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A cute lower respiratory tract infections are a persistent and 
pervasive public health problem. They cause a greater burden of disease world-
wide than human immunodeficiency virus infection, malaria, cancer, or heart 

attacks.1 In the United States, they cause more disease and death than any other in-
fection, and there has been little change in mortality due to respiratory tract infection 
for more than five decades.1,2 The outcome of an acute lower respiratory tract infec-
tion depends on the virulence of the organism and the inflammatory response in the 
lung. When small numbers of low-virulence microbes are deposited in the lungs, an 
effective defense can be mounted by resident innate immune defenses, such as the 
mucociliary escalator, antimicrobial proteins in airway surface liquid, and alveolar 
macrophages. In contrast, numerous or more virulent microbes elicit an inflammatory 
response. Although this response serves to reinforce innate immunity and is essential 
to rid the lungs of microbes, it contributes directly to lung injury and abnormal pul-
monary function. This article reviews our current understanding of inflammatory 
responses in infected lungs, emphasizing recent advances and gaps in knowledge. 
Much of the information originates from animal experiments; studies with human 
volunteers and patient-derived data are included when appropriate and available.

Infl a mm ation a nd Innate Immuni t y

Acute inflammation features the accumulation of neutrophils and a plasma exudate 
outside of blood vessels. In the pulmonary capillaries of uninfected lungs, these blood 
contents are normally separated from the alveolar air by less than 1 μm, the thinnest 
interface between the blood and the environment. The trapping of neutrophils in 
these capillaries, which is the result of geometric and biophysical constraints,3 in-
creases their quantity per volume of blood by approximately 50 times as compared 
with other blood vessels, forming a marginated pool of neutrophils that is ready to 
respond when needed.

During pulmonary infection, neutrophils migrate out of the pulmonary capillar-
ies and into the air spaces.4 Elie Metchnikoff, the discoverer of phagocytosis, 
considered neutrophils (or microphages, as he called them) to be “the defensive 
cells par excellence against microorganisms.”5 After phagocytosis, neutrophils kill 
ingested microbes with reactive oxygen species (e.g., hypochlorite), antimicrobial 
proteins (e.g., bactericidal permeability-inducing protein and lactoferrin), and deg-
radative enzymes (e.g., elastase) (Fig. 1).6 An additional microbicidal pathway has 
also been identified — the neutrophil extracellular trap (NET). Neutrophils extrude 
NETs composed of a chromatin meshwork containing antimicrobial proteins, and 
these NETs ensnare and kill extracellular bacteria.7 It remains to be determined 
whether NETs are useful host defense mechanisms against motile microbes in the 
dynamic and unstructured liquid-filled air spaces of the infected lung.
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The content of plasma proteins in the intersti-
tium and air spaces of infected lungs is deter-
mined by the combined actions of pericellular 
bulk flow and transcellular transport by endothe-
lial and epithelial cells. Many plasma proteins, 
including natural antibodies, complement pro-
teins, C-reactive protein (originally identified in 
serum from patients with pneumonia8), and pen-
traxin 3, are important for the defense against 
microbes in the lungs.9-13 They serve opsonic, 
bacteriostatic, and microbicidal functions during 
infection.

Deficits in neutrophil quantity (neutropenia) 
and defects in quality (e.g., chronic granulomatous 
disease) predispose patients to opportunistic lung 

infections, as do deficiencies of complement and 
immunoglobulins. Since neutrophils and plasma 
proteins mediate innate immune functions and are 
needed to prevent lung infection, acute inflamma-
tion can be considered an essential innate immune 
response in the lungs.

Gener ation of Acute 
Inflammation in Infected Lungs

Molecules that Detect Microbes

Microbes must be detected by host cells to initiate 
inflammation in infected lungs. The identification 
of microbial invaders relies on a set of diverse re-
ceptors called pattern-recognition receptors, which 

Figure 1. Neutrophils and Lung Infection.

