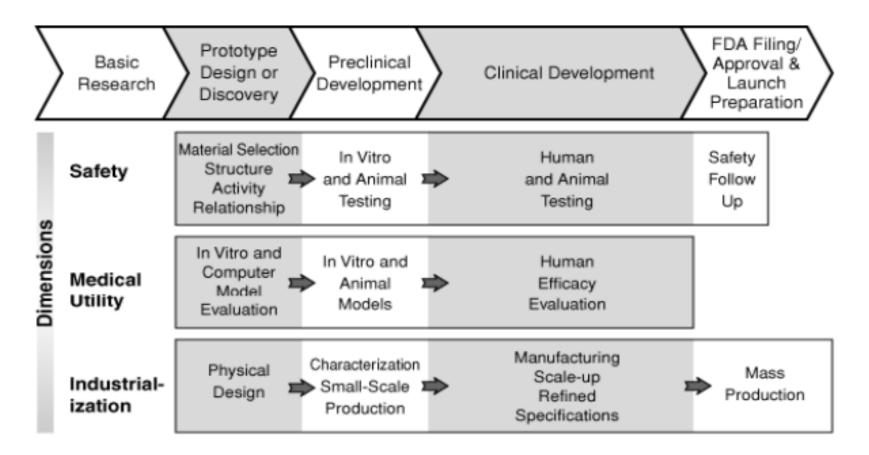
Antibody-based Multipurpose Microbicides

Antibodies as a Platform Technology for Multipurpose Microbicides: Specificity and Versatility

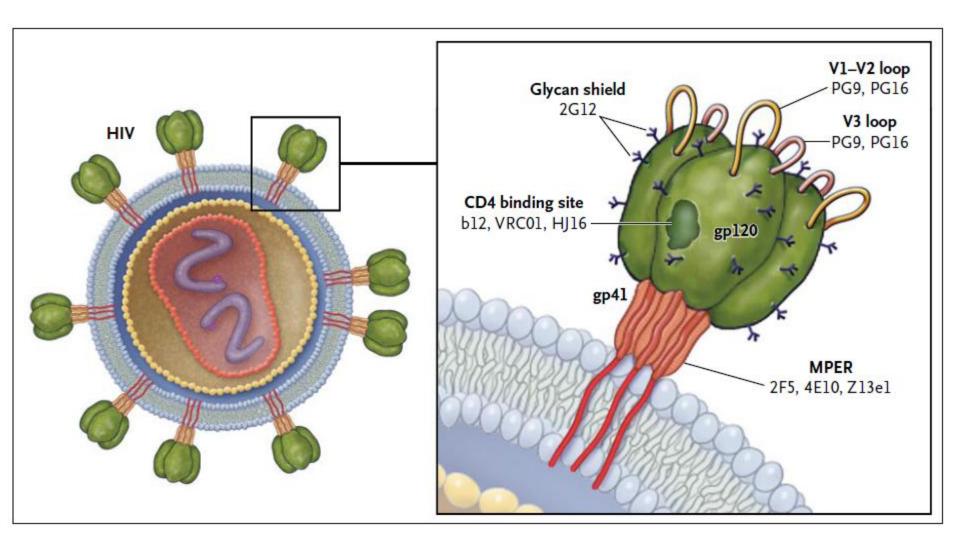
Kevin J Whaley

Antibodies as Platform Technology for Multipurpose Microbicides


- Commercially available for multiple indications (safety and versatility)
- Multiple mucosal mechanisms (e.g. block binding to receptor, mucus trapping, agglutination/aggregation)
- Antibodies are immune correlates of protection in many vaccines, including the RV144 HIV vaccine trial (efficacy 31.2%, IgG not IgA)

Versatility of Mucosal Antibodies

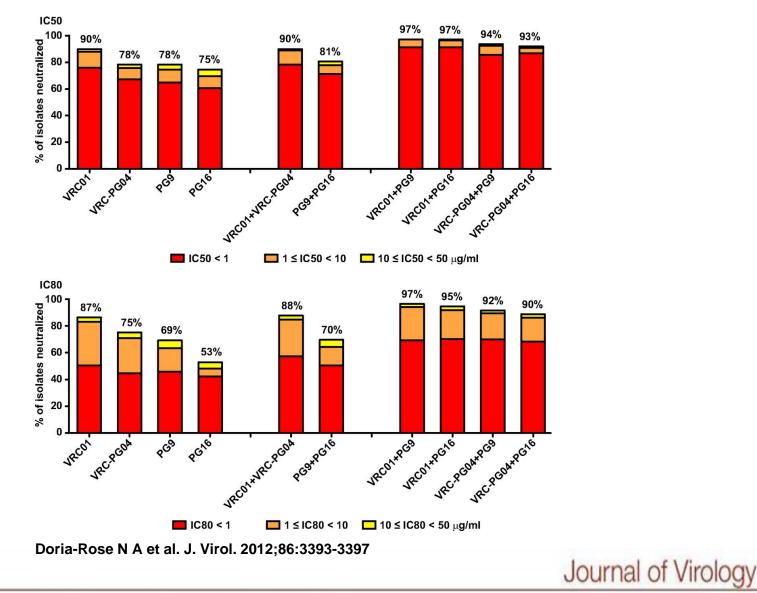
Strategy	Description	How mucosal antibodies could defeat the microbial strategy
molecular mimicry	microbial antigens similar to host antigens resulting in an absence of an effective immune response (e.g. Treponema pallidum)	use non-inflammatory monoclonals topically against the microbial antigen
intracellular or "Trojan Horse"	microbe resides in a host cell thereby evading detection by the immune system (e.g. cell- associated HIV)	use monoclonals against the cell vector
induction of ineffective antibodies	microbe exposes non-critical antigens to the immune system, so an ineffective antibody response results (e.g. T. pallidum, Chlamydia trachomatis)	use only monoclonals with proven efficacy
soluble antigen competes up antibody	microbe releases soluble antigen which adsorbs antibody (e.g. cell- free HIV)	choose monoclonals against an antigen that is not released; or, use a polyvalent monoclonal to selectively target multivalent antigen on intact microbes
protease production	microbe produces an IgA1 protease (e.g. Neisseria gonorrhoeae)	use protease resistant SIgA, engineer out the sensitive site, or include a neutralizing antibody to IgA1 protease
antigenic variation	microbe mutates immunodominant antigen (e.g. HIV, N. gonorrhoeae)	use monoclonals against less immunodominant but more conserved antigens


