Rachel L. Flynn, Ph.D. Awarded Peter Paul Professorship

September 19th, 2014 in Faculty Spotlight

t_PeterPaulAwardsJunior faculty arrive at Boston University full of ambition and with a head full of ideas, but they often have relatively little money for research. So being awarded aPeter Paul Career Development Professorship can feel like winning the lottery; winners receive an annual stipend of $40,000 for three years to pursue their research interests.

For some, it can even seem too good to be true.

“Once I received the email, I asked if they had the right Professor Gonzales,” says Ernest Gonzales, a School of Social Work assistant professor of human behavior. Gonzales, who had no idea that he had been nominated for the award, says the reply from the provost’s office was immediate: “Yes, Ernest, it’s you!”

Peter Paul Professorships were also awarded to Rachel Flynn, a School of Medicine assistant professor of pharmacology and experimental therapeutics, and to Jacob Bor, a School of Public Health assistant professor of global health at the Center for Global Health & Development. University trustee Peter Paul (GSM’71) created the professorships named for him in 2006 with a $1.5 million gift, later increased to $2.5 million. Jean Morrison, BU provost, and President Robert A. Brown select recipients from faculty who are holding their first professorship, have arrived within the last two years, and have been recommended by deans and department chairs.

“It is a privilege to witness the development of talented young scholars into outstanding teachers and researchers,” says Morrison. “From the discovery of novel new cancer treatments and effective approaches to the HIV epidemic to improving conditions for an aging workforce, Professors Bor, Flynn, and Gonzales are fulfilling—and in many ways exceeding—the promise we saw in them when they joined the BU community. We are enormously proud of the important work they’re performing and excited to help advance their research careers.”

Gonzales, who earned a doctorate from Washington University in St. Louis, arrived at the University in July 2013. He is still thinking about how to use the award. He currently juggles several interdisciplinary research projects that focus on productive aging, structural discrimination in and outside of the workforce, and “unretirement”—the practice of retirees returning to work.

His initial findings suggest that the groups most vulnerable to ageism are workers under 30 and those 55 and older. Employees who fall within these ranges face social exclusion and questions about their professionalism or competence. Gonzales is also examining how early life experiences can predict difficult work trajectories later in life. Someone who enters the workforce at 17 with a high school diploma will likely work more physically demanding jobs—such as construction and manufacturing—that wear on their bodies and make it difficult to remain in the workforce long-term.

Gonzales also compares US practices to those in European countries, like Germany, where Chancellor Angela Merkel’s government recently enacted a policy that allows people who have worked 45 years to retire with full benefits. He believes these individuals will relax, recuperate, and eventually return to the workforce—a theory he’s calling “Triple R.”

“I think we have a lot to learn from other nations,” says Gonzales, who would like to conduct cross-national research to see how this and other productive aging policies affect workers’ health and economic standing, with the eventual goal of proposing policy and legislation in the United States.

Flynn, who earned a doctoral degree in cancer biology from the University of Massachusetts Medical School, has been at BU since June 2013. She studies the role telomeres, repetitive DNA sequences that cap the ends of chromosomes, play in cancer development. Each time a cell divides, Flynn says, it loses a chunk of telomere instead of more essential genes further upstream. When telomeres get too short, cells either stop growing or die.

“That is the aging process,” she says. But cancer cells have a way to “highjack this mechanism. When a telomere starts to get shorter, cancer outsmarts it” by reactivating the mechanism that keeps it growing forever.

Telomeres maintain their length using two pathways. Flynn’s lab studies the pathway used by osteosarcoma and glioblastoma—rare and lethal cancers of the bone and brain—and hopes to identify novel treatments that would target this highjacked pathway to better manage the cancers.

So far, Flynn has seen promising results. One compound she’s testing in vitro doesn’t just stop cancer cells from growing, but completely obliterates them—and with minimal effects to surrounding healthy cells. The next step is to test the compound in mouse models.

“If it works as well as it does in a dish, it’ll be amazing,” she says.

Flynn will use the award to hire lab personnel and to buy reagents. “It’s a tremendous opportunity to represent Peter Paul and have money to build my lab,” she says, “but the real goal is to raise the bar, to elevate cancer research at BU.”

Bor, who earned a doctorate at the Harvard University School of Public Health, came to BU in September 2013. He applies the tools of microeconomic models and natural experiments to the field of public health.

“Economics puts an emphasis on the individual; each person is making the best decision for themselves,” Bor says. “At least, that’s the theory.” He looks at decision-making and behavior in a larger economic context to determine what effects they have on health.

