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a b s t r a c t

Transcriptional co-activators, co-repressors and chromatin remodeling machines are essential ele-
ments in the transcriptional programs directed by the master adipogenic transcription factor
PPARc. Many of these components have orthologs in other organisms, where they play roles in
development and pattern formation, suggesting new links between cell fate decision-making and
adipogenesis. This review focuses on bromodomain-containing protein complexes recently shown
to play a critical role in adipogenesis. Deeper understanding of these pathways is likely to have
major impact on treatment of obesity-associated diseases, including metabolic syndrome, cardio-
vascular disease and Type 2 diabetes. The research effort is urgent because the obesity epidemic is
serious; the medical community is ill prepared to cope with the anticipated excess morbidity and
mortality associated with diet-induced obesity.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. A newly described gene that influences obesity

Worldwide, 1.7 billion people are classified as overweight [1].
Excess consumption of calories leads to human obesity, which is
one of the major health crises of this century. The World Health
Organization estimates that 171 million people worldwide have
diabetes, due primarily to obesity. This figure is expected to at least
double by 2030. The US Centers for Disease Control reports that six
US states currently have a prevalence of obesity of P30% and only
one state (Colorado) has a prevalence of obesity of <20%. Obesity is

characterized by dysregulated metabolism, dyslipidemia, insulin
resistance, metabolic syndrome, non-alcoholic fatty liver disease,
hyperglycemia, hypertension, some forms of cancer and increased
risk for development of Type 2 diabetes (T2D) and its co-morbidi-
ties, the most serious of which is cardiovascular disease (CVD).
About 90% of T2D is attributable to excess weight [2]. Unless re-
versed, the deepening problem of obesity predicts an epidemic of
these co-morbidities that will strain or break many health care
delivery systems. Thus, obesity poses a formidable challenge of
overarching importance for public health. However, the obesogenic
genes, transcriptional processes and chromatin regulation that
control weight gain remain incompletely understood.

The in vivo mechanisms that regulate adipogenic transcription
are crucial for cell fate decisions, the formation of adipose tissue
from progenitors and the response of adipocytes to over-nutrition.
Recent work showing that mice with reduced whole-body expres-
sion of the ubiquitously expressed, dual bromodomain protein
Brd2 (‘Bromodomain-containing 2’) have dramatically expanded
adipose tissue [3], has refocused attention on the role of bromod-
omain-containing transcriptional co-activators/co-repressors in
adipogenesis. Specifically, Brd2 hypomorphic mice, which harbor
a lacZ disruption of the gene that encodes this transcriptional co-
activator/co-repressor, showed severe adipogenesis and obesity.
These ‘brd2 lo’ animals gained fat on an ad libitum diet of regular
rodent chow to weights approaching 100 g by 12 months of age.
At all ages, brd2 lo mice accumulate about twice the fat of matched
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control mice. For example, epididymal adipocytes of male brd2 lo
mice on chow diet were significantly larger than age-matched
wild-type controls on chow diet: 62.9% of brd2 lo adipocytes were
larger than 10000 lm2, compared to only 1.1% of wild-type adipo-
cytes (P < 0.001) [3]. Interestingly, all adipose depots were healthy;
severe obesity was observed without concomitant insulin resis-
tance. Until this report, Brd2 function had not been linked to obes-
ity or glucose homeostasis.

Significantly, shRNA knockdown of Brd2 in 3T3-L1 pre-adipo-
cytes strongly promotes adipogenic differentiation. Pre-adipocytes
with Brd2 stably knocked down show about 50% more Oil Red O
staining upon insulin/dexamethasone/isobutylmethylxanthine dif-
ferentiation than control adipocytes. Brd2 and PPARc are each
detectable by co-immunoprecipitation of the other, and shRNA
knockdown in vitro of Brd2 in 3T3-L1 cells approximately doubles
the signal from a PPAR-responsive element (PPRE)-regulated tran-
scriptional reporter. Taken together, these results suggest a mech-
anism that works through alleviated Brd2 co-repression of PPARc-
directed transcription of adipogenic genes [3]. Previous work has
identified histone modification enzymes and nucleosome remodel-
ing proteins associated with Brd2-containing multiprotein com-
plexes [4,5]. These new results offer an opportunity to revisit
what is known about the role of chromatin in adipogenic transcrip-
tion and to develop hypotheses that will channel effort into a dee-
per excavation of the relevant mechanisms.