Neutrophils are effector cells of innate immunity, killing microbes using phagocytosis and neutrophil extracellular traps (NETs). Neutro-
phils also generate a variety of immune mediators to direct immune responses, influencing other cells of innate and adaptive immunity. 
Finally, neutrophils damage tissues, with products such as proteases and reactive oxygen species injuring cells and digesting matrix. 
TNF denotes tumor necrosis factor.
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bind molecular moieties that are common to mi-
crobes.14 Discoveries of new families of pattern-
recognition receptors, including toll-like receptors, 
nucleotide-binding and oligomerization-domain 
proteins, and caspase-recruitment domain helicas-
es, have fueled research in the biology of innate 
immunity. Table 1 lists some of the pattern-recog-
nition receptors with direct relevance to innate im-
munity in the lungs or to respiratory infection.

For any one microbe, there are a variety of mol-
ecules that can activate many different pattern-
recognition receptors. Perhaps for this reason, 
deficiencies of individual pattern-recognition re-
ceptors result in more modest phenotypes during 
experimentally induced acute lower respiratory in-
fections than deficiencies of downstream adapter 
proteins, which signal from multiple pattern-rec-
ognition receptors.41,42 The intracellular signaling 
pathways triggered by diverse pattern-recogni-
tion receptors converge on signaling hubs, such 
as transcription factors of the nuclear factor κB 
(NF-κB) and interferon regulatory factor families. 
These factors integrate signals from diverse stim-
uli (interacting with pattern-recognition receptors) 
and initiate responses. NF-κB mediates the tran-
scription of adhesion molecules, chemokines, col-
ony-stimulating factors, and other cytokines that 
are necessary for inflammatory responses.43 In 
mice with bacterial stimuli in the lungs, NF-κB 
RelA (also known as p65) is required for inducing 
the production of adhesion molecules and chemo-
kines as well as for initiating neutrophil recruit-
ment and host defense.44,45 Interferon regulatory 
factors mediate the expression of type I interferons 
and interferon-induced antiviral genes.46 Interfer-
on regulatory factor 3 influences parainfluenza 
virus infection in mouse lungs,47 but the genes and 
immune functions that require it or other inter-
feron regulatory factors during lung infection re-
main unknown.

Sentinel Cells in the Lungs

Populations of myeloid cells with specialized func-
tions as sentinels, the alveolar macrophages and 
dendritic cells, reside in the lungs. These cells are 
particularly well equipped with pattern-recognition 
receptors and are anatomically situated to encoun-
ter microbes in the air spaces. 

Alveolar macrophages are mobile cells that pa-
trol the luminal surfaces of the alveoli. They have 
been referred to as dust cells because of their 
abilities to remove and digest relatively inert in-

haled materials. They are also sources of alarm 
signals when lungs are infected, but inhibition of 
these signals until the appropriate time is impera-
tive. One possible inhibitory mechanism entails 
the globular heads of surfactant proteins A and D, 
which bind alveolar-macrophage receptors and 
suppress inflammatory activity in uninfected lungs. 
During infection, these globular heads bind patho-
gens, and the presentation of oligomerized col-
lagenous tails (a result of the clustering of the 
surfactant proteins on pathogen surfaces) activates 
rather than quiets alveolar macrophages.48 It is 
plausible that the inflammatory activity of alveo-
lar macrophages is constitutively suppressed by 
transforming growth factor β, which is presented 
to them by epithelial-cell integrins; microbial 
products initiate signaling that interferes with this 
suppression, thereby activating the inflammatory 
functions of alveolar macrophages.49

Dendritic cells are distributed throughout the 
respiratory tract. In the conducting airways, in-
traepithelial dendritic cells extend into the fluid 
within the airway lumen, where they ingest sam-
ples from the materials being swept by mucocili-
ary transport from the alveoli toward the glottis.50 
In response to the presence of microbes in the 
lungs, more dendritic cells migrate into the lungs, 
through the tissues, and also into the draining 
lymph nodes.50 Dendritic cells are antigen-present-
ing cells and are therefore central to adaptive 
immune responses. They also have important 
functions in innate immunity. Their pattern-rec-
ognition receptors render them especially suited to 
detecting viruses, and when stimulated they pro-
duce very high levels of type I interferons.51 The 
depletion of dendritic cells or the interruption of 
type I interferon signaling increases susceptibility 
to viruses in the lungs.52,53

Alveolar macrophages and dendritic cells have 
a limited ability to kill microbes, but they are par-
ticularly important for sensing microbes and pass-
ing this information along to other cells, such as 
epithelial cells and lymphocytes. These cells then 
recruit the effectors of innate immunity, neutro-
phils.