Across southern Africa, there’s an elevated HIV infection rate for young women. There are also “high levels of transactional sex,” Bor says. “Maybe if we can expand the choice set of young women so that they can make the best decisions for themselves, we can give them economic opportunities to avoid these relationships.”

In Botswana, he says, the government changed the structure of secondary school so that young women were encouraged to attend. The move resulted in a decrease in HIV infections within that population, he says.

With the award, Bor plans to recruit more doctoral students and research assistants to tackle the papers he’s been dreaming of writing, especially on questions related to South Africa’s HIV treatment program.

“The goal is to rigorously turn these out,” Bor says, “and the faster we do so, the better monies are allocated and the more lives can be saved.”

Original article posted on BU Today.

Joon Y. Boon receives the Malaysian Department of Education Perdana Scholar Award

September 17th, 2014 in Student Spotlight

JBoonPhoto on 5-22-14 at 3.24 PMoon Y. Boon, a graduate student in the Department of Pharmacology & Experimental Therapeutics in the joint Biomolecular Pharmacology and Biomedical Neuroscience Prorgam, has won the Perdana Scholar Award from the Malaysian Department of Education.

This prestigious honor, awarded to Malaysian national students studying in the United States, “aims to identify, document, promote, and award Malaysian students who have excelled in areas such as academic, leadership, sports, entrepreneurship, inventions, and research.” The Perdana Award specifically honors a student who has attained the highest overall level of achievement.

Joon will fly to New York City later this month to receive the award in person from Malaysian Prime Minister Najib. Hat’s off to Joon Y. and her mentor for this amazing achievement! Congratulations!

Joon’s work involves researching the role of LRRK2 in neurodegeneration under the mentorship or Dr. Benjamin Wolozin, Professor of Pharmacology and Neurology, in the Laboratory of Neurodegeneration.

Casey Carmichael received an American Heart Association Hypertension Council Top Poster Presentation Prize

September 15th, 2014 in Recent News

Carmichael Image

Casey Carmichael received an American Heart Association Hypertension Council Top Poster Presentation Prize at the Hypertension Scientific Sessions in San Francisco this past week.

Casey is a second-year graduate student in the Ph.D. Program in Biomolecular Pharmacology who is pursuing research in the Laboratory of Cardio-Renal Research under the mentorship of Richard D. Wainford, Ph.D. Her research is aimed at understanding the central neural aspects of blood pressure regulation in order to identify the pathophysiology and potential treatments for hypertension.

Hat’s off to Casey and her mentor!

Researchers Identify Tumor Suppressor Pathway that Monitors Chromosome Number

September 8th, 2014 in Recent News

DSC_0015The Laboratory of Cancer Cell Biology has identified the tumor suppressor mechanism that prevents the oncogenic growth of cells harboring an abnormal number of chromosomes. The study, published in the journal Cell, was led by Neil J. Ganem, PhD.

Tetraploid cells, which are a common byproduct of cell division failure, are genomically unstable and have the capacity to facilitate tumorigenesis. Recent estimates suggest that ~40% of all solid tumors have undergone a transient tetraploid intermediate at some point during their evolution, suggesting that tetraploidy plays significant roles in both the development and/or progression of human malignancies. Given the potentially oncogenic consequences of tetraploidy, it is not surprising that tumor suppression mechanisms have evolved that prevent the proliferation of these cells. However, unlike other common cellular insults that trigger cell cycle arrest, such as DNA damage, the mechanisms governing cell cycle arrest in response to tetraploidy have been poorly defined.

 To understand the mechanism of growth arrest in tetraploid cells, Dr. Ganem and colleagues combined genome-wide RNAi screening and in vitro evolution approaches to comprehensively identify all of the genes required to stall the growth of tetraploid cells. Collectively, these data revealed that the Hippo tumor suppressor pathway is specifically activated in tetraploid cells, both in vitro and in vivo, and that this is the pathway that prevents tetraploid proliferation. The authors pinpointed that defects in the cytoskeleton of tetraploid cells represented the initial trigger for Hippo pathway activation. Notably, analysis of a broad spectrum of human cancers revealed that near-tetraploid tumors frequently adapt to overcome Hippo signaling, suggesting that inactivation or bypass of this pathway may be a prerequisite for the development of high-ploidy tumors.  “This work may help guide the development of new therapies that specifically target tumor cells with abnormal numbers of chromosomes, while sparing the normal healthy cells from which they originated,” explained corresponding author Dr. Ganem, PhD, Assistant Professor of Pharmacology & Experimental Therapeutics and Medicine in the Shamim and Ashraf Dahod Breast Cancer Research Laboratories at BUSM.

