Joseph Zaia, PhD
Professor, Biochemistry & Cell Biology

Biography
The manner in which a cell responds to many growth factor stimuli depends on interactions between glycosaminoglycans (GAGs), growth factors, and growth factor receptors. Extracellular matrix GAGs binds growth factors, creating morphogens gradients essential to tissue patterning. Because these events depend on the fine structure of the GAG chains present, regulation of GAG biosynthesis is a key factor for understanding normal and disease related cellular growth
The key to exploiting an understanding of GAG structure-function relationships for human disease therapy is to winnow oligosaccharide-protein binding patterns from heterogeneous biological preparations. Toward this end, we have developed mass spectral methods for GAGs that enable comparison of structures as a function of biological variables.
The long term research aims are (1) to develop a fundamental understanding of the manner in which glycosaminoglycan expression is varied according to the cellular growth environment related to human disease and (2) to identify HS chain structures useful as therapeutic targets.
New bioinformatics methods are essential to realizing these goals. The data produced using our methods are information rich and not amenable to manual interpretation. Further, the methods needed are distinct from those used in genomics and proteomics. We are developing bioinformatics methods appropriate for interpretation of structural data on glycosaminoglycans and other carbohydrates to identify targets for disease therapy.
Other Positions
- Member, Bioinformatics Graduate Program, Boston University
- Member, BU-BMC Cancer Center, Boston University
- Member, Genome Science Institute, Boston University
- Center Faculty Member, Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine
- Graduate Faculty (Primary Mentor of Grad Students), Boston University Chobanian & Avedisian School of Medicine, Graduate Medical Sciences
Education
- Massachusetts Institute of Technology, PhD
- Bates College, BS
Publications
- Published on 1/5/2023
Zaia J. The 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry. Anal Bioanal Chem. 2023 Feb; 415(4):527-532. PMID: 36602567.
Read at: PubMed - Published on 12/8/2022
Wong TL, Mooney BP, Cavallero GJ, Guan M, Li L, Zaia J, Wan XF. Glycoproteomic Analyses of Influenza A Viruses Using timsTOF Pro MS. J Proteome Res. 2023 Jan 06; 22(1):62-77. PMID: 36480915.
Read at: PubMed - Published on 9/29/2022
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Mass Spectrom Rev. 2022 Sep 29; e21813. PMID: 36177493.
Read at: PubMed - Published on 9/27/2022
Zaia J, Ricard-Blum S. Editorial overview: Protein-carbohydrate complexes and glycosylation. Curr Opin Struct Biol. 2022 Dec; 77:102468. PMID: 36179500.
Read at: PubMed - Published on 9/22/2022
Cavallero GJ, Wang Y, Nwosu C, Gu S, Meiyappan M, Zaia J. O-Glycoproteomic analysis of engineered heavily glycosylated fusion proteins using nanoHILIC-MS. Anal Bioanal Chem. 2022 Nov; 414(27):7855-7863. PMID: 36136114.
Read at: PubMed - Published on 9/11/2022
Chang D, Klein J, Hackett WE, Nalehua MR, Wan XF, Zaia J. Improving Statistical Certainty of Glycosylation Similarity between Influenza A Virus Variants Using Data-Independent Acquisition Mass Spectrometry. Mol Cell Proteomics. 2022 Nov; 21(11):100412. PMID: 36103992.
Read at: PubMed - Published on 6/20/2022
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. Mass Spectrom Rev. 2022 Jun 20; e21792. PMID: 35719114.
Read at: PubMed - Published on 6/13/2022
Lageveen-Kammeijer GSM, Rapp E, Chang D, Rudd PM, Kettner C, Zaia J. The minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for capillary electrophoresis. Glycobiology. 2022 06 13; 32(7):580-587. PMID: 35348694.
Read at: PubMed - Published on 4/19/2022
Nalehua MR, Zaia J. Measuring change in glycoprotein structure. Curr Opin Struct Biol. 2022 Jun; 74:102371. PMID: 35452871.
Read at: PubMed - Published on 3/30/2022
Wu J, Chopra P, Boons GJ, Zaia J. Influence of saccharide modifications on heparin lyase III substrate specificities. Glycobiology. 2022 Mar 30; 32(3):208-217. PMID: 33822051.
Read at: PubMed
View 208 more publications: View full profile at BUMC