Mohsan Saeed, PhD
Assistant Professor, Biochemistry & Cell Biology
Biography
My laboratory investigates the role that viral proteins, particularly viral proteases, play in remodeling host cells and creating a favorable environment for virus replication. To this end, we take a two-pronged approach: employ modern systems biology methods to get a global view of the virus-host interface and then use classical molecular biology and biochemistry techniques to gain deeper mechanistic insights.
The major focus of my laboratory is to identify and characterize host proteins that are cleaved by viral proteases. For this, we use a relatively unbiased approach to label and capture protein N-termini generated by proteolytic cleavage in virus-infected cells. This powerful proteomics (“degradomics”) approach not only identifies the cleaved proteins but also the site of cleavage within a protein. Once the proteins are identified and their cleavage is validated by orthogonal methods, we then ascertain the functional significance of these cleavages in the virus life cycle.
Besides studying host proteins that we have identified from the degradomics analysis of clinically important enteroviruses, we continue to extend this analysis to viruses from other families with the goal to get a global view of cellular pathways commonly targeted or co-opted by diverse viruses. These studies are expected to provide novel insights into cell biology, antiviral defenses, and disease mechanisms. Also, viral proteases are one of the prime targets for antiviral development, and therefore deeper insights into their function will help improve viral therapeutics.
Other Positions
- Faculty, National Emerging Infectious Disease Lab, Boston University
- Member, Genome Science Institute, Boston University
Publications
- Published on 1/11/2023
Chen DY, Chin CV, Kenney D, Tavares AH, Khan N, Conway HL, Liu G, Choudhary MC, Gertje HP, O'Connell AK, Adams S, Kotton DN, Herrmann A, Ensser A, Connor JH, Bosmann M, Li JZ, Gack MU, Baker SC, Kirchdoerfer RN, Kataria Y, Crossland NA, Douam F, Saeed M. Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature. 2023 Mar; 615(7950):143-150. PMID: 36630998.
Read at: PubMed - Published on 1/10/2023
Chen DY, Kenney D, Chin CV, Tavares AH, Khan N, Conway HL, Liu G, Choudhary MC, Gertje HP, O'Connell AK, Kotton DN, Herrmann A, Ensser A, Connor JH, Bosmann M, Li JZ, Gack MU, Baker SC, Kirchdoerfer RN, Kataria Y, Crossland NA, Douam F, Saeed M. Role of spike in the pathogenic and antigenic behavior of SARS-CoV-2 BA.1 Omicron. bioRxiv. 2023 Jan 10. PMID: 36263066.
Read at: PubMed - Published on 12/8/2022
Weingarten-Gabbay S, Pearlman LR, Chen DY, Klaeger S, Taylor HB, Welch NL, Keskin DB, Carr SA, Abelin JG, Saeed M, Sabeti PC. HLA-I immunopeptidome profiling of human cells infected with high-containment enveloped viruses. STAR Protoc. 2022 Dec 16; 3(4):101910. PMID: 36595954.
Read at: PubMed - Published on 12/7/2022
Torchia JA, Tavares AH, Carstensen LS, Chen DY, Huang J, Xiao T, Mukherjee S, Reeves PM, Tu H, Sluder AE, Chen B, Kotton DN, Bowen RA, Saeed M, Poznansky MC, Freeman GJ. Optimized ACE2 decoys neutralize antibody-resistant SARS-CoV-2 variants through functional receptor mimicry and treat infection in vivo. Sci Adv. 2022 Dec 09; 8(49):eabq6527. PMID: 36475798.
Read at: PubMed - Published on 10/6/2022
Han Y, Tan L, Zhou T, Yang L, Carrau L, Lacko LA, Saeed M, Zhu J, Zhao Z, Nilsson-Payant BE, Lira Neto FT, Cahir C, Giani AM, Chai JC, Li Y, Dong X, Moroziewicz D, Paull D, Zhang T, Koo S, Tan C, Danziger R, Ba Q, Feng L, Chen Z, Zhong A, Wise GJ, Xiang JZ, Wang H, Schwartz RE, tenOever BR, Noggle SA, Rice CM, Qi Q, Evans T, Chen S. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell. 2022 Oct 06; 29(10):1475-1490.e6. PMID: 36206731.
Read at: PubMed - Published on 4/28/2022
Chin CV, Saeed M. Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens. 2022 Apr 28; 11(5). PMID: 35631043.
Read at: PubMed - Published on 4/4/2022
Kenney DJ, O'Connell AK, Turcinovic J, Montanaro P, Hekman RM, Tamura T, Berneshawi AR, Cafiero TR, Al Abdullatif S, Blum B, Goldstein SI, Heller BL, Gertje HP, Bullitt E, Trachtenberg AJ, Chavez E, Nono ET, Morrison C, Tseng AE, Sheikh A, Kurnick S, Grosz K, Bosmann M, Ericsson M, Huber BR, Saeed M, Balazs AB, Francis KP, Klose A, Paragas N, Campbell JD, Connor JH, Emili A, Crossland NA, Ploss A, Douam F. Humanized mice reveal a macrophage-enriched gene signature defining human lung tissue protection during SARS-CoV-2 infection. Cell Rep. 2022 Apr 19; 39(3):110714. PMID: 35421379.
Read at: PubMed - Published on 3/31/2022
Serganov AA, Udi Y, Stein ME, Patel V, Fridy PC, Rice CM, Saeed M, Jacobs EY, Chait BT, Rout MP. Proteomic elucidation of the targets and primary functions of the picornavirus 2A protease. J Biol Chem. 2022 Jun; 298(6):101882. PMID: 35367208.
Read at: PubMed - Published on 3/5/2022
Carossino M, Kenney D, O'Connell AK, Montanaro P, Tseng AE, Gertje HP, Grosz KA, Ericsson M, Huber BR, Kurnick SA, Subramaniam S, Kirkland TA, Walker JR, Francis KP, Klose AD, Paragas N, Bosmann M, Saeed M, Balasuriya UBR, Douam F, Crossland NA. Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses. 2022 03 05; 14(3). PMID: 35336942.
Read at: PubMed - Published on 10/20/2021
Ren W, Zhu Y, Lan J, Chen H, Wang Y, Shi H, Feng F, Chen DY, Close B, Zhao X, Wu J, Tian B, Yuan Z, Zhou D, Saeed M, Wang X, Zhang R, Ding Q. Susceptibilities of Human ACE2 Genetic Variants in Coronavirus Infection. J Virol. 2022 01 12; 96(1):e0149221. PMID: 34668773.
Read at: PubMed
View 45 more publications: View full profile at BUMC