2. The bromodomain and extraterminal domain (BET) family of
regulators

The metazoic members of the Brd2 family, the best known sub-
group of BET proteins, possess dual, mutually-related bromodo-
mains in the amino-terminal region of the protein that bind to
acetylated chromatin, and protein–protein interaction domains
for association with transcription machinery in the carboxyl-ter-
minal region. The bromodomains account for the reported co-
localization with chromosomes of this protein family (Fig. 1). Spe-
cifically, the bromodomains bind to acetylated lysine 12 of histone
H4 in nucleosomal promoters [6], a chromatin-binding function
first illustrated for the single-bromodomain histone acetyltransfer-
ase (HAT) Gcn5 [7] and P/CAF (a p300/CREB binding protein-asso-
ciated factor) [8]. Structural requirements for chromatin
interaction have been established in detail for Brd2 [5,6,9,10]. Sim-
ilar interactions have been reported for other dual bromodomain
proteins such as Brd3 [11,12], Brd4 [13–15], Brd6 [Brdt; 16], the
basal transcription factor TAFII250 [17,18] and Brd2 gene ortho-
logs: Saccharomyces BDFI [19–21], Arabidopsis GTE4 [22], Drosophila
female sterile (1) homeotic (fs(1)h) [23–25], Caenorhabditis bet-1
[26], and Danio and Xenopus brd4 [27]. Dual bromodomain proteins
thereby couple histone acetylation to transcription in a wide vari-
ety of organisms and transcriptional contexts.

This highly conserved family of transcriptional co-regulators is
primarily known for function in cell fate during development, in
cancer and the cell cycle. Dual bromodomain proteins have crucial
functions in pattern formation in Drosophila [28–32] and mice
[13,33,34]. Mutation of fs(1)h causes severe defects in differentia-
tion and cell fate; fs(1)hnull is lethal [23,29,35]. The fs(1)h locus is
an upstream activator of trithorax in Drosophila [30,36], an impor-
tant, homeotic control gene that positively regulates Hox-con-
trolled differentiation in mice, countering repression by the
Polycomb group (PcG) proteins. Disruption of human BRD4
through t(15;19) chromosomal translocation generates aggressive
midline carcinomas [37; reviewed in 38]. Brd2 and Brd4 control
cell cycle in mice [13,39,40] and in cultured cells [5,41]. In the
mouse, Brd4 is necessary for the G2-to-M transition of the cell
cycle, and brd4(+/�) mice show severe defects in differentiation
and organogenesis. In mice, brd4null is lethal [13,42,43]. The TA-
FII250 subunit of the TFIID basal transcription factor complex
[44] is also crucial for cell cycle control through its regulation of cy-
clin A, which is a critical driver of S phase [45]. Brd2 transduces
mitogenic signals [46,47], leading to increased proliferation [48].
Forced expression of Brd2 transcriptionally co-activates cyclin A,
causing earlier S phase entry during cell cycle progression [5].
Brd2 constitutive expression in B cell progenitors causes a B cell
malignancy in mouse models [40] that is most similar to human
diffuse large B cell lymphoma [49,50]. Thus, the dual bromodomain
proteins exert non-redundant, chromatin-based activities that are
essential for growth, development, differentiation and cell cycle
progression.

These proteins use a structural component, the bromodomain,
to bring transcriptional functions to chromatin that has already
been identified for transcriptional regulation through histone
hyperacetylation or sequence-specific DNA-binding transcription
factors. Virtually all of the nuclear HATs contain bromodomains
[51,52], but not all bromodomain proteins are HATs. Instead, the
enzymatic activities (HAT or ATP-dependent chromatin remode-
lase) are either encoded within the same polypeptide chain or
are recruited to a multiprotein complex, including bromodomain
proteins resident at the promoter, thereby coupling structure to
function. Chromosomal translocation can decouple this system,
targeting HAT activity to the wrong promoter [53], a genetic abnor-
mality frequently associated with cancer [38,54–57].

3. The bromodomain motif

In 1992, the bromodomain was first noticed as a primary amino
acid sequence present in certain proteins that have chromatin or
transcription functions [58]. Many bromodomain-containing pro-
teins are found in transcription complexes [51,52], where they per-
form scaffolding functions [59]. The bromodomain takes its name
from Drosophila brahma (BRM), an important chromatin-modify-

