Jingyan Han PhD

Assistant Professor, Vascular Biology

650 Albany St | (617) 638-7116
Jingyan Han

Vascular Biology


Whitaker Cardiovascular Institute


Welcome to Dr. Han’s lab, part of the Vascular Biology Section/Department of Medicine,Whitaker Cardiovascular Research Institute, and Sargent College at Boston University. We study the molecular mechanisms of atherosclerotic cardiovascular disease with a particular focus on the role of redox signaling in vascular endothelial cell dysfunction in response to various risk factors including hyperlipidemia, aging, and chronic alcohol abuse, which are supported by NIH grants. (National Heart Lung and Blood Institute—R01HL137771, National Institute of Aging—R21AG058983, and National Institute of Alcohol Abuse and Alcoholism—R21AA026922) Animal models of atherosclerosis, vascular aging, and chronic binge drinking have been established, and conditional tissue specific transgenic and knockout mice strains are employed to decipher the in vivo role of thiol redox signaling in vascular dysfunction and development of atherosclerosis. Isolated endothelial cells from human subjects with cardiovascular disease and cultured human aortic endothelial cells, as well redox proteomics and various molecular biology methods are used to elucidate the molecular mechanism underlying redox regulation of endothelial function. (Representative publication: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045950/pdf/main.pdf).

In addition to understanding the molecular mechanism of atherosclerosis, our research interests also lie in developing multidisciplinary approach to measuring vascular function in murine animals, and to targeted delivery of nanomedicine to cardiovascular system. We have developed a novel optical coherence tomography-based vascular imaging system enabling to real-time measure 3D angiography and hemodynamics of femoral artery of mouse models in vivo, which is noninvasive, label-free, contact-free, and high degree of automation in data acquisition and processing.(Representative publication: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226329/) We also initiated an exciting collaborative project with biotech company investigating the targeted delivery of redox-controllable nanoparticles to cardiovascular system in vivo, which has been a great challenge for drug delivery and treatment for cardiovascular disease.


Pharmacology, PhD, University of Illinois, 2009

Pharmacology, MS, Peking University, 2000

Pharmacy, BA, Peking University, 1997


Published on 4/12/2023

Zhang Z, Gan Q, Han J, Tao Q, Qiu WQ, Madri JA. CD31 as a probable responding and gate-keeping protein of the blood-brain barrier and the risk of Alzheimer's disease. J Cereb Blood Flow Metab. 2023 Apr 12; 271678X231170041. PMID: 37051650.

Published on 10/18/2022

Zhou Y, Hou D, Marigo CC, Bonelli J, Rocas P, Cheng F, Yang X, Rocas J, Hamberg NM, Han J. Redox-responsive polyurethane-polyurea nanoparticles targeting to aortic endothelium and atherosclerosis. iScience. 2022 Nov 18; 25(11):105390. PMID: 36345337.

Published on 9/17/2021

Zhou Y, Wan X, Seidel K, Zhang M, Goodman JB, Seta F, Hamburg N, Han J. Aging and Hypercholesterolemia Differentially Affect the Unfolded Protein Response in the Vasculature of ApoE-/- Mice. J Am Heart Assoc. 2021 09 21; 10(18):e020441. PMID: 34533042.

Published on 3/16/2021

Seidel K, Wan X, Zhang M, Zhou Y, Zang M, Han J. Alcohol Binge Drinking Selectively Stimulates Protein S-Glutathionylation in Aorta and Liver of ApoE-/- Mice. Front Cardiovasc Med. 2021; 8:649813. PMID: 33796575.

Published on 1/23/2020

Matsui R, Ferran B, Oh A, Croteau D, Shao D, Han J, Pimentel DR, Bachschmid MM. Redox Regulation via Glutaredoxin-1 and Protein S-Glutathionylation. Antioxid Redox Signal. 2020 04 01; 32(10):677-700. PMID: 31813265.

Published on 1/25/2019

Weinberg EO, Ferran B, Tsukahara Y, Hatch MMS, Han J, Murdoch CE, Matsui R. IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages. PLoS One. 2019; 14(1):e0210827. PMID: 30682073.

Published on 6/28/2018

Song W, Zhou L, Kot KL, Fan H, Han J, Yi J. Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography. J Biophotonics. 2018 11; 11(11):e201800053. PMID: 29855165.

Published on 1/1/2018

Edenbaum H, Han J. Assessment of S-Glutathionylated Rac1 in Cells Using Biotin-Labeled Glutathione. Methods Mol Biol. 2018; 1821:155-163. PMID: 30062411.

Published on 2/16/2017

Shao D, Han J, Hou X, Fry J, Behring JB, Seta F, Long MT, Roy HK, Cohen RA, Matsui R, Bachschmid MM. Glutaredoxin-1 Deficiency Causes Fatty Liver and Dyslipidemia by Inhibiting Sirtuin-1. Antioxid Redox Signal. 2017 Aug 20; 27(6):313-327. PMID: 27958883.

Published on 9/11/2016

Han J, Weisbrod RM, Shao D, Watanabe Y, Yin X, Bachschmid MM, Seta F, Janssen-Heininger YMW, Matsui R, Zang M, Hamburg NM, Cohen RA. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells. Redox Biol. 2016 Oct; 9:306-319. PMID: 27693992.

View full list of 31 publications.