Emergency BU Alert Boston University's Charles River Campus is cancelling evening classes on Monday, February 8, 2016. All academic and administrative activities (e.g. classes, seminars and meetings) that are scheduled to take place before 5:00 PM will meet as scheduled. Academic and administrative operations that are normally scheduled to occur after 5:00 PM will be cancelled. For detailed information on the Boston University Medical Campus, please go to: http://www.bu.edu/ehs/comm Please note: Employees in essential services must report as scheduled. Essential services include, but are not limited to, University Police, Facilities Management and Planning, University Dining Services, University Mail Services, Student Health Services, Environmental Health & Safety and Network Services. For the latest information please go to: http://www.bu.edu/today

Research in The Moore Lab

Dr. Jeffrey R. Moore
Lab Members
Lab News
Other Sites
Contact Us
Moore Lab Home
Our lab’s main interest is the study of molecular mechanics and cellular motility. Our interests include: cell motility, regulation of cell shape and the mechanism and regulation of muscle contraction.

heart beat animation

Mechanism of Muscle Contraction and Regulation.

Our lab’s investigations of muscle contraction and regulation focus on cardiac muscle. Genetic diseases, like hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), are caused by mutations in sarcomeric proteins. We study the effects of these mutations on force and motion generation of isolated myosin and reconstituted thin filaments. These studies have both clinical and scientific importance because information about the underlying disease process provides insight about the fundamental contractile mechanism as well as providing guidance for otherwise empiric treatments for the disease. We are currently studying mutations in the myosin regulatory light chain (In Collaboration with Dr. Szczesna-Cordary) and tropomyosin (In Collaboration with Dr. Lehman). Knowledge of how these mutations affect the interaction of actin and myosin allows the degree of alteration to higher functional units, such as the cardiac muscle fiber, or the heart itself to be correlated with a primary contractile defect.

More reasearch details and associated publications.


Structure and Mechanics of Smooth Muscle Thin Filaments

Vascular smooth muscle cells must be able to bear and transmit forces while also sense and respond to both internally and externally applied forces.  Failure to either properly sense or respond to external stresses is known to lead to several pathological cardiovascular conditions, including hypertension and smooth muscle hypertrophy.  Here our overall goal is to understand the nature and regulation of cytoskeletal dynamics in vascular smooth muscle cells.

More reasearch details and associated publications.


Past Projects

December 9, 2013
Primary teaching affiliate
of BU School of Medicine