Fig. 1. Major forms of BET proteins. The structure of human Brd2 is compared to human Brd4 and the long form of Drosophila fs(1)h. Both Brd2 bromodomains (BD) are about
100 amino acids in length and are highly homologous to each other. They are separated by a basic domain (++), followed by an acidic domain (��), a short nuclear localization
sequence (NLS), an ATP binding/kinase domain (ATP), a multiprotein complex association domain (assoc) 164 amino acids in length and an acidic polyserine (SEED) domain.
Brd2 BD1 is located between amino acid positions 75 and 175, and BD2 is located between 350 and 450. Brd4 possesses a long carboxyl-terminal region of unknown function
that lacks association motifs. fs(1)h possesses a number of insertions, also of unknown function. The two largest insertions are shown. Mammalian BET proteins exhibit
alternative start sites and splice sites, but tend to cluster into one of two subtypes: either a short form with dual bromodomains and an association domain (Brd2, Brd3, Brd6),
or a long form with an unstructured carboxyl terminal tail (Brd4). [See Ref. [66] for more detailed discussion.]
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ing factor discovered by Tamkun and colleagues [60] and discussed
in a prescient 1994 paper of Randazzo and colleagues [61], who
noted that brahma (Snf2a, SMARCA2) likely assists trithorax to
overcome Polycomb repression of chromatin. Given the crucial role
played by the human homolog of trithorax (MLL) in mixed lineage
leukemias derived from 11q23 chromosomal translocations
[62,63], they speculated that the brahma-related bromodomain
protein BRG1 (Snf2b, SMARCA4), which is an essential catalytic
component of the SWI/SNF complex (discussed in detail below),
would be implicated in mammalian malignancy, as later work ver-
ified [64,65]. The conserved, �110 amino acid bromodomain motif
is comprised of four left-handed a helices bundled together and
connected with two segments, the so-called ZA and BC loops. The
structure was solved first by analysis of nuclear Overhauser effects
in the P/CAF single bromodomain [8]. The field has enjoyed a num-
ber of excellent reviews that discuss the relationship between
bromodomain protein structure and transcriptional co-activation
or co-repression function [53,66–68].

4. Transcriptional co-activation and co-repression by
bromodomain proteins

Bromodomain proteins that encode HAT activity, or recruit HAT
enzymes to chromatin, establish a paradigm for transcriptional co-
activation. The model also implies that a basal level of histone acet-
ylation of nucleosomes is required to catalyze the initial associa-
tion with bromodomain proteins. It is widely appreciated that
histone hyperacetylation is a mark of transcription activation of
promoter chromatin. Brd2 binds endogenous cyclin A promoter
chromatin, but mutants of Brd2 with deleted bromodomains or
carboxyl-terminal protein association domains do not transacti-
vate [5]. Functional cis-acting E2F binding sites are required for
Brd2-dependent transcriptional function on the cyclin A promoter
[48], and overexpressed retinoblastoma protein (RB), which halts
E2F-dependent cell cycle progression [69], ablates Brd2-driven
transactivation [48]. E2F1 and E2F2 are present in Brd2 multipro-
tein complexes purified from nuclear extracts [48] and Brd2 works
with E2Fs to recruit HAT activity and other epigenetic regulators,
including Mediator complex proteins, and the hSWI/SNF compo-
nent BAF155, to chromatin [4,5] thus to transactivate cyclin A. Dys-
regulation of this process leads to the classic disease of
uncontrolled proliferation: cancer [40].

Transcriptional programs that promote cellular proliferation/
cell cycle progression function in balance with programs that pro-
mote cellular differentiation/cell cycle exit. The balance between
the two lies at the heart of cell decisions to grow, specialize or un-
dergo apoptosis. Imbalances are pathogenic. For example, diverse
leukemias arise in the bone marrow through defective differentia-
tion closely coupled to abnormal proliferation [70–72]. The resul-
tant leukemic blasts are often blocked at an early stage of
differentiation, consistent with their continued active proliferation
at the expense of normal differentiation. Important and effective
therapies for certain leukemias take advantage of this transcrip-
tional switch as a rationale to treat leukemic patients with differ-
entiation-promoting agents, such as retinoic acid derivatives that
force cell cycle exit and block proliferation [73,74].

Bromodomain proteins also play important roles in transcrip-
tional co-repression, as first identified in studies showing that
the bromodomain protein BRM contacts RB [75,76]. RB and its fam-
ily members p107 and p130 bind to E2F proteins and block their
transcription activation function to oppose cell cycle progression.
RB also recruits a histone deacetylase (HDAC), as do p107 and
p130, through contact with BRM and other proteins in the SWI/
SNF complex [77–80]. Not all SWI/SNF complexes contribute to
this repressive function, however. Indeed, recent studies indicate

that a specific variant SWI/SNF complex (the ARID1A BAF complex)
is important for repression of E2F activated cell cycle control genes,
whereas another variant (the ARID1B BAF complex) contributes to
the activation of these genes [81,82]. Until recently [3], there was
no evidence of a role for Brd2 in mammalian transcriptional co-
repression, although clues from studies of Drosophila development
identified in fs(1)h, the homolog of Brd2, transcriptional repression
functions that are essential for proper differentiation in the early
embryo [38,83].

