BOSTON JNIVERSITY

STRAP PTM: Differential Characterization by PTM Counting and Much More Jean L. Spencer, Vivek N. Bhatia, Amanuel Kehasse, Stephen A. Whelan, Christian F. Heckendorf, Catherine E. Costello and Mark E. McComb

Overview

- Purpose: Software tool required to perform fast and easy characterization of global PTM changes in large proteomics data sets from LC-MS/MS experiments.
- Methods: In-house application (STRAP PTM) developed to use spectral counting and novel scoring algorithm to identify and rank differential PTMs.
- Results: Differential PTMs readily detected in diverse data sets and easily sorted for biologically relevant modifications.

Introduction

Protein post-translational modifications (PTMs) play significant roles in disease pathology, and the identification of PTMs is an increasingly important component of proteomics and biomarker discovery. There are few tools for performing relatively fast and easy characterization of global PTM changes in large proteomics data sets and differential comparison of PTMs across groups. A software program called the **Software Tool** for Rapid Annotation of Proteins: Post-Translational Modification edition (STRAP PTM) was developed in response to this challenge. STRAP PTM uses a novel countingbased scoring algorithm that facilitates multi-sample PTM comparisons through collation and visualization. Here we explore the utility of STRAP PTM through various scoring factors and across different PTM/proteomics experiments.

Methods **STRAP PTM: PTM Counting**

Workflow

Methods **STRAP PTM: PTM Scoring**

PTM Score (S): Overall score for a specific PTM (*m*) on a specific site (*i*) of a specific protein (*p*) based on user-selectable factors relevant to the system (max value = 100)

S_{min}

Quality (Q): Goodness of database search results assigned to the MS/MS spectrum for a specific PTM on a specific site of a specific protein (max value = 1)

Grouping (G): Variation of a specific PTM on a specific site of a specific protein across groups (max value = 1)

Occupancy (W): Degree of modification of a specific site of a specific protein with a specific PTM (max value = 1)

Uniqueness (U): Rarity of a specific PTM on a specific protein (max value = 1)

U _{mp}	=
\sim	
\sim	

Cardiovascular Proteomics Center, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118

= 100	× Q _{mij}	$, \times \mathbf{G}_{mip}$	$\times \mathbf{W}_{mip} \times$	U _{mp}
	Quality	Grouping	Occupancy	Uniqueness
		User-sele	γ ectable factors	

Results **Example 1: PTM Standards in Plasma** PTM Standard Protea Bioscien PTM Map (modified sites on peptide standards) Legend: A (125 nM) B (62 nM) C (25 nM)

-		
Std #	_	
280	SYSMEHFRWG	
412	RPKPQQFFGL	M
580	EMFTYICNHI	K
301	DRVYIHPF	
500	EAISPPDAAS	ΑΑ
321	DRVYIHPFHL	
532	DFNKFHTFPQ	ТА

PTM Scoring (top 7 PTMs)

Std	РТМ	Mod	Amino	(Counts			_		Other	Scoring Factors				
#	Score	Mass	Acid	A	в	С	Forms	Avg	SD	Forms	Q	G	vv	U	
280	85.3	15.99491	5 M4	67	49	18	134	44.67	24.79	0	0.963	0.885	1.000	0	
412	77.5	14.0156	6 M11	51	31	4	86	28.67	23.59	0	0.920	0.842	1.000	0	
580	68.8	28.99016	4 C7	52	8	0	60	20.00	28.00	11	0.815	1.000	0.845	0	
301	36.5	79.96633	1 Y4	31	21	9	61	20.33	11.02	0	0.928	0.393	1.000	0	
500 [*]	58.5	203.07937	3 S4	40	18	0	58	19.33	20.03	12	0.987	0.715	0.829	0	
500 [*]	3.0	203.07937	3 S10	10	2	0	12	4.00	5.29	58	0.915	0.189	0.171	0	
321	23.1	44.98507	8 Y4	23	15	1	39	13.00	11.14	0	0.580	0.398	1.000	0	
532	17.5	42.01056	5 K4	11	2	0	13	4.33	5.86	0	0.835	0.209	1.000	0	

All PTM standards ranked at top of list.