The study was highlighted with a preview article in Cell and by the journals Science Signaling, Cancer Discovery, and Nature Reviews Cancer. The article can be read online at: http://www.cell.com/cell/abstract/S0092-8674(14)00820-4.

Terrell T. Gibbs, Ph.D., In Memorium

September 5th, 2014 in In Memoriam

imgresWith sadness I share that Terrell Gibbs, PhD, associate professor of Pharmacology & Experimental Therapeutics, died Friday, August 15, at M.D. Anderson Cancer Center in his home state of Texas. A member of the BUSM faculty for 24 years, Dr. Gibbs received his undergraduate degree in biology from MIT and his doctoral training in pharmacology from Harvard Medical School. He pursued his interests in neuropharmacology, first at Downstate Medical Center in the Department of Anatomy & Cell Biology at SUNY Health Science Center in Brooklyn, NY, and then at Boston University working in close collaboration with Pharmacology Chair Dr. David Farb.

Dr. Gibbs’ research involved elucidation of the molecular mechanisms of modulation of GABAergic function by benzodiazepines and neurosteroids and of CNS abnormalities such as autism. His discoveries were revealed in more than 45 publications and many abstracts presented at the Society of Neuroscience Annual Meetings.

A recent recipient of the Excellence in Education and Mentoring Award from the Neurosteroid Congress, he played a key role in the design and implementation of the curriculum for the Biomolecular Pharmacology Predoctoral Training Program at Boston University and guided innumerable PhD candidates. He taught medical, dental, and master’s degree students at BU the principles of pharmacology and the actions of drugs affecting the peripheral and central nervous system. All medical students over the past‎ 23 years have learned the principles of pharmacodynamics under his tutelage.

His interest in pharmacologic research in many areas and rational evaluation of evidence of drug efficacy and safety were hallmarks of his approach as an educator and served as an outstanding role model for both students and faculty.‎

Dr. Gibbs also was renowned for his expertise in the martial arts, which he occasionally practiced on the Talbot Green.

He will be greatly missed by his students and his faculty and staff colleagues.

He is survived by his step-mother, brother and sister, half-sister and half-brother, and nieces and nephews.

To make a donation in memory of Dr. Gibbs please click here.

BUSM Researchers Uncover New Possible Approach for Treating Schizophrenia

August 4th, 2014 in Recent News

Researchers at Boston University School of Medicine (BUSM) have uncovered important clues about a biochemical pathway in the brain that may one day expand treatment options for cognitive deficits seen in schizophrenia. The study, published online in the journal Molecular Pharmacology, was led by faculty members David H. Farb, PhD, Terrell T. Gibbs, PhD, and Shelley J. Russek, PhD in thedepartment of pharmacology & experimental therapeutics at BUSM.

Courtesy

Patients with schizophrenia suffer from a life-long condition that can produce cognitive deficits, delusions, disordered thinking, and breaks with reality. A number of treatments are available for the treatment of schizophrenia, but many patients do not respond to these therapies or experience side effects that limit their use. There is no current treatment for the cognitive deficits experienced in schizophrenia.

The healthy brain is made up of billions of cells including the primary signaling cells called neurons, that are responsible for managing everything the body does: including movement, eating behavior, and memory formation. These neurons acts like a miniature computer and are controlled by substances called neurotransmitters that, like bits in a computer chip, may be “turned on” or “turned off” depending on the specific signals being integrated. Neurotransmitters latch onto a cell via a specific receptor, like a key fits into a lock.

In schizophrenia, it is thought that certain neurons don’t “turn on” as well when exposed to a certain neurotransmitter, the amino acid glutamate, may not be sensed by one of its key receptors (the NMDA receptor) whose diminished function may be the possible culprit for these sluggish cells. It is thought that this deficit can at least partially be responsible for symptoms seen in schizophrenics.

Currently the therapeutic means for making these cells more “sensitive” to glutamate can be toxic to the brain.

In this study, researchers discovered that another, naturally occurring steroid within the brain, known as PregS, may be able to bypass this toxic effect, and “turn on” neuron communication safely through a novel mechanism. The implication is that a deficit in the amount of this novel steroid may underlie deficits in signaling and that stimulation using therapeutics that elevate its levels in the brain may decrease or eradicate some of the debilitating symptoms seen in schizophrenia.

Although still in the early stages, further research in this area may be instrumental in the identification and development of treatments not only for schizophrenia, but also for other neurological conditions, such as age-related decreases in memory and learning ability.

