Daniel Cifuentes, PhD

Associate Professor, Boston University Chobanian & Avedisian School of Medicine

Biography

Our research goals in the Cifuentes laboratory aim to understand the molecular mechanisms of RNA regulation. In particular, we focus on the study of RNA-binding proteins, microRNAs, and RNA modifications to uncover their impact on small RNA biogenesis and mRNA post-transcriptional regulation. To address these goals, the lab combines high-throughput genetic, genomic, and proteomic approaches applied to two independent but technically interconnected areas: vertebrate development and viral replication, using zebrafish and filoviruses as primary model systems.

Role of post-transcriptional regulation during vertebrate embryogenesis:
The beginning of a new life is one of the most enigmatic and dynamic events in Biology. Right after fertilization, multiple cell division occur without any contribution of the transcriptionally silent genome. Therefore, the first embryonic processes are organized at post-transcriptional level. Our laboratory focuses on the study of how small RNA and RNA-binding proteins regulate mRNA stability and decay. To this end, we use zebrafish as a model system to dissect the process of post-transcriptional reprogramming within the context of a whole organism. The combination of fish embryo microinjections, together with powerful genetic, genomic, and proteomic approaches provides a unique platform to address this central question in biology.

Regulation of transcription, replication and translation in RNA viruses:
Filovirus and Arenavirus belong to the group of Viruses of Concern (VOCs) with epidemic and pandemic potential as identified by the World Health Organization. Their common feature is that these viruses have an RNA genome, and as such, RNA regulation take center stage in orchestrating the infection cycle of these viruses. In our laboratory, we investigate 1) how small RNAs and RNA binding protein govern the balance between transcription and replication in Filovirus (Ebola and Marburg virus) and 2) how secondary RNA structures and cellular factors regulate translation of viral mRNAs in Arenavirus (Lassa virus). To this end, we capitalize in our long-standing collaboration with the group of Prof. Mühlberger at the National Emerging Disease Laboratory (NEIDL) at Boston University.

Publications

  • Published 10/23/2024

    Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, Beheshti A. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function. Nat Commun. 2024 Oct 23; 15(1):9149. PMID: 39443444.

    Read at: PubMed

  • Published 7/1/2024

    Ross SJ, Hume AJ, Olejnik J, Turcinovic J, Honko AN, McKay LGA, Connor JH, Griffiths A, Mühlberger E, Cifuentes D. Low-Input, High-Resolution 5' Terminal Filovirus RNA Sequencing with ViBE-Seq. Viruses. 2024 Jul 01; 16(7). PMID: 39066227.

    Read at: PubMed

  • Published 5/7/2024

    Kretov DA, Folkes L, Mora-Martin A, Walawalkar IA, Imrat, Syedah N, Vanuytsel K, Moxon S, Murphy GJ, Cifuentes D. The miR-144/Hmgn2 regulatory axis orchestrates chromatin organization during erythropoiesis. Nat Commun. 2024 May 07; 15(1):3821. PMID: 38714702.

    Read at: PubMed

  • Published 11/13/2023

    Nelson EV, Ross SJ, Olejnik J, Hume AJ, Deeney DJ, King E, Grimins AO, Lyons SM, Cifuentes D, Mühlberger E. The 3' Untranslated Regions of Ebola Virus mRNAs Contain AU-Rich Elements Involved in Posttranscriptional Stabilization and Decay. J Infect Dis. 2023 Nov 13; 228(Supplement_7):S488-S497. PMID: 37551415.

    Read at: PubMed

  • Published 7/19/2023

    Kretov DA, Folkes L, Mora-Martin A, Syedah N, Walawalkar IA, Vanyustel K, Moxon S, Murphy GJ, Cifuentes D. The miR-144/Hmgn2 regulatory axis orchestrates chromatin organization during erythropoiesis. bioRxiv. 2023 Jul 19. PMID: 37503141.

    Read at: PubMed

Other Positions

  • Assistant Professor, Virology, Immunology & Microbiology
    Boston University Chobanian & Avedisian School of Medicine
  • Member, Genome Science Institute
    Boston University

Education

  • Universidad de Barcelona, PhD
  • Universidad de Barcelona, BS