Effectors of Innate Immunity

Neutrophil recruitment is directed by lung cells. 
Adhesion molecules induced on lung cells provide 
traction and signaling information to neutrophils.54 
Chemokines from lung cells stimulate chemotaxis 
and influence the directional motility of neutro-
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phils.54 Colony-stimulating factors signal neutro-
phil production and release from hematopoietic 
tissues.55

The epithelial barrier between the air-space 
content of the lungs (including microbes) and the 

rest of the body constitutes a critical interface for 
information transfer leading to neutrophil recruit-
ment (Fig. 2). In transgenic mice in which an in-
hibitor of NF-κB activation is expressed exclusively 
in lung epithelial cells, the interruption of NF-κB 

Table 1. Pattern-Recognition Receptors Implicated in Acute Lower Respiratory Tract Infections.

Receptor Microbial Ligands References

Transmembrane

TLRs (toll-like receptors)

TLR2 Peptidoglycans from bacteria Knapp et al.15

TLR3 Respiratory syncytial virus Rudd et al.16

TLR4 Lipopolysaccharides from gram-negative bacteria, 
fusion proteins from respiratory syncytial virus, 
pneumolysin from Streptococcus pneumoniae

Branger et al.,17 Kurt-
Jones et al.,18 
Malley et al.19

TLR5 Flagellin from bacteria Feuillet et al.20

TLR9 CpG DNA from bacteria Albiger et al.21

MARCO (macrophage receptor with 
collagenous structure)

S. pneumoniae Arredouani et al.22

SRA-I and SRA-II (scavenger recep-
tors AI and AII)

S. pneumoniae Arredouani et al.23

Dectin-1 β-glucan of fungi, Pneumocystis carinii Steele et al.24,25

DC-SIGN* S. pneumoniae Koppel et al.26

FPR (formyl peptide receptor) N-formylated peptides of bacteria Fillion et al.27

MR (mannose receptor) P. carinii Tachado et al.28

NKp46 (natural killer cell p46) Hemagglutinin from influenza viruses, hemaggluti-
nin neuraminidase from parainfluenza viruses

Mandelboim et al.,29 
Gazit et al.30

Cytosolic

Naip5 (neuronal apoptosis-inhibiting 
protein 5)

Legionella pneumophila Wright et al.31

Ipaf† L. pneumophila Amer et al.32

Nod1 and Nod2 (nucleotide oligo-
merization domains 1 and 2)

Peptidoglycan components from bacteria Opitz et al.33

RIG-I (retinoic acid–inducible gene I) Influenza virus RNA Le Goffic et al.34

Extracellular

SP-A and SP-D (surfactant proteins  
A and D)

Influenza virus, respiratory syncytial virus, gram-
negative bacteria, gram-positive bacteria

Wright35

LBP (lipopolysaccharide-binding  
protein)

Lipopolysaccharides from gram-negative bacteria Branger et al.36

CD14 Lipopolysaccharides from gram-negative bacteria Frevert et al.37

MD-2 Lipopolysaccharides from gram-negative bacteria Jia et al.38

PTX3 (pentraxin 3) Aspergillus fumigatus Garlanda et al.10

MBL (mannose-binding lectin) Mannosylated moieties on microbes Reading et al.39

CRP (C-reactive protein) Phosphocholine on S. pneumoniae Thomas-Rudolph  
et al.40

Complement Microbial surfaces Mold et al.11

* DC-SIGN denotes dendritic-cell–specific ICAM-3–grabbing nonintegrim (ICAM denotes intercellular adhesion molecule).
† Ipaf denotes ICE protease–activating factor (ICE denotes interleukin-1 beta–converting enzyme). 
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activation decreases the expression of cytokines, 
including neutrophil chemokines.56,57 This defect 
in epithelial-cell gene expression compromises 
neutrophil recruitment and bacterial killing in the 
lungs.45,56,57

With the increasing recognition of the roles of 
epithelial cells in lung inflammatory responses,58 
efforts are under way to illuminate the pathways 
of epithelial-cell activation in infected lungs. Lung 
epithelial cells can be activated directly by some 
microbes, such as Staphylococcus aureus and Pseudo-
monas aeruginosa.59,60 However, other microbes, 
such as pneumococci (the most common cause 

of community-acquired pneumonia), are less like-
ly to be or cannot be recognized by epithelial 
cells.45 During pneumococcal pneumonia, alarm 
signals generated by sentinel myeloid cells, par-
ticularly tumor necrosis factor α (TNF-α) and 
interleukin-1 (1α and 1β), are essential for activa-
tion of the epithelium and downstream inflam-
matory responses.45,61 Blocking the signaling of 
either TNF-α or interleukin-1 produces modest 
effects as compared with blocking both pathways 
simultaneously,61-63 suggesting that these cyto-
kines have overlapping functions during acute re-
spiratory tract infection. Neutrophil-mediated host 

Figure 2. The Epithelial Interface and Lung Infection.

