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Purpose of review

The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to

obesity has become an alarming public health concern. Worldwide, approximately 171

million people suffer from obesity-induced diabetes and public health authorities expect

this situation to deteriorate rapidly. An interesting clinical population of ‘metabolically

healthy but obese’ (MHO) cases is relatively protected from T2D and its associated

cardiovascular risk. The molecular basis for this protection is not well understood but is

likely to involve reduced inflammatory responses. The inflammatory cells and pathways

that respond to overnutrition are the primary subject matter for this review.

Recent findings

The chance discovery of a genetic mutation in the Brd2 gene, which is located in the

class II major histocompatibility complex and makes mice enormously fat but protects

them from diabetes, offers revolutionary new insights into the cellular mechanisms that

link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced

inflammation in fat that is normally associated with insulin resistance, and resemble

MHO patients, suggesting novel therapeutic pathways for obese patients at risk for

T2D.

Summary

Deeper understanding of the functional links between genes that control inflammatory

responses to diet-induced obesity is crucial to the development of therapies for obese,

insulin-resistant patients.
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Introduction

During the last decade, themedical community has deter-

mined that obesity (defined as BMI �30) due to over-

nutrition and reduced physical activity has become not

only the most prevalent nutritional disorder of the devel-

oped world, but an alarming threat to public health world-

wide. Before the 20th Century, despite the warnings of

empirical physicians like Galen and Hippocrates, many

cultures have harbored the false belief that obesity was a

sign of health [1]. However, robust medical evidence has

dispelled this notion and revealed in detail how obese

individuals are prone to a plethora of diseases. These

include, most seriously: cardiovascular disease (CVD),

hypertension, Type 2 diabetes mellitus (T2D) and the

endocrine complications of metabolic syndrome. More

specifically, our recently deepened understanding of cau-

sation, not just correlation, has changed this field of

research, demanding that new studies of adipose tissue

intersect trends in the immunology, endocrinology and

metabolism disciplines. As the worldwide prevalence of

obesity soars, the need is urgent for a much deeper
1752-296X � 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins
biological understanding of the mechanisms that link

obesity and T2D, in order to design new drugs and

therapies to stave off the impending crisis in public health.

Although the innate immune system evolved to provide

humans with important sensing mechanisms to defend

against microbial pathogens, certain undesirable effects

of this sensitivity were not felt as long as calorie intake

remained low and physical activity was maintained.

However, within the last several decades, the prevalence

of high-calorie diets has increased worldwide, built on a

human taste preference for sugary beverages and fatty

foods. Increased sedentary patterns of activity as a result

of a dramatically expanding information economy and

increasing automation of industrial and agricultural pro-

duction, widely available and inexpensive ‘fast foods’ and

stressful urban lifestyles, have combined to create a

disastrous, worldwide public health crisis of obesity

and its comorbidities, including CVD and T2D.

The white adipose tissue (WAT) of vertebrates was

regarded for many years to be an inert, passive reservoir
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for storage of excess energy. However, WAT has recently

shown also to be a tissue of many talents. It is now clear

that WAT also plays a major role not only in self-

regulation, but also in endocrine control of processes that

affect the whole organism. First, it functions as a lever,

controlling energy expenditure and feeding behavior.

Secondly, the adipocytes that form the WAT engage

in mutual regulation with the innate immune system.

Interestingly, certain functional relationships between

the insect ‘fat body’, which is functionally similar to

mammalian WAT and liver and the innate immune

system are conserved among Drosophila, mice and

humans [2]. This relationship suggests a deep evolution-

ary history of crosstalk among these cellular lineages.

Adipocytes are also a source of a broad variety of soluble

factors, called ‘adipokines’, that form an intricate network

of paracrine, autocrine and endocrine relationships

between the adipocytes themselves; the stromal vascular

fraction of WAT that contains fibroblasts, pericytes, pre-

adipocytes; and, above all, immune cells such as macro-

phages, B and T cells and natural killer cells.

When performing its main function of energy storage,

WAT usually stays metabolically balanced; however,

when ‘overworked’ due to hypernutrition or other meta-

bolic stresses, serious pathologies soon emerge. Upon

challenge with excess calories, an early response of the

human body is to expand adipose depots. The function of

energy storage becomes demanding on adipocytes, such

that they develop cellular stress when the load becomes

overwhelming. The first trigger in the cascade of events

that leads to an unhealthy, inflammatory state is still a

point of debate. One view holds that an adipocyte-

produced, proinflammatory set of cytokines recruits cells

of the immune system into the WAT to create an

inflamed depot. Another view suggests that certain

resident cells of the immune system detect emerging

adipocyte damage in fat and produce the first bolus of

cytokines and chemokines that recruit macrophages to

clear dead and dying adipocytes. WAT is a massive tissue

relative to total body weight and is capable of producing a

variety of bioactive molecules in significant amounts,

thus even a small change in WAT function can have

major whole-body consequences.
Insulin resistance: the role of inflammation
In addition to the metabolic insults experienced by the