View the full paper online: A Role for Picomolar Concentrations of Pregnenolone Sulfate in Synaptic Activity-dependent Ca2+ signaling and CREB Activation

Dr. Sophie Desbiens accepts position as Assistant Director for Adaptive Licensing at MIT

May 21st, 2014 in Alumni Spotlight

Desbiens-144x150Dr. Sophie Desbiens, formerly Principal Associate at Decision Resources, has accepted a position as Assistant Director for Adaptive Licensing at MIT’s Center for Biomedical Innovation in the New Drug Development Paradigms (NEWDIGS) program.

According to the NEWDIGS website, the program “is a unique collaborative ‘think and do’ tank focused on enhancing the capacity of the global biomedical innovation system to more reliable and sustainably deliver new, better, affordable therapeutics to the right patients faster.

By bringing together diverse collaborators within a safe haven setting, and leveraging MIT expertise in systems engineering, this group is well positioned to inform and enable meaningful high-impact change involving the coordinated evolution of technologies, processes, policies, and people required to achieve its mission.”

Dr. Sophie Desbiens completed her dissertation work under the mentorship of Dr. David H. Farb, Professor and Chair of Pharmacology, in the Laboratory of Molecular Neurotherapeutics and graduated in 2009. The title of her dissertation was “Therapeutic Agents for Cocaine Addiction: A Systems Pharmacology Approach.”

Congrats on the new position, Sophie!

Dr. Earl Gillespie joins Avalere Health as an FDA Policy Fellow in DC

May 15th, 2014 in Recent News

Gillespie 2011-5-19 ImageEarl Gillespie, Ph.D., a Postdoctoral Researcher at Boston University School of Medicine and an alumni of the Biomolecular Pharmacology Program, will join Avalere Health in Washington, DC as an FDA Policy Fellow this summer.

According to the Avalere Health website, the highly selective FDA Policy Fellowship Program allows participants to, “spend 6 months immersed in health and life science regulatory policy and strategy issues to help support the efforts of Avalere clients that include some aspect of FDA related issues. Fellows will collaborate within [the] existing FDA team to increase Avalere’s presence and visibility as experts and thought leaders in the FDA space.”

Dr. Earl Gillespie completed his dissertation work under the mentorship of Dr. Susan E. Leeman, Professor of Pharmacology, and Dr. Arthur F. Stucchi, Research Associate Professor of Surgery, and graduated in January 2013. The title of his dissertation was “Colonic Epithelial Genes in the Transition From Chronic Inflammation to Carcinoma in Colitis-Associated Cancer: Focus on the Truncated Neurokinin-1 Receptor.”

We are so very proud of Earl and wish him the best in this new phase of his career!

Pharmacology Researchers Find that Impulsivity is Risk Factor for Food Addiction

May 9th, 2014 in Recent News

Researchers in the Laboratory of Addictive Disorders have discovered that impulsivity is a risk factor for food addiction . Results of the study, published online in Neuropsychopharmacology , suggest that impulsivity promotes pathological overeating.

Iriny Ekladious Awarded National Science Foundation Graduate Research Fellowship

April 17th, 2014 in Student Spotlight

002-150x150

Iriny Ekladious, a second year PhD student in the joint Biomedical Engineering and Biomolecular Pharmacology Program, was recently awarded the National Science Foundation Graduate Research Fellowship.

The program “recognizes and supports outstanding graduate students” pursuing graduate degrees in various NSF-supported programs across the country and “has a long history of selecting recipients who achieve high levels of success in their future academic and professional careers.”

This year alone, the National Science Foundation received over 14,000 competitive applications and only made 2,000 fellowship award offers. The chosen fellows “are anticipated to become knowledge experts who can contribute significantly to research, teaching, and innovations in science and engineering.”

Iriny was also recently recognized for her service to the Boston University community as a Resident Assistant for Boston University’s Women in Science & Engineering (WISE) specialty housing. In an effort to create more support for women planning to major in STEM programs, BU opened a specialty community residence.

“It’s important to have a community of other women when you’re studying in the STEM fields,” says resident assistant Iriny Ekladious (ENG’17), a second year graduate student. “It can be intimidating, and women often feel outnumbered. Having a community like this gives students confidence and empowers them to say, ‘I’m good at this and I can do this,’ despite all the hurdles.”

Iriny’s dissertation work involves synthesizing, characterizing, and assessing the efficacy of pH-sensitive expansile nanoparticles for the local delivery of chemotherapeutic agents under the mentorship of Dr. Mark Grinstaff in the Center for Nanoscience and Nanobiotechnology.

We are thrilled that Iriny has been recognized for extraordinary contributions in the engineering and field and for her exemplary leadership serving undergraduates in the WISE house!

Selected excerpts taken from an article originally published by BU Today on April 16, 2014.