Activation of the epithelial cells forming an interface between the air spaces and the body induces the expression of molecules recruiting 
neutrophils as innate immunity reinforcements. Epithelial cells recognize some microbes directly through pattern-recognition receptors 
(PRRs). Alveolar macrophages recognizing microbes activate epithelial cells directly and through T-cell intermediates. Invariant natural 
killer T (iNKT) cells recognizing microbes can also activate epithelial cells. These diverse activation pathways converge on nuclear factor 
κB (NF-κB) transcription factors in the epithelial cell, with RelA responsible for inducing and p50 responsible for regulating the expres-
sion of proinflammatory mediators, including neutrophil chemokines, colony-stimulating factors, and adhesion molecules. TNF denotes 
tumor necrosis factor. 
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defense against pneumococci in the lungs requires 
such signaling.

Epithelial cells can also be activated by lympho-
cyte cytokines (Fig. 2). Interleukin-17 activates lung 
epithelial cells to express chemokines and colony-
stimulating factors, and it is essential for neutro-
phil-mediated host defense during klebsiella pneu-
monia.64 During such infection, interleukin-17 is 
produced by T cells, and its production is stimu-
lated by another signal from macrophages — 
interleukin-23.65 A subpopulation of invariant nat-
ural killer T cells in the lungs can also generate 
interleukin-17 to stimulate epithelial cells and 
elicit neutrophil recruitment, and the interleu-
kin-17 expressed by these cells may not depend 
on interleukin-23.66 Interleukin-17–secreting T cells 
also release interleukin-22, which functions like 
interleukin-17 in activating epithelial cells.67 If, 
when, and how interleukin-22 influences innate 
immune responses during lung infection are ques-
tions yet to be answered.

Neutrophils are not dead ends in these com-
munication pathways but convey important infor-
mation that directs immune responses (Fig. 1).6 
They generate proinflammatory signals, including 
TNF-α, interleukin-1, and chemokines; chemerin, 
which recruits and activates dendritic cells; and 
B-lymphocyte stimulator, which promotes the se-
lection, survival, and growth of B cells. Neutro-
phils are sources of the T-cell–activating cytokine 
interleukin-12 in the lungs,68 and interleukin-12 
amplifies interferon-γ to enhance neutrophil-
mediated host defense during pneumonia.69 Neu-
trophils constitutively express the extracellular 
pattern-recognition receptor pentraxin 3, and the 
compromised host defense of mice with pentrax-
in 3 deficiency can be improved by the admin-
istration of soluble pentraxin 3 or by transfer of 
neutrophils from wild-type but not pentraxin 3–
deficient mice.10,70 Thus, acquired and innate im-
mune responses against microbes in the lungs are 
shaped by signals derived from neutrophils.

Infl a mm ation a nd Acu te  
Lung Inj ur y

Inflammation is critical for innate immunity and 
host defense, but it can injure the lungs. The ac-
cumulation of extravascular plasma fluids, as in 
noncardiogenic pulmonary edema, is a defining 
feature of acute lung injury. The neutrophil prod-
ucts generated to kill microbes, such as reactive 

oxygen species and proteases, also kill host cells 
and damage host tissues (Fig. 1). The risks of in-
flammation are starkly demonstrated in a trans-
genic mouse model in which the activation of 
NF-κB in lung epithelial cells is sufficient to cause 
neutrophil recruitment, pulmonary edema, arte-
rial hypoxemia, and death in the absence of any 
infection or exogenous stimuli.71 Thus, the innate 
immune responses necessary for ridding the lungs 
of microbes can also cause injury and contribute 
to the pathophysiology of infection. Perhaps be-
cause of this, lung infection is a common under-
lying cause of the acute respiratory distress syn-
drome.72

