David J. Salant MB BCh

Professor, Nephrology

Professor, Pathology & Laboratory Medicine

650 Albany St | (617) 638-7330
David Salant
Sections

Nephrology

Centers

Evans Center for Interdisciplinary Biomedical Research

Biography

Salant is Professor of Medicine and Vice-Chair for Research. He received his medical degree from University of the Witwatersrand in South Africa and completed his clinical training at Johannesburg General Hospital. He received his research training at Boston University with Dr. William G. Couser and joined BU’s nephrology faculty in 1979. Dr. Salant is an internationally renowned physician-scientist and an acclaimed educator. His research primarily explores the immune basis for glomerular diseases and the mechanisms of podocyte injury. He was among the first to identify podocytes as the primary target of injury in antibody-mediated glomerular diseases. In a landmark New England Journal of Medicine paper in 2009, Drs. Salant, Beck and colleagues described their discovery of the target antigen in membranous nephropathy and showed that a high proportion of MN patients have circulating autoantibodies to the phospholipase A2 receptor on human podocytes. Dr. Salant is a past chairman of the ABIM Sub-specialty Board of Examiners in Nephrology, and recipient of several national and international awards for his scientific contributions, including election to the American Society of Clinical Investigation and the Association of American Physicians, an Established Investigator Award from the American Heart Association, the John P. Peters Award from the American Society of Nephrology, the Jean Hamburger Award from the International Society of Nephrology, the Donald W. Seldin Award from the National Kidney Foundation, the Marilyn Farquhar Award at the 11th Annual Podocyte Conference and the Edward N. Gibbs Award and Lectureship from the New York Academy Sciences.

Research Expertise

Experimental models of immunological glomerular diseases and autoimmunity resembling those seen in man are used to obtain a fundamental understanding of the immunopathogenetic mechanisms of injury.

Antibody-mediated podocyte injury:
The primary focus of the Salant laboratory is on the immune basis of glomerular diseases with particular regard to the humoral mechanisms of glomerular cell injury. Current work will elucidate the mechanisms by which antibodies alter the function and morphology of glomerular visceral epithelial cells (podocytes).
1. We have identified the target antigen in human membranous nephropathy as the phospholipase A2 receptor (PLA2R) and shown that about 75% of patients have circulating ant-PLA2R autoantibodies. Current work is directed at defining the mechanisms of podocyte injury induced by anti-PLA2R using a combination of in vitro, in vivo and human genetic techniques. Additional studies will explore the role of anti-PLA2R in the development of recurrent membranous nephropathy post renal transplantation.
2. Ongoing interests include the role of podocyte-specific antibodies, and the effects of complement-mediated injury on podocyte structure, composition of the filtration slit diaphragm and its attachment to the cytoskeleton, and on cell-matrix adhesion using animal models, cell biological and immunochemical methodologies.

Mechanisms of post-inflammatory renal fibrogenesis:
We have also developed a murine model of antibody-dependent rapidly progressive glomerulonephritis in which necrotizing and crescentic glomerulonephritis is associated with the activation of chemokine and interstitial-type collagen genes, followed by the development of interstitial fibrosis and renal failure. Since interstitial fibrosis and tubular atrophy are common to all forms of chronic progressive renal diseases and are the most reliable pathological indicators of an adverse long-term prognosis in humans, this mouse model in which the onset of immune injury is rapidly followed (within 5 days) by the induction and proliferation of interstitial cells expressing high levels of mRNA for type I collagen affords a unique opportunity to study the mechanisms of post-inflammatory renal fibrogenesis

Other Positions

Vice Chair, Research Implementation

Education

MBBCh, University of the Witwatersrand, 1969

Publications

Published on 9/3/2021

Pace JA, Bronstein R, Guo Y, Yang Y, Estrada CC, Gujarati N, Salant DJ, Haley J, Bialkowska AB, Yang VW, He JC, Mallipattu SK. Podocyte-specific KLF4 is required to maintain parietal epithelial cell quiescence in the kidney. Sci Adv. 2021 Sep 03; 7(36):eabg6600. PMID: 34516901.

Published on 7/29/2021

Edwards A, Salant D, Benzing T. Insights into Glomerular Filtration and Albuminuria. Reply. N Engl J Med. 2021 07 29; 385(5):478. PMID: 34320302.

Published on 4/15/2021

Benzing T, Salant D. Insights into Glomerular Filtration and Albuminuria. N Engl J Med. 2021 Apr 15; 384(15):1437-1446. PMID: 33852781.

Published on 4/3/2021

Beck LH, Berasi SP, Copley JB, Gorman D, Levy DI, Lim CN, Henderson JM, Salant DJ, Lu W. PODO: Trial Design: Phase 2 Study of PF-06730512 in Focal Segmental Glomerulosclerosis. Kidney Int Rep. 2021 Jun; 6(6):1629-1633. PMID: 34169203.

Published on 3/1/2021

Haddad G, Lorenzen JM, Ma H, de Haan N, Seeger H, Zaghrini C, Brandt S, Kölling M, Wegmann U, Kiss B, Pál G, Gál P, Wüthrich RP, Wuhrer M, Beck LH, Salant DJ, Lambeau G, Kistler AD. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J Clin Invest. 2021 03 01; 131(5). PMID: 33351779.

Published on 8/12/2020

Braden GL, Chapman A, Ellison DH, Gadegbeku CA, Gurley SB, Igarashi P, Kelepouris E, Moxey-Mims MM, Okusa MD, Plumb TJ, Quaggin SE, Salant DJ, Segal MS, Shankland SJ, Somlo S. Advancing Nephrology: Division Leaders Advise ASN. Clin J Am Soc Nephrol. 2021 02 08; 16(2):319-327. PMID: 32792352.

Published on 4/1/2020

Skopelja-Gardner S, Colonna L, Hermanson P, Sun X, Tanaka L, Tai J, Nguyen Y, Snyder JM, Alpers CE, Hudkins KL, Salant DJ, Peng Y, Elkon KB. Complement Deficiencies Result in Surrogate Pathways of Complement Activation in Novel Polygenic Lupus-like Models of Kidney Injury. J Immunol. 2020 05 15; 204(10):2627-2640. PMID: 32238460.

Published on 3/24/2020

Pisarek-Horowitz A, Fan X, Kumar S, Rasouly HM, Sharma R, Chen H, Coser K, Bluette CT, Hirenallur-Shanthappa D, Anderson SR, Yang H, Beck LH, Bonegio RG, Henderson JM, Berasi SP, Salant DJ, Lu W. Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot Process Structure. Am J Pathol. 2020 04; 190(4):799-816. PMID: 32220420.

Published on 12/16/2019

Beck LH, Salant DJ. Refining Our Understanding of the PLA2R-Antibody Response in Primary Membranous Nephropathy: Looking Forward, Looking Back. J Am Soc Nephrol. 2020 01; 31(1):8-11. PMID: 31871252.

Published on 7/24/2019

Salant DJ. Does Epitope Spreading Influence Responsiveness to Rituximab in PLA2R-Associated Membranous Nephropathy? Clin J Am Soc Nephrol. 2019 Aug 07; 14(8):1122-1124. PMID: 31340980.

View full list of 173 publications.