouse molecular genetics approaches to identify a number of developmental genes to the study of kidney and urinary tract development and pathogenesis of CAKUT and chronic kidney disease. The first human molecular genetics approach is to study individuals with CAKUT and apparent genetic defects, with the aim of using gene mutations, genomic imbalances and chromosomal rearrangements as signposts to identify these critical genes (reverse genetics) (Ref 2). Thereafter, molecular identification and analysis of candidate genes as well as mutation studies in affected individuals with a familial pattern of CAKUT will be carried out (forward genetics) (Ref 2, 3). The second approach is to study temporal and spatial expression patterns of candidate genes in human and mouse. Meanwhile, knockout and transgenic mouse models of candidate genes will be studied to elucidate more fully their roles in kidney and urinary tract development and disease (Ref 4-6). Once these candidate genes (e.g. SLIT2, ROBO2, ZEB2) have been identified, a multidisciplinary approach will be taken to gain further mechanistic insights in vivo and in vitro on the role of these genes in normal and abnormal developmental processes of the kidney and urinary tract, and on the pathogenesis of CAKUT and chronic kidney disease (Ref 4-6). This multidisciplinary approach includes the application of human and mouse genetics, developmental biology, protein biochemistry, molecular biology, pathology, pharmacology, and novel therapeutics. The goal is to provide new knowledge of disease mechanisms underlying developmental antecedents of kidney and urinary tract disorders, which will lead to discoveries of novel drug targets and therapeutics for patients with common kidney diseases (Ref 6) (https://www.eurekalert.org/pub_releases/2016-11/bumc-rip_1111516.php).

Current research activities in Dr. Lu’s lab include (1) Role of SLIT2-ROBO2 and ZEB2 signaling in renal tract development and disease, podocyte biology and injury, pericyte biology and renal fibrosis; (2) Discovery of novel causative and susceptibility genes (e.g. ROBO2, SLIT2, SRGAP1, ZEB2) for renal tract birth defects in children with chronic kidney disease; (3) Identify novel drug targets and therapeutics for patients with chronic kidney disease. Dr. Lu’s research program is supported by grants from the National Institutes of Health (NIH), March of Dimes Foundation, Pfizer Centers for Therapeutic Innovation, and Massachusetts Life Sciences Center.

References:

(1). Lu W, Bush KT, Nigam SK. Regulation of ureteric bud outgrowth and the consequences of disrupted development. In Kidney Development, Disease, Repair and Regeneration (ed. Little MH), Pages 209-227 (Elsevier, 2016) (http://www.sciencedirect.com/science/article/pii/B9780128001028000187)
(2). Lu W, van Eerde AM, Fan X, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 2007; 80:616-632. PMID: 17357069 (http://www.ncbi.nlm.nih.gov/pubmed/17357069).
(3) Hwang DY, Kohl S, Fan X, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 Confer Risk for Congenital Anomalies of the Kidney and Urinary Tract. Hum Genet 2015; 134(8):905-916; PMID: 26026792 (http://www.ncbi.nlm.nih.gov/pubmed/26026792).
(4). Fan X, Li Q, Pisarek-Horowitz A, et al. Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure. Cell Reports 2012; 2:52-61. PMID: 22840396 (http://www.ncbi.nlm.nih.gov/pubmed/22840396).
(5). Rasouly HM, Kumar S, Chen S, et al. Loss of Zeb2 in mesenchyme-derived nephrons causes primary glomerulocystic kidney disease. Kidney Int 2016; Aug 30. PMID: 27591083 (http://www.ncbi.nlm.nih.gov/pubmed/27591083).
(6) Fan X, Yang H, Kumar S, et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 2016, Nov 17; 1(19):e86934. PMID: 27882344 (https://www.ncbi.nlm.nih.gov/pubmed/27882344)

CURRENT LAB MEMBERS:

Xueping Fan (PhD, McGill University), Instructor in Medicine, 617-414-1772, xpfan@bu.edu.

Sudhir Kumar (DVM, Ludwig Maximilians University Munich), Postdoc, 617-638-7353, kumars@bu.edu.

Richa Sharma (PhD, SGPGIMS Medical Institute in Lucknow), Postdoc, 617-414-2298, richa26@bu.edu.

Tou S. Thao (MS in Medical Sciences Program, Graduate Medical Sciences, Boston University School of Medicine), Graduate student, 617-414-2238, tthao@bu.edu

PHD STUDENTS GRADUATED RECENTLY:

Anna Pisarek-Horowitz (PhD, Graduate Program in Molecular Translational Medicine, Graduate Medical Sciences, Boston University School of Medicine).

Hila Milo Rasouly (PhD, Graduate Program in Genetics and Genomics, Graduate Medical Sciences, Boston University School of Medicine).