cardiovascular and endocrine systems, adipose tissue in

obesity and states of obesity-driven insulin resistance

typically must cope with a low-grade, chronic state of

subclinical inflammation [3]. In different animal models

of obesity and in obese patients, this state evinces elev-

ated serum concentrations of C-reactive protein (CRP),

Interleukin (IL)-6, IL-8 and tumor necrosis factor

(TNF)-a [4]. One of the first consequences of elevated
serum concentrations of these proinflammatory factors is

a negative influence on the insulin-signaling pathway and

decreased insulin sensitivity in many central and peri-

pheral tissues, including WAT itself, which puts the

obese patient firmly on the road to T2D. Although

TNF-a was the first secreted adipokine shown to have

functional importance for the emergence of insulin resist-

ance, its pathogenic activity was soon found to be exacer-

bated by IL-6, IL-1b, monocyte chemoattractant protein

(MCP)-1, and several other factors. Even if regarded as

acting mostly locally, the proinflammatory adipokines

disperse beyond the borders of the WAT and promote

insulin resistance and atherosclerosis elsewhere in the

body. Although a comprehensive understanding of the

genes and pathways that drive inflammation-associated

insulin resistance awaits further research, the importance

of proinflammatory cytokines in the emergence of insulin

resistance first came to the attention of the field through

the seminal work of Hotamisligil and Spiegelman [5].

The field has been very ably reviewed since then [6,7,8�].

As discussed earlier, in most obese patients, the main

effect of increased adiposity and adipocyte stress is a low-

grade inflammation and its most probable outcome is

insulin resistance; this pattern is widely observed in

clinical populations. However, other outcomes are

possible, in which WAT and metabolic dysfunction are

uncoupled from BMI. For example, there is a cohort of

patients, comprising up to about 25% of the adult obese

population, who despite obesity, never develop T2D and

severe dyslipidemia, which is a phenotype first identified

by Ruderman et al. [9] and termed ‘metabolically healthy

but obese’ (MHO). Conversely, another cohort of

patients termed ‘metabolically obese but normal weight’

(MONW), develop this low-grade inflammatory state

without becoming obese and extending the load on their

WAT. TheMHO individuals are at reduced risk for CVD

and T2D [9–11], and significantly, studies have shown

that they have a reduced inflammatory profile. Factors

that couple obesity to insulin resistance are of great

medical interest, because they underlie the etiology of

obesity-driven T2D. Thus, the MHO individual is likely

to provide a goldmine of information. The study of this

population for genes and pathways that couple obesity to

insulin resistance has the potential to identify novel,

‘druggable’ targets to help unhealthy obese patients

avoid the worst comorbidities of their condition.

Mechanisms of adipose tissue inflammation in obesity

It has been widely noted that food intake, energy expen-

diture and fat depot activity are regulated by one of the

most tightly controlled switches in the body, where even

a slight deviation from caloric input/usage causes either

failure to maintain body functions or a vast increase of

storage load. It is believed that the threat of starvation

biased this system toward the preference of extra
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consumption; unfortunately, similar evolutionary mech-

anisms seem to have shaped the inflammatory response in

fat. WAT can easily become a source of large amounts of

active proinflammatory molecules, because it is very

responsive to inflammatory signals. It follows from this

point that there could be a direct link between other

chronic inflammatory diseases and severity of obesity

complications. A number of studies now report a connec-

tion between chronic inflammatory conditions, such as

rheumatoid arthritis and periodontal disease, and mor-

bidity associated with metabolic syndrome. Pre-existing

inflammatory conditions such as asthma [12�] and period-

ontal disease [13] thus can contribute to the development

of insulin resistance as a major comorbidity in such

patients.

Role of adipose tissue macrophages

As discussed earlier, WAT in obesity undergoes several

deleterious changes, including expansion of extracellular

matrix; adipocyte stress, hypertrophy and cell death [14];

and elevated production of proinflammatory adipokines

that recruit immune cells [6,15–17]. These cells promote

development of the chronic inflammatory state primarily

attributable to adipose tissue macrophage (ATM) func-

tion [18–20]. The responses of the recruited macrophage

population to the WAT are complex. Specifically, macro-

phages infiltrate WAT as circulating monocytes in

response to WAT secretion of MCP-1, which recruits

monocytes that express the C–C chemokine receptor

(CCR)2 [18,19,21]. These proinflammatory F4/

80þCD11bþCD11cþ macrophages are directly impli-

cated in WAT inflammation and the development of

insulin resistance [22,23]. In support of this point,

deletion of the CD11c compartment protects whole-body

insulin sensitivity and glucose tolerance in mice [24].

