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also provides very valuable information for the design of future
studies, such as field testing inclusion/exclusion criteria and study
endpoints, as well as injecting some increased confidence into
the process of estimating the effect size that steroid treatment
might provide to SARS patients, thus allowing more rigorous
power calculations to determine prospective sample size. Ho
and coworkers are wise to be circumspect in the conclusions
they draw—namely, that this report helps guide SARS therapy
but only until data from randomized trials become available (6).

Twenty-five years ago (1978) Craddock wrote about the “hyp-
ercortisolism” of severe acute illness suggesting that the immuno-
logic response to self-antigens exposed by disease or trauma
may be suppressed by corticosteroids to offset the likelihood of
autoimmune attack (15). This kind of thinking has provided
support for the notion of corticosteroid supplementation as treat-
ment for acute, critical illness, and additional support can be
drawn from the report of Annane and coworkers (16). No doubt,
with the next outbreak of SARS, studies of its pathophysiology
will continue, as will well controlled clinical trials comparing
treatments and combinations of treatments, including corticoste-
roids. Until those results are available, the medical community
will have very limited information with which to determine
whether steroids are an appropriate treatment for SARS, but
will have some important decisions to make if SARS returns.
Once SARS pathophysiology becomes better understood and
we accumulate the results of clinical trials that are consistent
and reproducible, we may have the answer to the corticosteroid
question. If not, we may still be debating the use of steroids in
SARS for another 25 years.
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Competing Benefits of Tumor Necrosis Factor-� for
Bacteria and for Host Defense

The cytokine tumor necrosis factor-� (TNF-�) functions as an
endogenous alarm signal that coordinates gene expression and
cellular activity, driving inflammatory responses to infection,
injury, or irritation. In addition to stimulating host cell responses,
TNF-� causes some bacteria to increase their net growth in
culture (1). This observation suggests the hypothesis that TNF-�
could exacerbate bacterial infection, which was tested by Lee
and coworkers (2) and reported in this issue of the Journal
(pp. 1462–1470).

Lee and coworkers studied the in vitro and in vivo effects of
TNF-� on two gram-negative bacteria that cause pneumonia in
patients with compromised host defenses, Escherichia coli and
Pseudomonas aeruginosa (2). E. coli responded to recombinant
soluble TNF-� with increased growth in vitro. This effect of
TNF-� on bacterial growth was dose-dependent and inhibited
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by blocking antibodies against TNF-�. In contrast, the in vitro
growth of P. aeruginosa was not affected by either TNF-� or
anti–TNF-� antibodies. That is, recombinant TNF-� in vitro
stimulated the growth of E. coli but not P. aeruginosa.

To study the effects of endogenous TNF-� in vivo on bacterial
growth in the lungs, Lee and coworkers used mice with a gene-
targeted deficiency of TNF-� (2). They rendered both wild type
and TNF-�–deficient mice neutropenic by injecting them with cy-
clophosphamide, and they infected mice by intranasal inoculation
with bacteria. When neutropenic mice were infected with E. coli
(which grew in response to TNF-� in vitro), there were significantly
more living bacteria in the lungs of wild-type mice compared with
TNF-�–deficient mice (2). In contrast, when mice were infected
with P. aeruginosa (which was not responsive to TNF-� in vitro),
the number of living P. aeruginosa per lung was not affected by
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TNF-� deficiency (2). Thus, in neutropenic mice, the endogenous
host cytokine TNF-� promoted the growth of responsive bacteria
and worsened the infectious burden in the lungs.

These data from experimental pneumonias in mice suggest
that, for some immunocompromised patients, the end result of
TNF-� may be an exacerbated bacterial infection. Such a con-
tention encourages new directions for research. For example, it
will be important to determine whether acute interruption of
TNF-�, such as with soluble receptors or blocking antibodies,
can ameliorate bacterial growth in immunocompromised lungs.
Additional settings of immunosuppression should be considered
to determine how broadly applicable the findings with cyclophos-
phamide-treated mice are to immunocompromised lungs. Fi-
nally, elucidating the mechanisms by which some bacteria sense
and respond to TNF-�, likely involving surface receptors on the
bacteria (3), may identify rational targets for potential adjunctive
antibacterial therapies. Selectively interrupting the responses of
bacteria to TNF-� could limit bacterial multiplication and
thereby benefit immunocompromised patients, especially if they
are treated to augment TNF-� (4).

For mice that had not been rendered neutropenic with cyclo-
phosphamide, the effect of TNF-� deficiency during infection
was markedly different. During pneumonia caused by either
E. coli or P. aeruginosa, TNF-� deficiency significantly increased
bacterial burdens in the lungs and increased mortality (2).
Decreased recruitment and activation of neutrophils was likely
responsible for the increased bacterial burden (2). These data
indicate that, when neutrophils were available, the role of TNF-�
in coordinating inflammatory responses to bacteria in the lungs
was more important than its stimulation of bacterial growth.

The magnitude of these effects of TNF-� deficiency in mice
without neutropenia was remarkable. After 24 hours of infection,
TNF-� deficiency increased the bacterial burden in the lungs by
an astonishing 5–7 logs, or 100,000- to 10,000,000-fold. In previ-
ous studies, soluble inhibitors of TNF-� (5–8) or the genetic
ablation of TNF-� receptors (9, 10) have been found to affect
bacterial clearance in the lungs by 1 log (10-fold) or less. More-
over, whereas interruption of the gene for TNF-� prevented
approximately 90% of neutrophil recruitment in response to
either E. coli or P. aeruginosa (2), interruption of the genes for
both known receptors for TNF-� does not decrease neutrophil
recruitment during pneumonia caused by either bacteria (9, 10).
Thus, these studies of bacterial pneumonia in mice with a genetic
deficiency of TNF-� suggest far greater roles for TNF-� than
observed in previous reports. These results may reflect differ-
ences among study designs, but they also raise the provocative
hypothesis that the lifelong deficiency of TNF-� ligand may
increase neutrophil recruitment and bacterial killing by mecha-
nisms not inhibited either by the acute disruption of TNF-�
ligand–receptor interactions or by the lifelong deficiency of
TNF-� receptors.

In addition to killing bacteria, inflammation driven by TNF-�
can disrupt and compromise respiratory and circulatory physiol-
ogy. Excessive proinflammatory cytokines contribute to acute
lung injury and systemic shock (11–14). When not absolutely
essential for eradicating a microbe, interrupting signaling from
proinflammatory cytokines, including TNF-�, may diminish in-
flammation and preserve pulmonary and cardiovascular function
during pneumonia (15, 16).

Thus, diverse effects of TNF-� determine the outcome of bacte-
rial pneumonia. TNF-� promotes bacterial killing, but compro-
mises pulmonary and cardiovascular performance. Interestingly,
the genetic deficiency of TNF-� may have more substantial effects
on inflammation and bacterial killing than does the acute interrup-
tion of ligand–receptor interactions or the genetic deficiency of

TNF-� receptors for reasons that remain to be determined. In
addition to these effects on host cells, TNF-� stimulates the multi-
plication of some bacteria. In neutropenic mice, this effect of
TNF-� on bacteria can exacerbate respiratory infection. These
novel findings highlight important research directions relevant
to immunocompromised patients with or at risk for bacterial
pneumonia.
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