Inhibiting inflammatory signals can be protec-
tive during lung infections. For example, inter-
rupting both TNF-α and interleukin-1 signaling 
(but neither alone) decreases the pulmonary edema 
and the loss of lung compliance that are often 
found in mice with Escherichia coli pneumonia.62,63 
Triggering receptor expressed on myeloid cells 1 
(TREM-1), which functions in a positive feedback 
loop to amplify TNF-α, interleukin-1, and inflam-
mation,73 is so strongly associated with pneumonia 
in patients that measurement of soluble TREM-1 
in bronchoalveolar-lavage fluid has been proposed 
as a diagnostic test.74 Inhibition of TREM-1 dimin-
ishes TNF, interleukin-1, and pathophysiological 
features in rats with P. aeruginosa pneumonia.75 
Corticosteroids can be effective albeit nonspecific 
inhibitors of inflammation. In a clinical trial of 
corticosteroid infusion in patients with severe 
community-acquired pneumonia, the 23 patients 
in the corticosteroid group had less lung injury 
and a higher rate of survival than the 23 patients 
in the placebo group.76 Results from this small 
study are provocative but must be viewed with 
caution until further studies are completed.77 
Knowledge gaps remain substantial. It is not yet 
evident which patients with which infections may 
benefit from which antiinflammatory therapies 
at which times. Altogether, however, these studies 
suggest that inflammation-targeting therapies 
may be useful in treating certain severe lung in-
fections, encouraging further research along these 
lines.

Highly pathogenic influenza viruses, such as 
avian influenza A (H5N1) virus and the virus 
causing the 1918 pandemic, induce strong in-
flammatory responses in humans and laboratory 
animals.78,79 The seemingly excessive responses 
bolster the idea that a so-called cytokine storm 
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mediates pathophysiology during these infections, 
but direct evidence in support of this concept is 
scant. Neutrophil depletion increases viral growth 
and hastens death in mice infected with the H5N1 
influenza A virus,80 suggesting that at least in this 
experimental infection, neutrophils do more good 
than harm. Interruptions of cytokine signaling in 
mice with H5N1 influenza A virus infections have 
modest or no effects,81 suggesting that the cyto-
kines so far examined are not individually essen-
tial to the pathophysiology of H5N1 influenza 
virus infection. Further studies will be critical in 
determining whether and, if so, which inflamma-
tory mediators influence the pathophysiology of 
highly pathogenic influenza virus infections, and 
whether the interruption of select cytokines or 
signaling pathways upstream or downstream from 
cytokines can protect the host from inflamma-
tory injury during such infections.

R egul ation of Acu te 
Infl a mm ation in Infec ted 

Lungs

The body needs mechanisms to keep acute inflam-
mation in check. Much less is known about these 
regulatory mechanisms than about the mecha-
nisms initiating and amplifying inflammation. 
A few examples of how regulatory mechanisms in-
fluence the outcome of lung infections are pre-
sented here.

One such braking strategy is to limit NF-κB 
activity. The NF-κB protein p50 has multiple func-
tions, which include curbing the transcription of 
genes with NF-κB–binding sites in their promot-
ers.43 During bacterial pneumonia in mice, a de-
ficiency of p50 increases cytokine expression and 
exacerbates lung injury.82 Thus, p50 normally 
functions to prevent excess cytokines and inflam-
matory injury during pneumonia.

Another mechanism is interference with signal-
ing from pattern-recognition receptors. The inter-
leukin-1 receptor–associated kinase (IRAK)–like 
molecule (IRAK-M) inhibits IRAK-mediated sig-
naling from the pattern-recognition and cyto-
kine receptors that activate NF-κB. Sepsis induces 
IRAK-M in mouse alveolar macrophages, and this 
protein decreases cytokine expression and com-
promises pulmonary host defense.83 IRAK-M may 
therefore contribute to the susceptibility of pa-
tients with sepsis to nosocomial pneumonia. 

Other regulatory molecules inhibit pattern-recog-
nition–receptor signaling indirectly. For example, 
carbon monoxide generated by heme oxygenase-1 
inhibits signaling from transmembrane pattern-
recognition receptors.84 A deficiency of heme oxy-
genase-1 increases, whereas its overexpression 
decreases, inflammation and injury induced by 
bacteria and influenza virus in mouse lungs.85-87 
Prevention of injury is probably due to both the 
antiinflammatory and the tissue-protective activi-
ties of heme oxygenase-1.

