Thomas T. Perls, MD, MPH, FACP

Professor, Medicine

Thomas Perls
72 E. Concord St Robinson (B)


Expertise in epidemiology, genetics of aging and exceptional longevity.

Dr. Perls is among the international leaders in the field of human exceptional longevity. He is founder and director of the New England Centenarian Study, the largest study of centenarians and their families in the world. He is also a principal investigator of the NIA-funded Long Life Family Study. Dr. Perls is also a vocal critic of the “anti-aging” industry.

Dr. Perls is readily available for media interviews and inquiries for presentations. Please call him at 617-638-6688 or via email at

He has been responsible for numerous novel and pivotal findings in the field:

• Intact cognitive function amongst centenarians may be a function of demographic selection in which younger elderly with poor function die off leaving behind a select group of survivors with lower relative risk for common causes of cognitive impairment such as Alzheimer’s disease.

• Twenty percent of female centenarians had children after the age of 40 compared with 5% of women from their birth cohort. The results suggest that women who had children after the age of 40 had a 4 times greater risk of living to 100 or older (Nature).

• Delayed age of menopause and therefore the ability to have more children may be an important genetic selective pressure to evolve genetic variants that slow aging and decrease risk for age related diseases.

• Relative to octogenarians and nonagenarians, Alzheimer’s becomes less common amongst centenarians while rarer causes of neuropathology become more common, suggesting that centenarians have a relative resistance to Alzheimer’s, which also correlates with the decreased frequency of the apolipoprotein E-4 allele amongst Caucasian centenarians.

• The first to report a series of families that demonstrate remarkable clustering for exceptional longevity (J Amer Geriatrics Society).

• Siblings of centenarians have markedly increased risks for survival to 100 relative to their birth cohort (Lancet and PNAS).

• The children of centenarians have approximately 60% reduced rates of heart disease, stroke, diabetes and hypertension and 80% reduced overall mortality in their early seventies compared to their average birth cohort.

• A substantial proportion of centenarians live with age-related diseases usually associated with significant mortality, for more than 20 years (40%, called survivors), another group have such diseases after the age of 80 (45%, called delayers) and then there are about 15% of centenarians who have none of these diseases at the age of 100 (called escapers). Despite this, more than 90% of centenarians are functionally independent in their early nineties.

• At even older ages however, semi-super-centenarians (ages 105-109 years) and even more so, supercentenarians (age 110+), usually delay such age related diseases towards the ends of their lives. The supercentenarians particularly do this, experiencing such diseases on average in the last 5% of their extremely long lives (J Gerontology, 2012). These findings support for the first time Jim Fries’ “compression of morbidity” hypothesis that he proposed in his 1980 New England Journal of Medicine article. The observed homogeneity of this age group in terms of the delay or escape of these diseases is consistent with their being the extreme tail of the population and that they are more likely to have genetic factors in common that confer such an extreme survival advantage.

• Dr. Perls, working with a wide range of disciplines including statisticians, geneticists and computer scientists, has led the production of a landmark article in which a genetic model consisting of 281 genetic markers predicts with 85% accuracy whom in their sample of controls and centenarians is age 105+ years (published this January in PLoS ONE). The accuracy of the model is lower, about 60% for nonagenarians and centenarians at age 100, which supports the hypothesis that the genetic component of survival to older and older age beyond 100 gets progressively stringer. The authors made some additionally important findings: the centenarians have just as many disease-associated genetic variants as people dying at younger ages. Presumably, centenarians are able to survive to much older ages in part because of the presence of longevity associated variants that counter the effects of such disease variants. Particularly for the oldest subjects in the study, most of these 281 markers presumably point to such longevity associated variants, including genes already well known in the biology of aging community such as the Werner’s gene, Lamin A (Hutchison Guildford Syndrome) and super oxide dismutase. It’s very interesting that there are variants for genes known to cause premature aging that may have the opposite effect and contribute to exceptional longevity.

• In part in order to search for functional variants associated with the SNPs noted in the above model, Dr. Perls also led an effort to whole genome sequence, for the first time, not just one centenarian, but two supercentenarians, a man and woman, both over the age of 114 years (Frontiers in Genetics, January 2012).

Other Positions

  • Member, Evans Center for Interdisciplinary Biomedical Research, Boston University
  • Graduate Faculty (Primary Mentor of Grad Students), Boston University School of Medicine, Graduate Medical Sciences


  • University of Rochester, MD
  • Harvard School of Public Health, MPH
  • Pitzer College, BA


  • Published on 1/29/2021

    Sebastiani P, Federico A, Morris M, Gurinovich A, Tanaka T, Chandler KB, Andersen SL, Denis G, Costello CE, Ferrucci L, Jennings L, Glass DJ, Monti S, Perls TT. Protein signatures of centenarians and their offspring suggest centenarians age slower than other humans. Aging Cell. 2021 02; 20(2):e13290. PMID: 33512769.

    Read at: PubMed
  • Published on 1/8/2021

    Xiang Q, Andersen SL, Perls TT, Sebastiani P. Studying the Interplay Between Apolipoprotein E and Education on Cognitive Decline in Centenarians Using Bayesian Beta Regression. Front Genet. 2020; 11:606831. PMID: 33488674.

    Read at: PubMed
  • Published on 1/4/2021

    Perls TT. Cognitive Trajectories and Resilience in Centenarians-Findings From the 100-Plus Study. JAMA Netw Open. 2021 01 04; 4(1):e2032538. PMID: 33449091.