5. The SWI/SNF complex

As discussed above, local modification of histones on enhancers
and promoters is required to activate gene expression [84,85].
Transcription factors that bind to nucleosome-free regions of
DNA or to DNA within nucleosomes recruit enzymatic activities
that also non-covalently modify the surrounding chromatin archi-
tecture. These ATP-dependent remodeling complexes may contrib-
ute to gene regulation through a variety of mechanisms, including
movement in cis of nucleosomes away from or over regulatory ele-
ments, removal or deposition of nucleosomes in conjunction with
cellular chaperones, changes in the histone composition of nucleo-
somes, regulation of covalent histone modifications, alteration of
nucleosome structure, and/or changes in higher order chromatin
folding. While these models mostly derive from in vitro biochem-
ical studies, examples of many of these effects in gene regulation
are beginning to accumulate [86].

The SWI/SNF complex offers an important example of an evolu-
tionarily conserved, bromodomain-containing, ATP-dependent
chromatin remodeling machine, with roles in both transcriptional
activation and repression [65,87,88]. Mammalian SWI/SNF com-
prises a 2 MDa complex that possess the essential, catalytic pro-
teins brahma-related gene 1 (BRG1) or BRM, and an additional
9–12 proteins called BRM/BRG1 Associated Factors (BAFs) [89;
for review, see Ref. 90]. The function of SWI/SNF complexes can
vary depending on the complex components. Two major classes
of SWI/SNF complexes have been identified. The BAF complexes
(most similar to Saccharomyces SWI/SNF) contain either the BRG1
or BRM ATPase subunit together with one of two variant BAF250/
OSA/ARID1 subunits. These complexes contain a single bromodo-
main in their ATPase subunit. The choice of BAF250 subunit can
dramatically alter complex function, such as the opposing effects
of ARID1A versus ARID1B complexes in cell cycle control [81,82]
and the specific function of ARID1A in stem cell renewal [91].
The choice of ATPase may also be critical, because BRG1 tends to
be highly expressed in proliferating cells, whereas BRM is preferen-
tially expressed in terminally differentiated tissues [92], and be-
cause the regulation of specific target genes is sometimes
affected by only one ATPase or the other [93,94]. Furthermore,
Brg1�/�mice are embryonic lethal [95], whereas Brm�/�mice show
a relatively mild phenotype [96]. PBAF complexes (most similar to
yeast RSC) contain BRG1, but not BRM, lack BAF250 and contain a
BAF180/Polybromo subunit bearing six bromodomains.

Studies have shown that these variant SWI/SNF complexes have
distinct, but often overlapping functions [90]. Variant forms of
other subunits also exist, and show differential cell-type distribu-
tions and functions (such as the presence of BAF60a, but not
BAF60c in the esBAF complex, that is critical for stem cell renewal
[97]). The emerging model is that SWI/SNF complex composition
varies by tissue and cell type [89,95,98], and that the distinct com-
binations of subunits enable these variant complexes to interact
with distinct DNA-binding transcription factors and co-regulators,
or to interact with histones that bear specific modifications to carry
out tissue-specific, divergent functions.

The bromodomains in SWI/SNF complexes appear to play a crit-
ical role in maintaining the stable association of the complex with
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chromatin. This interaction was shown for Saccharomyces SWI/SNF
in an elegant set of in vitro experiments [99]. This mechanism is
also evidenced, in mammalian cells, by the requirement of
P/CAF-mediated acetylation to support SWI/SNF recruitment to
the myogenin promoter [100]. However, relatively little is known
about potential differential functions of the bromodomains in
BRG1, BRM or Polybromo.