(Adapted from Whaley and Zeitlin, Annales de l'Institut Pasteur 2001)

Critical Path

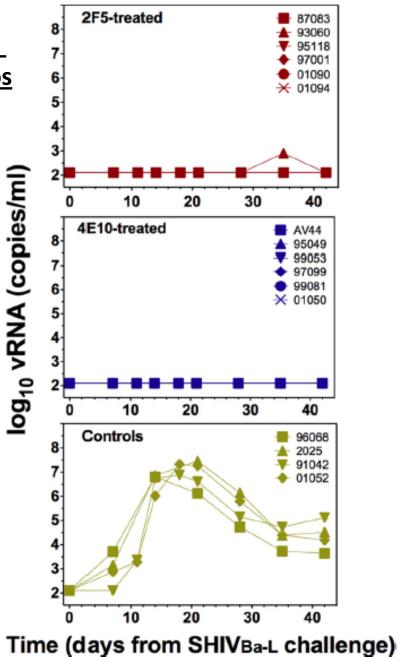
(FDA, 2004)

mAbs to gp120 and gp41

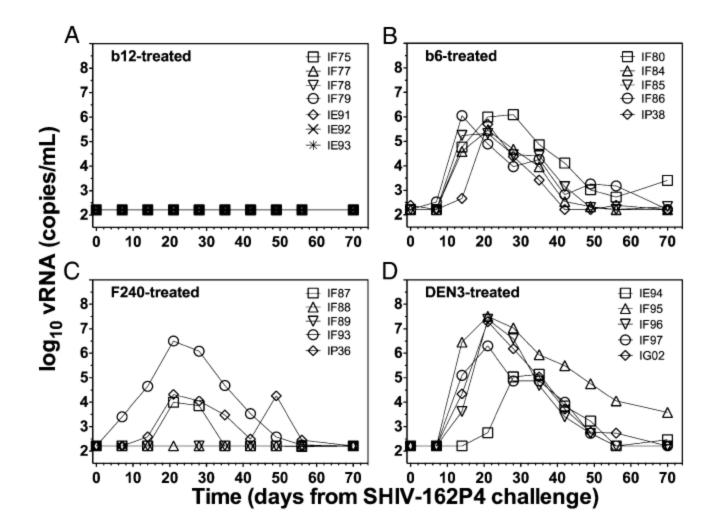


(Koff and Berkley, NEJM 2010)