    Read at: PubMed
  • Published on 1/1/2021

    Du M, Andersen SL, Schupf N, Feitosa MF, Barker MS, Perls TT, Sebastiani P. Association Between APOE Alleles and Change of Neuropsychological Tests in the Long Life Family Study. J Alzheimers Dis. 2021; 79(1):117-125. PMID: 33216038.

    Read at: PubMed
  • Published on 10/2/2020

    Lau-Ng R, Caruso LB, Perls TT. Reply to Comment on COVID-19 Deaths in Long Term Care Facilities - A Critical Piece of the Puzzle. J Am Geriatr Soc. 2020 12; 68(12):2748. PMID: 32835433.

    Read at: PubMed
  • Published on 7/20/2020

    Lau-Ng R, Caruso LB, Perls TT. COVID-19 Deaths in Long-Term Care Facilities: A Critical Piece of the Pandemic Puzzle. J Am Geriatr Soc. 2020 09; 68(9):1895-1898. PMID: 32501537.

    Read at: PubMed
  • Published on 6/8/2020

    Sebastiani P, Andersen SL, Sweigart B, Du M, Cosentino S, Thyagarajan B, Christensen K, Schupf N, Perls TT. Patterns of multi-domain cognitive aging in participants of the Long Life Family Study. Geroscience. 2020 10; 42(5):1335-1350. PMID: 32514870.

    Read at: PubMed
  • Published on 5/5/2020

    de Las Fuentes L, Sung YJ, Noordam R, Winkler T, Feitosa MF, Schwander K, Bentley AR, Brown MR, Guo X, Manning A, Chasman DI, Aschard H, Bartz TM, Bielak LF, Campbell A, Cheng CY, Dorajoo R, Hartwig FP, Horimoto ARVR, Li C, Li-Gao R, Liu Y, Marten J, Musani SK, Ntalla I, Rankinen T, Richard M, Sim X, Smith AV, Tajuddin SM, Tayo BO, Vojinovic D, Warren HR, Xuan D, Alver M, Boissel M, Chai JF, Chen X, Christensen K, Divers J, Evangelou E, Gao C, Girotto G, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Rueedi R, Shu XO, Snieder H, Sofer T, Takeuchi F, Verweij N, Ware EB, Weiss S, Yanek LR, Amin N, Arking DE, Arnett DK, Bergmann S, Boerwinkle E, Brody JA, Broeckel U, Brumat M, Burke G, Cabrera CP, Canouil M, Chee ML, Chen YI, Cocca M, Connell J, de Silva HJ, de Vries PS, Eiriksdottir G, Faul JD, Fisher V, Forrester T, Fox EF, Friedlander Y, Gao H, Gigante B, Giulianini F, Gu CC, Gu D, Harris TB, He J, Heikkinen S, Heng CK, Hunt S, Ikram MA, Irvin MR, Kähönen M, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Kraja AT, Krieger JE, Langefeld CD, Li Y, Liang J, Liewald DCM, Liu CT, Liu J, Lohman KK, Mägi R, McKenzie CA, Meitinger T, Metspalu A, Milaneschi Y, Milani L, Mook-Kanamori DO, Nalls MA, Nelson CP, Norris JM, O'Connell J, Ogunniyi A, Padmanabhan S, Palmer ND, Pedersen NL, Perls T, Peters A, Petersmann A, Peyser PA, Polasek O, Porteous DJ, Raffel LJ, Rice TK, Rotter JI, Rudan I, Rueda-Ochoa OL, Sabanayagam C, Salako BL, Schreiner PJ, Shikany JM, Sidney SS, Sims M, Sitlani CM, Smith JA, Starr JM, Strauch K, Swertz MA, Teumer A, Tham YC, Uitterlinden AG, Vaidya D, van der Ende MY, Waldenberger M, Wang L, Wang YX, Wei WB, Weir DR, Wen W, Yao J, Yu B, Yu C, Yuan JM, Zhao W, Zonderman AB, Becker DM, Bowden DW, Deary IJ, Dörr M, Esko T, Freedman BI, Froguel P, Gasparini P, Gieger C, Jonas JB, Kammerer CM, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, Marques-Vidal P, Penninx BWJH, Samani NJ, van der Harst P, Wagenknecht LE, Wu T, Zheng W, Zhu X, Bouchard C, Cooper RS, Correa A, Evans MK, Gudnason V, Hayward C, Horta BL, Kelly TN, Kritchevsky SB, Levy D, Palmas WR, Pereira AC, Province MM, Psaty BM, Ridker PM, Rotimi CN, Tai ES, van Dam RM, van Duijn CM, Wong TY, Rice K, Gauderman WJ, Morrison AC, North KE, Kardia SLR, Caulfield MJ, Elliott P, Munroe PB, Franks PW, Rao DC, Fornage M. Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci. Mol Psychiatry. 2020 May 05. PMID: 32372009.

    Read at: PubMed
  • Published on 2/14/2020

    Feitosa MF, Lunetta KL, Wang L, Wojczynski MK, Kammerer CM, Perls T, Schupf N, Christensen K, Murabito JM, Province MA. Gene discovery for high-density lipoprotein cholesterol level change over time in prospective family studies. Atherosclerosis. 2020 03; 297:102-110. PMID: 32109663.

    Read at: PubMed
  • Published on 1/14/2020

    Marone S, Bloore K, Sebastiani P, Flynn C, Leonard B, Whitaker K, Mostowy M, Perls TT, Andersen SL. Purpose in Life Among Centenarian Offspring. J Gerontol B Psychol Sci Soc Sci. 2020 01 14; 75(2):308-315. PMID: 29522128.

    Read at: PubMed

View 161 more publications: View full profile at BUMC

View all profiles