Joseph Zaia, PhD

Professor, Biochemistry & Cell Biology

Joseph Zaia
670 Albany St Biosquare III


The manner in which a cell responds to many growth factor stimuli depends on interactions between glycosaminoglycans (GAGs), growth factors, and growth factor receptors. Extracellular matrix GAGs binds growth factors, creating morphogens gradients essential to tissue patterning. Because these events depend on the fine structure of the GAG chains present, regulation of GAG biosynthesis is a key factor for understanding normal and disease related cellular growth
The key to exploiting an understanding of GAG structure-function relationships for human disease therapy is to winnow oligosaccharide-protein binding patterns from heterogeneous biological preparations. Toward this end, we have developed mass spectral methods for GAGs that enable comparison of structures as a function of biological variables.

The long term research aims are (1) to develop a fundamental understanding of the manner in which glycosaminoglycan expression is varied according to the cellular growth environment related to human disease and (2) to identify HS chain structures useful as therapeutic targets.

New bioinformatics methods are essential to realizing these goals. The data produced using our methods are information rich and not amenable to manual interpretation. Further, the methods needed are distinct from those used in genomics and proteomics. We are developing bioinformatics methods appropriate for interpretation of structural data on glycosaminoglycans and other carbohydrates to identify targets for disease therapy.

Other Positions

  • Member, Bioinformatics Graduate Program, Boston University
  • Member, BU-BMC Cancer Center, Boston University
  • Member, Genome Science Institute, Boston University
  • Center Faculty Member, Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine
  • Graduate Faculty (Primary Mentor of Grad Students), Boston University Chobanian & Avedisian School of Medicine, Graduate Medical Sciences


  • Massachusetts Institute of Technology, PhD
  • Bates College, BS


  • Published on 6/2/2023

    Wei J, Papanastasiou D, Kosmopoulou M, Smyrnakis A, Hong P, Tursumamat N, Klein JA, Xia C, Tang Y, Zaia J, Costello CE, Lin C. De novo glycan sequencing by electronic excitation dissociation MS2-guided MS3 analysis on an Omnitrap-Orbitrap hybrid instrument. Chem Sci. 2023 Jun 21; 14(24):6695-6704. PMID: 37350811.

    Read at: PubMed
  • Published on 6/1/2023

    Hackett WE, Chang D, Carvalho L, Zaia J. RAMZIS: a bioinformatic toolkit for rigorous assessment of the alterations to glycoprotein structure that occur during biological processes. bioRxiv. 2023 Jun 01. PMID: 37398011.

    Read at: PubMed
  • Published on 1/5/2023

    Zaia J. The 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry. Anal Bioanal Chem. 2023 Feb; 415(4):527-532. PMID: 36602567.

    Read at: PubMed
  • Published on 12/8/2022

    Wong TL, Mooney BP, Cavallero GJ, Guan M, Li L, Zaia J, Wan XF. Glycoproteomic Analyses of Influenza A Viruses Using timsTOF Pro MS. J Proteome Res. 2023 Jan 06; 22(1):62-77. PMID: 36480915.

    Read at: PubMed
  • Published on 9/29/2022

    Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Mass Spectrom Rev. 2022 Sep 29; e21813. PMID: 36177493.

    Read at: PubMed
  • Published on 9/27/2022

    Zaia J, Ricard-Blum S. Editorial overview: Protein-carbohydrate complexes and glycosylation. Curr Opin Struct Biol. 2022 Dec; 77:102468. PMID: 36179500.

    Read at: PubMed
  • Published on 9/22/2022

    Cavallero GJ, Wang Y, Nwosu C, Gu S, Meiyappan M, Zaia J. O-Glycoproteomic analysis of engineered heavily glycosylated fusion proteins using nanoHILIC-MS. Anal Bioanal Chem. 2022 Nov; 414(27):7855-7863. PMID: 36136114.

    Read at: PubMed
  • Published on 9/11/2022

    Chang D, Klein J, Hackett WE, Nalehua MR, Wan XF, Zaia J. Improving Statistical Certainty of Glycosylation Similarity between Influenza A Virus Variants Using Data-Independent Acquisition Mass Spectrometry. Mol Cell Proteomics. 2022 Nov; 21(11):100412. PMID: 36103992.

    Read at: PubMed
  • Published on 6/20/2022

    Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. Mass Spectrom Rev. 2023; 42(5):1848-1875. PMID: 35719114.

    Read at: PubMed
  • Published on 6/13/2022

    Lageveen-Kammeijer GSM, Rapp E, Chang D, Rudd PM, Kettner C, Zaia J. The minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for capillary electrophoresis. Glycobiology. 2022 06 13; 32(7):580-587. PMID: 35348694.

    Read at: PubMed

View 210 more publications: View full profile at BUMC

View all profiles