Determination of genes that require SWI/SNF enzymes for prop-
er regulation has been accomplished in part by use of antibodies
that function in co-immunoprecipitation (co-IP) and chromatin
immunoprecipitation (ChIP) assays. These experiments show
SWI/SNF components localized with specific activators and/or at
specific gene sequences, indicating that the role of SWI/SNF in
co-activation and co-repression is mediated by direct recruitment
of the complex to target promoters [101–104]. SWI/SNF complexes
bind to a wide variety of transcription factors, acting either as co-
activators or co-repressors [for a recent review, see Ref. 105]. Of
particular relevance to adipogenic differentiation, hSWI/SNF com-
plexes bind to and serve as co-activators for many nuclear hor-
mone receptors, including estrogen, glucocorticoid, retinoic acid
receptor (RAR) families and PPARc [102,103,106–109]. SWI/SNF
and PPARc are crucial for adipogenesis, as discussed below. Se-
quence-specific DNA-binding transcription factors are required to
target individual adipogenic genes and marshal the transcriptional
program, but the general transcriptional factors and non-sequence
specific complexes, such as the bromodomain-containing chroma-
tin remodeling factors and co-activators, are also critical. It is not
well understood how these specific and general factors work to-
gether with chromatin remodeling enzymes on the promoters of
adipogenic genes.

6. Functions of PPARc and its transcriptional co-activators in
adipogenesis

Not only is transcriptional control of proliferation subject to
tight control, but differentiation must also be carefully regulated.
Adipocyte differentiation from fibroblast-like progenitors, for
example, is regulated by two well-studied families of transcrip-
tional regulatory proteins: C/EBPs (CCAAT/enhancer binding pro-
tein) and PPARs (peroxisome proliferator-activated receptor),
especially PPARc, a master regulator of differentiation of white adi-
pose tissue (WAT) and brown adipose tissue (BAT) [110–113]. To
act as a transcription factor, PPARc forms a complex with the ret-
inoid X receptor (RXR) transcription factor [114–116]. Improper or
deficient activation of PPARc is associated with insulin resistance
and T2D [117,118]. The transcriptional programs of adipogenesis
have been effectively reviewed [119].

Nuclear receptors like PPARc are Cys4-type Zn2+-finger tran-
scription factors. It has been proposed that this class prefers to
interact with BRG1 subunits of SWI/SNF [104,120]. Seminal studies
from the Imbalzano group [121] showed that the catalytic subunits
of the SWI/SNF complex, BRG1 and BRM, are required for induction
of adipogenic transcription programs. Specifically, they established
that general transcription factors assemble at the promoter of the
PPARc2 gene. Upon subsequent association of SWI/SNF and TFIIH
with the promoter, a preinitiation complex forms and is capable
of transcription. This topic has been recently reviewed [122,123].
It is now clear that SWI/SNF and associated bromodomain-contain-
ing co-activator complexes are crucial for PPARc function. Interest-
ingly, expression of dominant negative PPARc is capable of
partially reversing terminal adipogenesis [124], suggesting that
some basal form of ongoing chromatin maintenance or nucleo-
somal remodeling is required to maintain an adipogenic pattern
of gene expression. This would come at high energetic cost to the
adipocyte.

PPARc co-activators, including members of the p160 family
[125,126] must be regulated in their association with the chroma-
tin-bound transcription complex. It is apparent that adipogenesis
or differentiation of adipose tissue from progenitors during devel-
opment could be severely affected by loss or dysregulation of this
association. We speculate that these associated co-activator and
SWI/SNF complexes localized on the chromatin of adipogenic
genes are partially disassembled upon cessation of the adipogenic
program. However, how this is achieved, to what extent, and the
signal transduction events that prompt complex disassembly are
obscure. For a model of this process, we have begun to analyze
the stoichiometry and kinetics of Brd2-dependent transcriptional
control of the cyclin A promoter [4], which requires complexes that
must be activated and inactivated each time the cell traverses the
cell cycle.

The dramatic adiposity of brd2 lo mice was completely unex-
pected. However, in retrospect the co-activator/co-repressor func-
tions of bromodomain proteins make sense as a mechanism for
regulating the adipogenic phenotype. The increased adipogenesis
of 3T3-L1 pre-adipocytes in which Brd2 was knocked down [3]
suggests PPARc interactions with Brd2 are crucial. In addition,
two important transcriptional targets of PPARc and its co-activator
PGC-1a are the genes that encode mitochondrial uncoupling pro-
tein-1 and -2 (ucpl, ucp2), which have been linked to obesity
[127] in mice [128] and humans [129] and are important for ther-
mogenesis in BAT. We noted that both ucp1 and 2 were dramati-
cally elevated in brd2 lo mice [3]. Intriguingly, PCG-1a binds a
transcriptional co-activator/co-repressor complex [130,131] that
contains the Mediator complex [132] and Brd2 [4,133–135]. These
observations reinforce the hypothesis that Brd2 levels regulate the
transcription of genes that are targets of the PPARc/PCG-1 family.