The signal transducer and activator of tran-
scription 3 (STAT3) also has antiinflammatory and 
tissue-protective effects. Mutations in STAT3 re-
sult in the hyper-IgE syndrome, which is charac-
terized by recurrent and severe lung infections.88 
This transcription factor is activated in macro-
phages and epithelial cells during acute pulmo-
nary inflammation.89 Macrophage STAT3 medi-
ates antiinflammatory responses induced by the 
cytokine interleukin-10,90 which compromises host 
defense but limits lung injury during pneumo-
nia.91-94 Epithelial-cell STAT3 is essential in pre-
venting lung injury during infection.95 The signals 
that activate epithelial-cell STAT3 are uncertain, 
but are not likely to include interleukin-10. STAT3 
activation in the lungs during E. coli infection de-
pends partially on interleukin-6, which is essen-
tial for overcoming bacterial pneumonia.96

Prostaglandin I2 (prostacyclin) is generated dur-
ing respiratory syncytial virus infection and has 
protective activities that may be mediated by an-
tiinflammatory effects on dendritic cells.97,98 In 
addition to having antiinflammatory activities, 
other lipids, including lipoxins, resolvins, and pro-
tectins, help return inflamed tissues to health.99 
During and after pneumonia, the return of the 
architecture of a lung lobe from complete consoli-
dation to a seemingly normal state is remarkable. 
Unfortunately, few if any studies have reported 
the mechanisms underlying this process of reso-
lution during lung infection, so the presumed 
role of lipids must at present be based on extrapo-
lation.

R esponses of Microbes  
t o Infl a mm ation

Acute lower respiratory tract infections can be 
monomicrobial or polymicrobial, with organisms 
ranging in virulence from commensal to highly 
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pathogenic.100-102 These microbes have mecha-
nisms for counteracting many of the effector and 
signaling events described above. Microbial sub-
version of individual pathways may be a selective 
pressure driving mammalian hosts to have mul-
tiple, parallel, sometimes redundant-seeming path-
ways for innate immunity, as with epithelial 
activation (Fig. 2). A few microbial strategies spe-
cifically related to lung infections and the path-
ways of innate immunity described above are high-
lighted here as examples.

Counteracting effector mechanisms of innate 
immunity is of obvious advantage to a microbe. 
Although NETs were discovered only recently,7 
microbial countermeasures are already recognized. 
For example, NETs extruded by neutrophils fail 
to contain and kill pneumococci.103 A pneumo-
coccal DNase cleaves NETs and frees bacteria. 
During infection, this DNase is a virulence factor 
that gives the bacteria a competitive advantage 
against DNase-mutated strains in the lungs of 
mice, resulting in increased mortality from pneu-
monia in such mice.

Preventing the host from detecting pathogens is 
another strategy often used by microbes. For ex-
ample, the retinoic acid–inducible gene I intracel-
lular pattern-recognition receptor for viral RNA is 
bound by an influenza virus protein that prevents 
downstream signaling, activation of interferon reg-
ulatory factor, and expression of type I interfer-
on.104 Deleting this protein attenuates influenza 
virus infection, increasing type I interferon in the 
lungs and decreasing mortality.105 Many pathogens 
interrupt proinflammatory signaling pathways or 
mimic antiinflammatory signaling pathways.

Not only do lung pathogens interfere with host 
signaling, they also listen in on these immune 
conversations and use this information to guide 
their responses appropriately. For example, P. aeru-
ginosa expresses a receptor that recognizes inter-
feron-γ, and in the presence of interferon-γ, this 
receptor stimulates gene expression dictating bio-
film formation.106 Since biofilms render bacteria 
more resistant to both innate immunity and anti-
biotics, this is probably an adaptive response dur-
ing infection. In addition, P. aeruginosa and other 
bacteria respond to TNF-α and other cytokines 
with increased growth rates.107 In neutropenic 
mice, the ability of TNF-α to increase bacterial 
growth worsens lung infection.108 Thus, patho-
gens sense innate immune signaling and respond 

in ways that subvert host defense and facilitate 
infection.

