Sudhir Kumar PhD

Assistant Professor, Nephrology

650 Albany St | (617) 638-7353
Sudhir Kumar

Biography

My long-term research goal is to elucidate the cells and signals in the kidney contributing to renal fibrosis. Specifically, I am interested in kidney pericyte biology and its role in kidney homeostasis and injury. I have extensive training in kidney developmental biology, mouse models for human diseases, molecular biology, molecular genetics and veterinary medicine. I completed my PhD in mouse genetics from LMU Munich Germany. I did my postdoctoral training in Dr. Weining Lu’s lab at the Renal Section, Boston University Medical Campus. Currently I am involved in different interdisciplinary research projects, which include: (1) Role of Slit-Robo signaling in kidney development and podocyte biology and injury and (2) Role of transcription factor ZEB2 in kidney development and disease. In addition, I am also actively participating in mentoring and training of Boston University graduate and undergraduate students.

Education

Veterinary Science, PhD, Ludwig-Maximilians-Universität München, 2011

Veterinary Science, MVSc, Haryana Agricultural University (HAU), 2006

Veterinary Science, BVSc, Haryana Agricultural University (HAU), 2004

Publications

Published on 3/24/2020

Pisarek-Horowitz A, Fan X, Kumar S, Rasouly HM, Sharma R, Chen H, Coser K, Bluette CT, Hirenallur-Shanthappa D, Anderson SR, Yang H, Beck LH, Bonegio RG, Henderson JM, Berasi SP, Salant DJ, Lu W. Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot Process Structure. Am J Pathol. 2020 04; 190(4):799-816. PMID: 32220420.

Published on 8/17/2017

Kumar S, Rathkolb B, Sabrautzki S, Krebs S, Kemter E, Becker L, Beckers J, Bekeredjian R, Brommage R, Calzada-Wack J, Garrett L, Hölter SM, Horsch M, Klingenspor M, Klopstock T, Moreth K, Neff F, Rozman J, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wolf E, Aigner B. Standardized, systemic phenotypic analysis reveals kidney dysfunction as main alteration of Kctd1 I27N mutant mice. J Biomed Sci. 2017 Aug 17; 24(1):57. PMID: 28818080.

Published on 11/17/2016

Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, Sharma R, Chan S, Tyminski E, Shamashkin M, Belghasem M, Henderson JM, Coyle AJ, Salant DJ, Berasi SP, Lu W. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight. 2016 11 17; 1(19):e86934. PMID: 27882344.

Published on 8/31/2016

Rasouly HM, Kumar S, Chan S, Pisarek-Horowitz A, Sharma R, Xi QJ, Nishizaki Y, Higashi Y, Salant DJ, Maas RL, Lu W. Loss of Zeb2 in mesenchyme-derived nephrons causes primary glomerulocystic disease. Kidney Int. 2016 Dec; 90(6):1262-1273. PMID: 27591083.

Published on 7/15/2016

Rieger A, Kemter E, Kumar S, Popper B, Aigner B, Wolf E, Wanke R, Blutke A. Missense Mutation of POU Domain Class 3 Transcription Factor 3 in Pou3f3L423P Mice Causes Reduced Nephron Number and Impaired Development of the Thick Ascending Limb of the Loop of Henle. PLoS One. 2016; 11(7):e0158977. PMID: 27420727.

Published on 3/22/2016

Kumar S, Rathkolb B, Kemter E, Sabrautzki S, Michel D, Adler T, Becker L, Beckers J, Busch DH, Garrett L, Hans W, Hölter SM, Horsch M, Klingenspor M, Klopstock T, Rácz I, Rozman J, Vargas Panesso IL, Vernaleken A, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wolf E, Aigner B. Generation and Standardized, Systemic Phenotypic Analysis of Pou3f3L423P Mutant Mice. PLoS One. 2016; 11(3):e0150472. PMID: 27003440.

Published on 5/11/2012

Kumar S, Rathkolb B, Budde BS, Nürnberg P, de Angelis MH, Aigner B, Schneider MR. Gsdma3(I359N) is a novel ENU-induced mutant mouse line for studying the function of Gasdermin A3 in the hair follicle and epidermis. J Dermatol Sci. 2012 Sep; 67(3):190-2. PMID: 22682752.

View full list of 7 publications.