Cell Associated Transmission

Manish Sagar

HIV-1 TRANSMISSION

Index Case CCR5 or CXCR4

Primary Infection CCR5

HIV acquisition versus exposure

Exposure	Relative Risk per 10,000 Exposures		
Blood Transfusion	9,000		
Needle-sharing	67		
Receptive penile-anal intercourse	50		
Percutaneous needle stick	30		
Receptive penile vaginal intercourse	10		
Insertive penile anal intercourse	6.5		
Insertive penile vaginal intercourse	5		
Receptive penile oral intercourse	1		
Insertive penile oral intercourse	0.5		

Ancestral strains are preferentially transmitted

Redd et al., JID 2012

Transmitted viruses are more closely related to previously circulating strains

Redd et. al. JID 2012

Previously circulating strains are sensitive to contemporaneous autologous sera

Viruses present in newly infected subjects are highly sensitive to the transmitting partner antibodies

Richman et al., PNAS 2003 Derdeyn et al., Science 2004 How do newly infected individuals acquire strains that are both more closely related to previously circulating donor strains and likely more sensitive to antibodies present in the donor at the time of transmission?

 Hypothesis: Newly infected individuals may acquire HIV-1 from cell associated as opposed to cell-free virus.

Acquisition of multiple variants are likely linked events

Transmitted viruses

PBMC or plasma derived virus?

- Recipient PBMC
- **Recipient Plasma**
- **V**Donor PBMC
- 🗸 Donor Plasma
- •Sampled 8 recipient donor pairs.
- •All newly infected subjects were sampled during acute infections.

•Donor variant most closely related to recipient sequence from plasma in 3/8 cases and/or in PBMC samples in 6/8 cases.

Frange et. al., Plos One 2013

Sequencing Studies

- Analysis of recipient donor pairs shows that plasma or PBMC donor virus is often most closely related to the founder virus in the newly infected partner.
- Lack of compartmentalization between plasma and PBMC donor virus make it difficult to conclusively demonstrate if acquired virus is from the plasma or PBMC.

Phenotypic studies

- Recipient viruses have a unique phenotype that confers fitness for transmission, potentially enhanced cell to cell transmission.
- Compare recipient and transmitter virus phenotypic properties.

Cohort demographics

Couple	Type ¹	Int.	Partner	Recipient	Recipient	Recipient	Transmitter	Transmitter	Transmitter
		Days ²	Interval ³	CCR5 ⁴	CXCR4 ⁵	Tropism ⁶	CCR5	CXCR4	Tropism
HF	FTM	17	3	7.24	<0.1	R5	8.27	<0.1	R5
888	MTF	74	19	10.39	<0.1	R5	11.91	<0.1	R5
890	MTF	138	12	3.79	<0.1	R5	2.27	<0.1	R5
394	MTF	93	2	7.79	<0.1	R5	10.85	<0.1	R5
927	MTF	324	46	12.55	<0.1	R5	13.37	<0.1	R5
2769	MTF	149	46	5.69	<0.1	R5	5.34	0.65	R5/X4
2810	MTF	161	23	5.49	<0.1	R5	6.12	<0.1	R5
SR-5	MTF	17	0	12.62	<0.1	R5	9.72	<0.1	R5
SR-20	MTF	91	34	6.70	<0.1	R5	7.24	<0.1	R5

Replication Competent Recombinant Viruses

•Full length envelope sequences amplified from each sample. Median 4 (range 4 – 8) independent PCRs

Recipients and transmitters are virologically linked

Д

Sensitivity of receptor and fusion inhibitors

Replication in CD4+ T cells

Replication in MDDC-CD4+ T cell cocultures

Replication in LC-CD4+ T cell cocultures

Transmission and acute infection

Pope et al., Nature Medicine 2003

Gut homing receptor, α4β7

V1 stem

isolate

QA203M1 month 1 QA203M41 month 41 QA203M41 variant 1 QA203M41 variant 2 QA203M41 variant 3

Cicala et al., PNAS 2009

Nawaz et al., Plos Pathogens 2011

Gut homing receptor, α4β7

$\alpha 4\beta 7$ usage

Transmitted founder versus chronic control viruses

- Full length molecular clones of phylogenetically estimated T/F viruses
- 13 Subtype B T/F versus 5 CC from 4 subjects
- 14 Subtype C T/F versus 9 CC from different subjects
- All T/F were unrelated to CC

T/F more infectious, higher env content, enhanced DC-T cell transmission and greater replication in presence of IFN-α

Early/Transmitted versus Chronic/Donor

Properties	Couples	T/F vs CC			
Gene	Envelope	Full-length molecular clone			
Sampling	Seronegative to 1 year	Phylogenetically estimated T/F			
Comparison	Swarm present in transmitter	Unrelated chronic phase virus			
Enhanced Infectivity	Transmitter	T/F			
Higher replication in DC-T cells	Transmitter	T/F			
α4β7 usage	Transmitter	No difference			
CD4 usage	No significant difference				
CCR5 usage	No significant difference				
Fusion	No significant difference				

- Newly infected subjects may acquire cell associated virus.
- Cell associated and cell free virus are rarely compartmentalized making it difficult for sequence studies to determine origin of transmitted virus.
- Couple studies suggest that transmitter as compared to recipient swarm are more efficient in DC/LC T cell transfer.
- Because we did not examine T/F, it is possible that viruses with a transmission phenotype, such as cell associated replication, are selected against early after acquisition. In this case, variants with enhanced cell to cell replication must be enriched during the chronic phase of disease.
- Cell associated transmission may require different preventative strategies.

Acknowledgments

Boston University

Sagar Lab

- Behzad Etemad
- Oscar Gonzalez
- Victor Pena-Cruz
- Melissa Ghulam-Smith
- Ludy Registre
- Gummuluru Lab
- Hishashi Akiyama
- Nora Ramirez

Deborah Anderson

- Johns Hopkins University
 - Thomas Quinn
 - Oliver Layendecker
 - Ron Gray

Grant support

- National Institutes of Health
- Boston University Pilot Grant