Std #500; ranking determined by average PTM score (30.7).

Correct trend of decreasing counts observed for all PTMs. * Two potential sites (S4, S10) indicated for glycosylation on

PTM Scoring (all PTMs)

РТМ	Mod	Amino	Ctul	Count	s	Mod	A 1400	60	Other		Scoring	Factors	;
Score	Mass	Acid	Cin		EGF	Forms	Avg	20	Forms	Q	G	vv	U
67.4	79.966331	Y1172	0	1	7	8	2.667	3.786	0	0.878	0.767	1.000	0
28.3	79.966331	Y998	0	7	9	16	5.333	4.726	4	0.369	0.958	0.800	0
17.5	79.966331	Y1197	1	3	2	6	2.000	1.000	0	0.862	0.203	1.000	0
3.8	79.966331	Y1110	0	1	0	1	0.333	0.577	2	0.983	0.117	0.333	0
0.8	79.966331	S1104	0	1	1	2	0.667	0.577	1	0.109	0.117	0.667	0
0.2	79.966331	Т993	0	1	0	1	0.333	0.577	19	0.267	0.117	0.050	0
0.1	79.966331	S991	0	0	1	1	0.333	0.577	19	0.166	0.117	0.050	0
0.1	79.966331	S995	0	1	1	2	0.667	0.577	18	0.083	0.117	0.100	0

- Sites involved in cellular signaling processes (Y998, Y1110, Y1172, Y1197) ranked highest.
- Distinct patterns observed at two sites (Y998, Y1172) for ATP and EGF stimulation.

Label-Free Comparison (Progenesis LC-MS)

				Co	ounts						Scoring Factors			
PTM Score	Mod Mass	Amino Acid	1 µM	5 µM	20 µM	50 μΜ	Mod Forms	Avg	SD	Other Forms	Q	G	W	U
19.2	15.994915	M7	6	3	8	4	21	5.250	2.217	18	0.997	0.772	0.538	0.464
10.8	44.985078	Y40	0	1	2	6	9	2.250	2.630	7	0.263	0.916	0.563	0.798
10.4	44.985078	Y39	o	0	3	5	a	2.000	2.449	8	0.307	0.853	0.500	0.798
8.0	15.994915	M42	0	0	3	6	Ø	2.250	2.872	7	0.307	1.000	0.563	0.464
6.9	47.984744	C88	2	2	2	0	6	1.500	1.000	22	1.000	0.348	0.214	0.929
5.7	15.994915	M1	2	2	4	4	12	3.000	1.155	27	1.000	0.402	0.308	0.464
5.6	24.995249	C88	2	2	1	0	5	1.250	0.957	23	1.000	0.333	0.179	0.940
3.0	31.989829	C88	2	2	1	2	7	1.750	0.500	21	0.770	0.174	0.250	0.893
2.7	31.989829	W34	0	0	0	2	2	0.500	1.000	21	0.994	0.348	0.087	0.893
2.7	3.994915	W34	2	0	0	0	2	0.500	1.000	21	0.898	0.348	0.087	0.976
1.8	15.994915	W34	2	1	0	0	3	0.750	0.957	20	0.893	0.333	0.130	0.464

- Sites involved in CD40L structural functionality (Y39, Y40, C88) ranked high.
- Redox-sensitive residues observed for two nitrotyrosines (Y39, Y40) associated with receptor binding.

Conclusions

- STRAP PTM is a powerful counting approach for ranking differential PTMs in large MS-based proteomics data sets.
- STRAP PTM applies a novel multi-component score to PTMs with results clearly visualized in interactive tables and maps.
- STRAP PTM software is easy to implement on a PC and provides fast turnaround for large data sets.
- STRAP PTM produces semi-quantitative results with trends substantiated by label-free analysis.

Acknowledgments

- NIH-NHLBI contract HHSN268201000031C
- NIH grants P41 RR010888/GM104603 and S10 RR020946