Jingyan Han, PhD

Assistant Professor, Medicine

Jingyan Han
617.638.7116
650 Albany St Evans Biomed Research Ctr

Biography

Welcome to Dr. Han’s lab, part of the Vascular Biology Section/Department of Medicine,Whitaker Cardiovascular Research Institute, and Sargent College at Boston University. We study the molecular mechanisms of atherosclerotic cardiovascular disease with a particular focus on the role of redox signaling in vascular endothelial cell dysfunction in response to various risk factors including hyperlipidemia, aging, and chronic alcohol abuse, which are supported by NIH grants. (National Heart Lung and Blood Institute—R01HL137771, National Institute of Aging—R21AG058983, and National Institute of Alcohol Abuse and Alcoholism—R21AA026922) Animal models of atherosclerosis, vascular aging, and chronic binge drinking have been established, and conditional tissue specific transgenic and knockout mice strains are employed to decipher the in vivo role of thiol redox signaling in vascular dysfunction and development of atherosclerosis. Isolated endothelial cells from human subjects with cardiovascular disease and cultured human aortic endothelial cells, as well redox proteomics and various molecular biology methods are used to elucidate the molecular mechanism underlying redox regulation of endothelial function. (Representative publication: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045950/pdf/main.pdf).

In addition to understanding the molecular mechanism of atherosclerosis, our research interests also lie in developing multidisciplinary approach to measuring vascular function in murine animals, and to targeted delivery of nanomedicine to cardiovascular system. We have developed a novel optical coherence tomography-based vascular imaging system enabling to real-time measure 3D angiography and hemodynamics of femoral artery of mouse models in vivo, which is noninvasive, label-free, contact-free, and high degree of automation in data acquisition and processing.(Representative publication: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226329/) We also initiated an exciting collaborative project with biotech company investigating the targeted delivery of redox-controllable nanoparticles to cardiovascular system in vivo, which has been a great challenge for drug delivery and treatment for cardiovascular disease.

Other Positions

  • Member, Whitaker Cardiovascular Institute, Boston University

Education

  • University of Illinois, PhD
  • Peking University, MS
  • Peking University, BA

Publications

  • Published on 1/23/2020

    Matsui R, Ferran B, Oh A, Croteau D, Shao D, Han J, Pimentel DR, Bachschmid MM. Redox Regulation via Glutaredoxin-1 and Protein S-Glutathionylation. Antioxid Redox Signal. 2020 04 01; 32(10):677-700. PMID: 31813265.

    Read at: PubMed
  • Published on 1/25/2019

    Weinberg EO, Ferran B, Tsukahara Y, Hatch MMS, Han J, Murdoch CE, Matsui R. IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages. PLoS One. 2019; 14(1):e0210827. PMID: 30682073.

    Read at: PubMed
  • Published on 6/28/2018

    Song W, Zhou L, Kot KL, Fan H, Han J, Yi J. Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography. J Biophotonics. 2018 11; 11(11):e201800053. PMID: 29855165.

    Read at: PubMed
  • Published on 1/1/2018

    Edenbaum H, Han J. Assessment of S-Glutathionylated Rac1 in Cells Using Biotin-Labeled Glutathione. Methods Mol Biol. 2018; 1821:155-163. PMID: 30062411.

    Read at: PubMed
  • Published on 2/16/2017

    Shao D, Han J, Hou X, Fry J, Behring JB, Seta F, Long MT, Roy HK, Cohen RA, Matsui R, Bachschmid MM. Glutaredoxin-1 Deficiency Causes Fatty Liver and Dyslipidemia by Inhibiting Sirtuin-1. Antioxid Redox Signal. 2017 Aug 20; 27(6):313-327. PMID: 27958883.

    Read at: PubMed
  • Published on 9/11/2016

    Han J, Weisbrod RM, Shao D, Watanabe Y, Yin X, Bachschmid MM, Seta F, Janssen-Heininger YMW, Matsui R, Zang M, Hamburg NM, Cohen RA. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells. Redox Biol. 2016 Oct; 9:306-319. PMID: 27693992.

    Read at: PubMed
  • Published on 6/1/2016

    Cohen RA, Murdoch CE, Watanabe Y, Bolotina VM, Evangelista AM, Haeussler DJ, Smith MD, Mei Y, Tong X, Han J, Behring JB, Bachschmid MM, Matsui R. Endothelial Cell Redox Regulation of Ischemic Angiogenesis. J Cardiovasc Pharmacol. 2016 Jun; 67(6):458-64. PMID: 26927696.

    Read at: PubMed
  • Published on 5/13/2016

    Luo T, Nocon A, Fry J, Sherban A, Rui X, Jiang B, Xu XJ, Han J, Yan Y, Yang Q, Li Q, Zang M. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity. Diabetes. 2016 Aug; 65(8):2295-310. PMID: 27207538.

    Read at: PubMed
  • Published on 7/13/2015

    Chacko AM, Han J, Greineder CF, Zern BJ, Mikitsh JL, Nayak M, Menon D, Johnston IH, Poncz M, Eckmann DM, Davies PF, Muzykantov VR. Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement. ACS Nano. 2015 Jul 28; 9(7):6785-93. PMID: 26153796.

    Read at: PubMed
  • Published on 5/9/2015

    Han J, Shuvaev VV, Davies PF, Eckmann DM, Muro S, Muzykantov VR. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1. J Control Release. 2015 Jul 28; 210:39-47. PMID: 25966362.

    Read at: PubMed

View 17 more publications: View full profile at BUMC

View all profiles