Biography
Evan Johnson specializes in computational biology and biostatistics, developing new tools to investigate disease prognoses and causes and to help determine effective regimens based on individual patients’ risk factors. He has published in the journals Cell, Proceedings of the National Academy of Sciences, Biometrics, Nature Reviews Genetics, Annals of Applied Statistics, and Biostatistics. His work has been funded by the NIH.
The focus of his group's research is to develop computational and statistical tools to investigate core components that contribute to disease prognosis and etiology, and for the accurate determination of optimal diagnostic, prognostic, and therapeutic regimens for individual patients. They are actively developing methods and software tools for data preprocessing, integration, and downstream analysis, and applying these tools in a variety of clinical and biomedical applications. Their work includes a balance between statistical methods development, algorithm optimization, and clinical application. Statistical innovation focuses on the development of clinically motivated tools that integrate linear modeling, Bayesian methods, factor analysis and structural equations models, Hidden Markov models, mixture models, dynamic programming, and high-performance parallel computing. This work has resulted in widely used tools and algorithms for profiling transcription factors (MAT, MA2C), preprocessing and integrating of genomic data (ComBat, BatchQC, SCAN-UPC), aligning sequencing reads (GNUMAP), developing multi-gene biomarker signatures (ASSIGN), and metagenomic profiling (PathoScope). They have successfully applied their tools in several biomedical and clinical scenarios, ranging from mechanistic studies and to precision genomics.