Consistent with this mechanism, it has recently been

reported that the circulating monocytes of obese insulin

resistance and T2D patients display significantly elev-

ated markers of this proinflammatory phenotype [25].

In obesity, production ofTNF-a in liver, fat andmuscle by

infiltrating, proinflammatory (‘M1 polarized’) ATMs is

clearly established topromote insulin resistance [5].These

‘classically activated’ macrophages can beM1-polarized in
vitro by exposure to bacterial endotoxin or cytokines that

are secreted from Th1-polarized T cells, such as inter-

feron-g. High fat feeding promotes a macrophage pheno-

type switch within WAT to the M1 state [22]. The M1

state exists on a functionally defined spectrum with an

anti-inflammatory (‘M2 polarized’) state. These ‘alterna-

tively activated’ macrophages can be M2-polarized by

exposure to cytokines that are secreted from Th2-polar-

ized T cells, such as IL-4 and IL-13.

Adipocyte death in mouse models of diet-induced

obesity (DIO) correlates with WAT inflammation, an
increased M1/M2 ratio and the development of whole-

body insulin resistance [26]. The CD11cþ ATM popu-

lations are also involved in scavenging dead adipocytes

(in ‘crown-like structures’, histologically defined by

CD11c staining of myeloid cells that cluster around dead

or dying adipocytes inWAT sections) [14] and transiently

remodeling the WAT, which then exhibits activities

connected with M2-associated genes, such as arginase,

IL-10, IL-4 and TGF-b [27]. Relatively high expression

of M1 cytokines is associated with metabolic compli-

cations of obesity, including insulin resistance, in both

rodent models and humans. The net balance of these M1

and M2 inputs is thought to define the profile and

magnitude of adipose tissue inflammation.

However, an interesting new report from the Olefsky

group [28�] has revealed a functional plasticity in ATMs

that belies this straightforward model of M1 vs. M2

polarization. Upon reversal of high-fat diet and return

to normal caloric intake in amousemodel system, glucose

tolerance and insulin sensitivity improve, but numbers of

F4/80þCD11bþCD11cþ macrophages that infiltrate epi-

didymal fat (the most inflammatory depot in this model)

remain elevated. Instead of expressing a proinflammatory

transcriptional signature, this tissue expressed reduced

transcripts of TNF-a, IL-1b, IL-6, IL-10 and IFN-g.

Sorted CD11cþ epididymal ATMs showed significantly

reduced TNF-a and IL-1b production, suggesting that

ATMs are capable of repolarization to an anti-inflamma-

tory phenotype, despite CD11c expression. This mech-

anism is consistent with amelioration of metabolic

parameters in patients after various weight loss-focused

dietary interventions (for review, see ref. [29]) and with

rapid improvement observed in obese, nondiabetic

patients after bariatric surgery [30]. ATM populations

therefore likely respond to local metabolic microenviron-

ment with a reduced inflammatory phenotype that bodies

well for obese patients before b cell failure and the

emergence of insulin-dependent diabetes.

Adipokines and T cells

T cells are also recruited to WAT in DIO through

‘regulated on normal T cell expressed and secreted’

(RANTES/CCL5) and its receptor CCR5 in adipose

tissue [31,32], where their Th1/Th2 polarization and

proliferation are influenced by macrophage-produced

cytokines [33]. T cells also play a major role in insulin

resistance [34] through macrophage recruitment [35] and

Th17 (proinflammatory) [36] vs. T regulatory (Treg; anti-

inflammatory) [37�] polarization in WAT. Although

ATMs infiltrate WAT during obesity and are an import-

ant source of proinflammatory cytokines thought to drive

insulin resistance [3,5,18,19], it is likely that not only are

the ATMs using cytokines to communicate with adipo-

cytes, but also the adipocytes are using adipokines to

communicate with ATMs and T cells. There are a



Obesity genes and insulin resistance Belkina and Denis 475
number of points at which this mechanism could provide

a measure of protection against insulin resistance. Given

their reduced inflammatory profile, some of these factors

may be operative in MHO individuals [10,11,38,39].
Recent findings
No matter how complex the multifactorial network

behind complications of obesity, its outputs converge

on some definable proinflammatory and anti-inflam-

matory switches. For instance, one such potential balance

point in MHO patients could be levels of adiponectin, an

anti-inflammatory adipokine that is secreted by WAT;

adiponectin levels drop in T2D patients. Adiponectin is

known as a potent insulin sensitizer; high levels of

adiponectin predict a dramatically lower myocardial

infarction rate in men [40]. Likewise, it is possible that,

among the forces that comprise the lever between ‘good’

and ‘bad’ fat deposition, some may be crucial and suffi-

cient for successful therapeutic manipulation, such as

peroxisome proliferator-activated receptor g (PPARg).