Certain crucial transcription co-factors are shared between Brd2
transcription complexes [4,5,48] (Fig. 1) and PPARc-containing
complexes (Table 1; common factors shown in bold) [123]. Net co-
activation/co-repression depends on the relative abundance, tar-
geting and activity of these associated factors [59] and their ability
to switch the chromatin status of key metabolic genes. This insight
suggested two easily testable hypotheses: that (1) Brd2 and PPARc
interact, either directly through protein–protein association, or
indirectly through association in a ternary complex, and that (2)
a drop in Brd2 levels in certain cell types, such as the pre-adipo-
cyte, derepresses PPARc-regulated transcription. Co-immunopre-
cipitation experiments showed that indeed, Brd2 and PPARc
associate, and Brd2 opposes the action of PPARc on PPAR-respon-
sive transcriptional elements in DNA [3]. Interestingly, mice har-
boring a knock-in mutation of ‘silencing mediator of retinoid and
thyroid hormone receptors’ (SMRT), a nuclear co-repressor thought
normally to antagonize PPARc-directed transcription, exhibit a
pro-adipogenic phenotype [136], as do mice harboring a knockout
of estrogen receptor b [137]. This phenotype shares certain fea-
tures with Brd2 knockdown, particularly the lower threshold for
a PPARc-directed program of transcription. This pattern also resembles
the insulin-sensitizing action of glitazones and thiazolidinediones

Table 1
Transcriptional co-factors that interact with PPARc.

Co-repressors Co-activators

Mediator SWI/SNF
HDACs p300/CBP
RB CAF
NCoR PPAR-binding protein (PBP)
SMRT PPAR-interacting protein (PRIP)
Sirt 1 PGC-1,2

Factors shared between Brd2 complexes and PPARc complexes are shown in
boldface.
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(TZDs) [138]. Indeed, the observations suggest Brd2 might be a no-
vel, useful, ‘druggable’ therapeutic target for insulin resistance. In
addition, the thyroid hormone receptor-associated protein
(TRAP)220 component of the Mediator complex (encoded by
MED1) is important for PPARc-directed adipogenesis [139]. The
observation that Brd2 associates with a number of components
of the Mediator complex [4] suggests that PPARc and Brd2 may
be functionally linked through Mediator. Thus, it will be important
to verify the presence on chromatin of the Brd2 complex factors
shared with PPARc-associated complexes, and then test their func-
tion individually to understand the combined functions of Brd2
and PPARc in transcriptional regulation of adipogenesis. Given
the failure of intensive effort to identify an obvious endogenous li-
gand for PPARc, we can reasonably speculate that specific post-
translational modifications in response to nutritional signal trans-
duction, such as phosphorylation of co-repressor proteins or acet-
ylation/ubiquitylation of histones, might behave as a ‘pseudo-
ligand’ for shifting co-repressor complex function and enable
PPARc-directed adipogenesis. If so, Brd2 may be poised to respond
to these signals either as a target for modification or as a ‘reader’ of
the resulting modifications, especially histone acetylation.

7. A model for the role of bromodomain proteins in adipocyte
differentiation

Recent studies have shown that Brd2 cooperates with E2F1, sta-
bilizing a transcriptional activation complex on acetylated chroma-
tin at cyclin A. This complex also contains SWI/SNF, the association
of which will be stabilized both through interaction with Brd2 and
via binding of the bromodomain in its ATPase subunit to acetylated
chromatin. By contrast, a combination of RB binding to E2F1 (that
potentially recruits the inactivating ARID1A form of SWI/SNF), loss
of cyclin A promoter acetylation and loss of Brd2 would silence
cyclin A and slow growth of pre-adipocytes. In addition to the slow-
ing of growth, adipocyte differentiation requires the upregulation
of PPARc, which requires SWI/SNF for increased transcription.
PPARc activation of its target genes is also likely to require
SWI/SNF, although the specific variant complex involved has not
been identified. Importantly, however, Brd2 can inhibit transacti-
vation by PPARc [3]. Thus, Brd2 is required both to activate genes
that enable growth and to repress differentiation-specific genes in
pre-adipocytes. Accordingly, it is not surprising that deletion of
Brd2 leads to a near-complete elimination of mature adipocytes.