Inquiry about graduate student thesis project and postdoc research position in Dr. Lu’s lab, please contact: wlu@bu.edu

Other Positions

  • Boston Medical Center

Education

  • Zhejiang University, MD
  • Northeastern University, MSc

Publications

  • Published on 4/10/2017

    Gore BB, Miller SM, Jo YS, Baird MA, Hoon M, Sanford CA, Hunker A, Lu W, Wong RO, Zweifel LS. Roundabout receptor 2 maintains inhibitory control of the adult midbrain. Elife. 2017 Apr 10; 6. PMID: 28394253.

    Read at: PubMed
  • Published on 4/5/2017

    Vivante A, Mann N, Yonath H, Weiss AC, Getwan M, Kaminski MM, Bohnenpoll T, Teyssier C, Chen J, Shril S, van der Ven AT, Ityel H, Schmidt JM, Widmeier E, Bauer SB, Sanna-Cherchi S, Gharavi AG, Lu W, Magen D, Shukrun R, Lifton RP, Tasic V, Stanescu HC, Cavaillès V, Kleta R, Anikster Y, Dekel B, Kispert A, Lienkamp SS, Hildebrandt F. A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling. J Am Soc Nephrol. 2017 Aug; 28(8):2364-2376. PMID: 28381549.

    Read at: PubMed
  • Published on 12/31/2016

    Chen J, Van Der Ven A, Newman J, Vivante A, Mann N, Shril S, Schulz J, Ityel H, Schmidt MJ, Widmeier E, Gileadi O, Sharrocks A, Palmer K, Costantini K, Cebrian C, Thowfeequ S, Wenger RH, Bauer SB, Lee RS, Lu W, Lienkamp SS, Lifton RP, Tasic V, Kehinde EO, Hildebrandt F. ETV4 mutation in a patient with congenital anomalies of the kidney and urinary tract. International Journal of Pediatrics and Child Health. 2016; 2(4):61-71.

    Read at: Custom
  • Published on 11/17/2016

    Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, Sharma R, Chan S, Tyminski E, Shamashkin M, Belghasem M, Henderson JM, Coyle AJ, Salant DJ, Berasi SP, Lu W. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight. 2016 Nov 17; 1(19):e86934. PMID: 27882344.

    Read at: PubMed
  • Published on 9/21/2016

    Havasi A, Lu W, Cohen HT, Beck L, Wang Z, Igwebuike C, Borkan SC. Blocking peptides and molecular mimicry as treatment for kidney disease. Am J Physiol Renal Physiol. 2017 Jun 01; 312(6):F1016-F1025. PMID: 27654896.

    Read at: PubMed
  • Published on 8/31/2016

    Rasouly HM, Kumar S, Chan S, Pisarek-Horowitz A, Sharma R, Xi QJ, Nishizaki Y, Higashi Y, Salant DJ, Maas RL, Lu W. Loss of Zeb2 in mesenchyme-derived nephrons causes primary glomerulocystic disease. Kidney Int. 2016 Dec; 90(6):1262-1273. PMID: 27591083.

    Read at: PubMed
  • Published on 1/1/2016

    Lu W, Bush KT, Nigam SK. Regulation of Ureteric Bud Outgrowth and the Consequences of Disrupted Development. In "Kidney Development, Disease, Repair and Regeneration" (ed. Little MH). Academic Press. Elsevier. 2016; 209-227.

    Read at: Custom
  • Published on 12/17/2015

    Zhang Y, Fan J, Ho JW, Hu T, Kneeland SC, Fan X, Xi Q, Sellarole MA, de Vries WN, Lu W, Lachke SA, Lang RA, John SW, Maas RL. Crim1 regulates integrin signaling in murine lens development. Development. 2016 Jan 15; 143(2):356-66. PMID: 26681494.

    Read at: PubMed
  • Published on 7/30/2015

    Vivante A, Kleppa MJ, Schulz J, Kohl S, Sharma A, Chen J, Shril S, Hwang DY, Weiss AC, Kaminski MM, Shukrun R, Kemper MJ, Lehnhardt A, Beetz R, Sanna-Cherchi S, Verbitsky M, Gharavi AG, Stuart HM, Feather SA, Goodship JA, Goodship TH, Woolf AS, Westra SJ, Doody DP, Bauer SB, Lee RS, Adam RM, Lu W, Reutter HM, Kehinde EO, Mancini EJ, Lifton RP, Tasic V, Lienkamp SS, Jüppner H, Kispert A, Hildebrandt F. Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. Am J Hum Genet. 2015 Aug 6; 97(2):291-301. PMID: 26235987.

    Read at: PubMed
  • Published on 5/31/2015

    Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, Schulz J, van Eerde AM, Hilger AC, Gee HY, Pennimpede T, Herrmann BG, van de Hoek G, Renkema KY, Schell C, Huber TB, Reutter HM, Soliman NA, Stajic N, Bogdanovic R, Kehinde EO, Lifton RP, Tasic V, Lu W, Hildebrandt F. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet. 2015 Aug; 134(8):905-16. PMID: 26026792.

    Read at: PubMed

View 25 more publications: View full profile at BUMC

View all profiles