Gene tic Va r i ation  
in Infl a mm at or y Path wa ys

The mechanisms for generating and regulating 
acute inflammation, described above, determine 
the outcomes of experimentally induced lung in-
fections in animals. Deficiencies and polymor-
phisms in human genes for the factors involved 
in these mechanisms have been associated with 
lung infection and its consequences, such as dis-
seminated or invasive infection or acute lung in-
jury (Table 2). Although the limitations of such 
genotype–phenotype associations warrant consid-
eration,129 these data indicate that knowledge of 
innate immunity and lung infection derived from 
experiments in animals can apply to humans. Ge-
netic variations in innate-immunity mediators in-
fluence the outcome of inevitable exposures of the 
human lower respiratory tract to microbes.

Another reason why human genotype–pheno-
type studies are important is that they occur in 
natural instead of laboratory environments. Infec-
tions involve intersections of host and microbe 
within complex and dynamic ecosystems not 
mimicked in laboratory studies. For example, pa-
tients with a deficiency of IRAK-4 (which signals 
from multiple pattern-recognition receptors) are 
susceptible to a narrower spectrum of microbes, 
over a narrower age range, and with more varia-
tion across the population than in vitro experi-
ments with human cells or in vivo experiments 
with mice would suggest.113 Patients with an im-
munodeficiency tend to present with select sub-
groups of infections (e.g., patients with chronic 
granulomatous disease are especially susceptible 
to five microbes130). Environmental and genomic 
variations result in a range of susceptibility among 
patients with similar immunodeficiencies. In the 
future, polygenic analyses may demonstrate that 
combined polymorphisms in multiple genes in-
fluence lung infections more dramatically than 
monogenic variation, since parallel paths and re-
dundancies are common in innate immunity. An 
emerging theme is that genetic susceptibility to 
infection is more common than is now appreci-
ated; susceptibility is probably polygenic, with in-
complete penetrance restricted to narrowly defined 
clinical phenotypes.131
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Conclusions

Innate immune responses to microbes in the 
lungs determine the outcome of infection; an in-
sufficient response can result in life-threatening 
infection, but an excessive response can lead to 
life-threatening inflammatory injury. Further 
studies will help identify populations that are 
particularly susceptible to severe lung infection 

and will guide the development of prophylactic 
and therapeutic interventions.
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Table 2. Genetic Polymorphisms Associated with Lung Infection Outcomes.*

Gene Product Association References

Initiating and amplifying mechanisms 

TLRs (toll-like receptors)

TLR4 Legionella pneumonia, severe respiratory 
syncytial virus infection

Tal et al.,109 Hawn et al.110

TLR5 Legionella pneumonia Hawn et al.111

CD14 Respiratory syncytial virus bronchiolitis Inoue et al.112

IRAK-4 (interleukin-1 receptor–associat-
ed kinase 4)

Bacterial infections, particularly pneumo-
coccal infection

Ku et al.113

NEMO — NF-κB activation Recurrent invasive pneumococcal disease Ku et al.114

Mal (MyD88 adaptor-like protein) — 
toll-like receptor signaling

Invasive pneumococcal disease Khor et al.115

MBL (mannose-binding lectin) Invasive pneumococcal disease, recurrent 
respiratory infections, acute lung injury

Roy et al.,116 Gomi et al.,117 
Gong et al.118

Complement C2 Invasive pneumococcal disease and recur-
rent pneumonias

Jönsson et al.119

SP-A, SP-D (surfactant proteins  
A and D)

Severe respiratory syncytial virus infection Lahti et al.,120 Löfgren  
et al.121

Regulating mechanisms

NF-κB p50 Acute lung injury Adamzik et al.122

IκB-α Invasive pneumococcal disease, acute 
lung injury

Chapman et al.,123 Zhai  
et al.124

Interleukins

Interleukin-6 Invasive pneumococcal disease Schaaf et al.125

Interleukin-10 Pneumonia outcomes and acute lung 
injury

Wattanathum et al.,126  
Gong et al.127

HO-1 (heme oxygenase-1) Pneumonia susceptibility Yasuda et al.128

STAT3 (signal transducer and activator 
of transcription 3) 

Hyper-IgE syndrome — recurrent severe 
lung infections

Holland et al.88

* NEMO denotes NF-κB essential modulator, and NF-κB nuclear factor κB.
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