8. Important outstanding issues

1. Signal transduction and specificity. The mechanisms by which
signal transduction pathways instruct the chromatin remodel-
ing machinery to conduct an adipogenic program are very
poorly understood. The notion that chromatin remodeling
machines can function as effectors of signal transduction, par-
ticularly of mitogenic signals, has been discussed with respect
to Mediator [134] and hSWI/SNF [140,141]. For example, mito-
genic signals through the ras pathway [142] or inflammatory
signals through the TLR pathway [143,144] convey information
to chromatin to create a coherent transcriptional state that is
also reversible. Conversely, it is reasonable to hypothesize that
in response to an adipogenic differentiation signal, a specialized
cell mobilizes a MDa transcriptional apparatus at a limited
number of genes. This restricted response – only a few ‘imme-
diate early’ adipogenic promoters – could explain why the glo-
bal disruption of so fundamental a transcriptional cofactor as
Brd2 generates a coherent response on PPARc-responsive pro-
moters and a clear, adipogenic transcriptional program in a
pre-adipocyte. Most progenitor cells, such as pre-adipocytes,

are already primed for a specific fate, thus, manipulation of glo-
bal transcriptional and chromatin programs does not create
transcriptional confusion, because the map of cell fate is
restricted. It will be important to learn how, upon cell cycle exit
and induction of differentiation, chromatin in the adipocyte
resolves the differential responses to a combination of mito-
genic and differentiation-promoting signal transduction path-
ways. It also remains to be explored whether epigenetic
predetermination of adipogenic promoters is a major mecha-
nism that defines the cell fate of the pre-adipocyte. More
generally, a better, comprehensive knowledge of the signal
transduction-mediated mechanisms of priming in progenitor
cells will be critical if we wish to understand how lineage-spe-
cific transcription factors establish cell fate.

2. Functional shifts in chromatin remodeling and histone modification
complex composition. Biochemical studies of SWI/SNF com-
plexes sometimes identify BRG1 and BRM subunits associated
with the same locus [121], reflecting the view that these sub-
units identify complexes that exhibit a combination of overlap-
ping and specific functions. Differential recruitment of SWI/SNF
subunits BAF155 and BAF170 to the same promoter in response
to estrogen determines subsequent recruitment of a co-activa-
tor HAT or a co-repressor HDAC [145], suggesting that different
mechanisms of PPARc activation (which may include signal
transduction pathways or as-yet unidentified endogenous
ligands) could differentially regulate transcription factor/chro-
matin complexes formed during adipogenesis.

The dramatic adipogenic phenotype of Brd2 deficiency
strongly suggests that Brd2 and its associated bromodomain-
containing transcriptional co-regulators (including SWI/SNF)
are central to the decision to undergo adipogenic differentiation.
During this process, the chromatin-associated SWI/SNF com-
plexes likely change character in a coordinated fashion. These
shifts will be most directly measurable with analysis of chroma-
tin-modifying activities, along with DNA accessibility, associated
with proliferative and adipogenic genes during adipogenesis (i.e.
at the end of the clonal expansion) in 3T3-L1 adipocytes that have
been induced to undergo adipogenic differentiation.

It appears that E2Fs govern a link between proliferative sig-
naling pathways and terminal adipocyte differentiation. E2Fs
trigger clonal expansion, then, through RB-mediated repression
and replacement of pro-proliferative E2Fs with pro-differentia-
tion E2Fs, coherently switch a variety of promoters to the new
program. Apart from the proposed role of E2F-1 in PPARc1 tran-
scription, to switch between proliferative, clonal expansion and
terminal adipocyte differentiation through control of PPARc lev-
els [146], reviewed in [119], it is reasonable to hypothesize that
reduced levels of Brd2 or a related bromodomain protein repro-
grams a panel of target genes, analogous to the result of swi/snf
mutation in Saccharomyces [88], transcriptionally repressing
the proliferative genes [5] and activating the adipogenic genes
[3]. Likewise, transcriptionally activating SWI/SNF complexes
may need to shift character to transcriptional repression com-
plexes on the relevant promoters. It is unclear whether this
switch would occur by swapping out subunits on chromatin-
bound SWI/SNF or by exchanging one entire complex for another.
However, given the rapid exchange seen for most transcription
factors on and off chromatin [for review, see Ref. [147]] together
with the strong association of SWI/SNF complex subunits in bio-
chemical studies, the latter possibility seems most likely [148]. As
discussed above, experiments in the 3T3-L1 model will be useful
to define these mechanisms. It will be expected that patterns of
histone and DNA methylation and acetylation, DNA accessibility,
DNAse hypersensitivity and transcript levels will follow suit and
reflect the differential functions of the variant chromatin-bound
complexes.
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3. Cell fate and development. Interesting recent work on adipose
cell fate used an RNAi screen in Drosophila to identify candidate
obesity genes and discovered an important, previously unap-
preciated role for hedgehog signal transduction [149]. Signifi-
cantly, reported activators of the fat-specific obesity pathway
included Nejire [a fly homolog of the well-known HAT p300/
CREB (cyclic AMP-responsive element binding) binding protein
(CBP)]; repressors included trr (trithorax-related histone meth-
yltransferase), CG3075 (histone H2A), Su(fu) (an mSin3 co-
repressor) and slmb (required for E2F function). These factors
implicate chromatin modification in adipogenic transcriptional
programs and should be studied in detail in mouse models. In
this regard, developmental regulators such as the bone morpho-
genetic proteins (BMPs) [150] with morphogen roles first iden-
tified in Drosophila [151] and transcriptional co-activators such
as PRDM16 [152] and PGC-1 [153] have newfound significance
in adipogenic transcriptional programs and cell fate, particu-
larly the crucial function of BMP-7 in BAT adipogenesis [154].
However, very little is known about how these developmental
factors communicate with nucleosomes and chromatin remod-
eling machinery during an adipogenic program in adult progen-
itor cells.