PPARg agonists and modulators are currently being

tested in a vast array of clinical trials (for review, see

ref. [41]). One of the keys to the mechanism of their

action may be the newly revealed Brd2 pathway. Mice

that exhibit reduced whole-body expression of the gene

Brd2 uncouple obesity from insulin resistance [42��]. The

WAT of these animals is dramatically expanded on

normal chow supplied ad libitum, rather than high-fat

diet or forced feeding, yet WAT remains healthy and

lacking in inflammatory infiltrates. After 12 months,

adult male mice weigh about 90 g, which is roughly

equivalent to 180 kg (BMI �50) for adult male humans.

Yet these animals never develop T2D; throughout their

lives they are able to clear glucose better than matched

wild type mice. Furthermore, low Brd2 levels resemble

the action of thiazolidinedione drugs like rosiglitazone,

which are used to sensitize obese patients to insulin

action. PPARg-dependent transcription is greatly

induced under ‘brd2 lo’ conditions, leading to enhanced

adipogenesis [42��].

This discovery provides an exciting opportunity to inves-

tigate Brd2 function in inflammatory cells and adipocytes

of obese patients, to test the hypothesis that MHO

patients are protected from T2D in part because of

reduced Brd2 levels. Whether or not the ‘brd2 lo’ mouse

proves to be a superb model for MHO patients, it pre-

sents an excellent example of how a single intervention at

the basic transcriptional level influences such an intricate

system as the inflammatory state of the fat tissue and

whole body insulin sensitivity. Such mechanisms would

have strong explanatory power to stratify obese patients

into high and low-risk cohorts, and may offer a totally

novel, ‘druggable’ therapeutic pathway for the high-risk

patients.
In humans, BRD2 is located at locus 21.3 on chromosome

6p, within the class II major histocompatibility complex

(MHC), flanked by genes that are involved in antigen

processing. TheBRD2 sequence encodes a transcriptional
coactivator [43–45] and bears no resemblance to any of the

nearby genes in the MHC. Consistent with the inflamma-

torymechanism, a very recent report has identified human

SNPs in the BRD2 locus that are significantly associated

with rheumatoid arthritis, which is driven by autoimmune

and inflammatory processes [46]. Links between Type 1

diabetes and alleles of the human class II MHC are well

established [47]. Specifically, these include genes that

regulate autoimmune processes. Other genes at 6p21.3,

such as tumor necrosis factor (TNF), are linked to inflam-

mation and T2D in the context of obesity. Additional

study of the relationships between genes that regulate

responses of the innate immune system, such as theTLR2

and TLR4 pathways, NFkB and inflammation in the

context of obesity, are likely to yield a wealth of insights

into mechanisms that couple obesity to T2D and its

comorbidities, and identify novel targets for therapy.
Conclusion
The present review discusses the functional interconnec-

tions between WAT and inflammatory cells in the con-

text of diet-induced obesity in humans and animal

models. Current research has established links between

innate immune responses, chronic inflammation and the

comorbidities of obesity, such as T2D and CVD. These

links provide a rationale for a hypothesis that mild

immunodeficiency might protect some obese individuals

from these risks, whereas inflammatory hypersensitivity

might increase the risks in others. This hypothesis

receives support from the strong epidemiological corre-

lation between asthma and insulin resistance in obese

patients, for example, and raises the possibility of new

biomarkers for high-risk groups.

Additional research is urgently necessary to identify the

functional links between adipose cells and the genes of the

innate immune system that control inflammatory signal

transduction, immune cell infiltration into adipose tissue,

macrophage and T-cell proliferation and survival, and

adipocyte/immune cell crosstalk through cytokine and

adipokine signaling, in order to understand and to block

the cascade of chronic inflammation that leads to insulin

resistance. Genes of the MHC, such as BRD2 and TNF;
genes that control innate immune sensing, such as TLR2
and TLR4; genes that regulate inflammatory signal trans-

duction pathways, such as IRAK and NFKB1; and genes

that control adipocyte fate and function, such as PPARG;
likely interact in the pathogenesis of human insulin resist-

ance in this context. Furthermore, the role of chromatin

and transcriptional coactivation/corepression of obesity-

relevant target genes, including epigenetic mechanisms



476 Obesity and nutrition
that regulate signal transduction in obesity, demandsmuch

deeper study, as shown by the surprising coactivator/cor-

epressor activity of the Brd2 protein.

In summary, it is clear that the innate immune system

served an important role during the early millennia of

human development, but modern society is vulnerable to

the unanticipated, negative effects of these pathways,

made apparent by the consequences of high BMIs that

few humans had previously experienced, but that now are

alarmingly common.
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