4. Maternal effect on adipogenesis. The Drosophila homolog of Brd2,
fs(1)h, is a maternal effect gene [23,30,31], which suggests the
possibility that adipogenic transcriptional programs in humans
are influenced by maternal effect inheritance of BRD2. Brd2
remains mitotically associated with chromatin [6], and Brd4
tethers virus episomes to host mitotic chromatin across cell
divisions [155]. This behavior suggests a role for dual bromod-
omain proteins in inheritance, not only of specific histone mod-
ifications from one cell generation to the next, but also of
chromatin-bound complexes, which likely has significance for
epigenetic inheritance of predisposition to adiposity. Convinc-
ing evidence from epidemiological study of the Dutch ‘Hunger
Winter’ of 1944–1945 establishes an environmental maternal
effect of starvation during gestation. Specifically, maternal hun-
ger promotes insulin insensitivity, obesity, an atherogenic lipid
profile and elevates CVD risk in the surviving children as they
age [156]. A number of animal models explore the effect of ges-
tational stress on obesity, hypertension, insulin resistance and
hyperinsulinemia in progeny [recently reviewed in 157]. How-
ever, there has been insufficient study of genetic maternal effect
on obesity. It is likely that alleles of chromatin modification
genes, or genes of the class II Major Histocompatibility Com-
plex, within which BRD2 resides, will be found to play a role
in maternally inherited patterns of human adipogenesis and
insulin sensitivity, independent of environment and nutrition
status.

9. Future directions

Deficiency of Brd2, a gene that encodes a dual bromodomain
protein in mice, generates an unexpected and dramatic adipogenic
phenotype, revealing a pathway of transcriptional co-repression
and chromatin modification that normally opposes the action of
PPARc. Heterozygous brd2 lo mice develop severe obesity but, sur-
prisingly, completely avoid insulin resistance. These mice may pro-
vide a useful model for decoupling these two aspects of metabolic
syndrome. The Drosophila homolog of Brd2, female sterile (1) home-
otic, is a maternal effect, developmental gene and upstream activa-
tor of the trithorax complex, which opposes Polycomb action.
These surprising connections suggest that research effort in hu-
mans that focuses on the adipocyte-specific functions of develop-
mental and patterning genes will be fruitful, because the size and
health of adipose tissue depots, body mass index, insulin sensitiv-
ity and WAT/BAT specification from progenitors are all likely to be

affected by this pathway. This area of investigation is surprisingly
underdeveloped, yet is of great medical significance because of the
potential for new mechanistic insight into the ‘metabolically
healthy but obese’ (MHO) human phenotype [158], which exhibits
a reduced CVD risk and a diminished inflammatory profile [159].
Novel developmental pathways could be exploited to design a next
generation of insulin-sensitizing drugs to treat obesity and its co-
morbidities, or re-direct energy storage from undesirable, central
obesity to peripheral, subcutaneous depots of adipose tissue. In
addition, this work highlights the connections between chromatin
status, nucleosome positioning, histone modification and adipo-
genic transcription programs. Particularly, research effort should
focus on the critical role of bromodomain-containing protein com-
plexes, such as Brd2, SWI/SNF and their associated co-activator/co-
repressor factors, in transcriptional reprogramming from prolifera-
tion in the pre-adipocyte to differentiation in the adipocyte. These
epigenetic mechanisms have an importance at least equal to line-
age-specific transcription factors in the determination of cell fate.
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