HIV Neutralizing mAbs

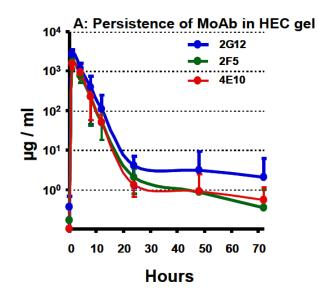

A Clade	No. of	Median IC ₅₀ (μg/ml) against viruses neutral with an IC ₅₀ <50 μg/ml					eutrali	zed	
	viruses	b12	2G12	2F	5 4E	10 F	PG9	PG16	PGC14
A	27	6.98	17.10	5.	70 6.3	20	0.16	0.11	41.59
В	31	0.80	0.82	2.4	41 5.2	22	0.43	0.70	21.88
С	27	6.46	2.93	31.5	51 2.9	97	0.22	0.25	11.97
D	25	1.47	7.71	3.	17 4.6	50	0.10	0.02	38.57
CRF01_AE	10	21.53	>50	0.2	26 0.5	51	0.08	0.03	>50
CRF_AG	10	10.40	0.95	0.0	54 1.4	42	0.80	0.03	45.10
G	15	3.07	31.03	1.3	24 1.4	44	0.29	1.21	>50
F	15	>50	9.23	1.3	78 2.3	30	0.09	0.08	25.71
Total	162	2.82	2.43	2.3	30 3.2	24	0.22	0.15	25.99
В	No. of		D	araant	viruooo	noutro	lizod		
Clade	viruses	b12	2G12	2F5	viruses 4E10	PG9	PG1	6 PG	C14
		012			IC 50 <5			0 10	
А	27	30	37	74	96	ο μg/m 85	85	1	1
В	31	58	71	68	97	74	74		9
c	27	33	11	7	96	78	78		9
D	25	48	24	56	96	76	60		8
CRF01_AE	10	30	0	89	100	100	100		D
CRF_AG	10	30	50	80	100	80	60		0
G	15	13	20	80	100	87	73		7
F	15	0	21	87	100	67	64	1	3
Tota	162	35	32	60	98	79	73		5
			1	With an	IC 50 <1	.0 μg/m			
A	27	0	4	4	0	70	63	(D
В	31	32	39	23	0	45	42	1	3
С	27	7	0	0	11	56	48	(0
D	25	12	8	12	8	48	44	(D
CRF01_AE	10	11	0	88	80	70	70	(0
CRF_AG	10	10	30	60	30	40	50	(D
G	15	0	0	27	0	60	33	(D
F	15	0	14	13	28	80	79	(0
Tota	162	11	12	19	12	57	51		1

(Walker...Burton, Science, 2009) <u>Combining mAbs</u>: Neutralization coverage of a panel of 208 global HIV-1 isolates (190 for VRC-PG04) by MAbs targeting independent epitopes on the Env glycoprotein.

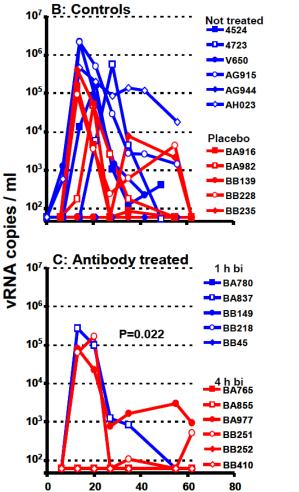


JOUMAIS.ASM.Org | Copyright © American Society for Microbiology. All Rights Reserved.

Preventing Vaginal Transmission in Macaques: 2F5 and 4E10 Mabs



(Hessel...Burton, J Virol. 2010)



Burton...Moore, PNAS 2011

Preventing Vaginal Transmission in Macaques: TriMab (2F5, 4E10, 2G12) Gel

Fig. 7 Efficacy of TriMab (2F5, 4h10 and 2G12 combination) in cynomolgus macaques. A: The 3 antibodies have been formulated in 1.5%HEC gel and the mix of 20mg of each antibody (2ml) have be deposited in the vagina of 6 Depo-Provera treated macaques. Vaginal secretions have been collected using WeckCek sponges at different time points and antibodies titrated by ELISA (we have previously verified in a pilot study that repeated sample do not affect dosage of antibodies). B: Plasma viral load (PVL) in control Depo-Provera treated macaques challenged with 3-10 AID50 of SHIV162P3; Animals have been either treated with blank gel as placebo or not treated. C: PVL in animals treated with TriMab gel (1h or 4h before challenge) and challenged with SHIV162P3.

(LeGrand, 2010)

Days after vaginal challenge

THE HULL YORK MEDICAL SCHOOL

MABGEL I A phase I randomised controlled trial of a triple anti-HIV-I monoclonal antibody vaginal microbicide

Georgina Morris, Rebecca Wiggins, Sarah Woodhall, Carol Taylor, Brigitta Vcelar, Martin Bland, Charles Lacey;

Centre for Immunology and Infection, Hull York Medical School, & Department of Health Sciences, University of York, & Polymun Scientific, Vienna

MABGEL Results: Safety Analyses

Mean numbers of AEs assigned as at least possibly related to gel

Treatment group	Number in group	Mean number of	Standard
		events	deviation
Placebo	9	2.67	2.24
Low dose	9	2.11	1.69
High dose	10	1.80	1.40

There were no statistically significant differences in AEs between the groups P = 0.6 (negative binomial regression).

(CROI 2011, courtesy of Morris and Lacey)

MABGEL Pharmacokinetic results

- There were statistically significant differences between placebo, low dose and high dose group median values at each time point except C2GI2 36 hrs post-I2th dose
- Clear differences between the high and low dose MAb groups were seen but did not reach statistical significance due to small sample sizes
- MAb levels in serum at low or background levels in all groups, with no statistically significant differences between the arms

(CROI 2011, courtesy of Morris and Lacey)

First-in-human safety trial of Nicotiana-derived 2G12

(EUDRACT No. 2009-011820-68)

- Study design: A double-blind, placebocontrolled, dose escalation trial in 11 women
- Administration of a single vaginal dose of Nicotiana-derived G12
- Doses: 7, 14 and 28 mg
- Objectives: safety evaluation (clinical safety tests, local reactions, adverse events)
- Evaluate survival of Nicotiana-derivedG12 in vaginal secretions and entry into circulation

2G12-N: Preliminary results and indications

- All volunteers completed the trial protocol
- No significant changes in clinical tests or clinical inspection
- No clinically significant changes on vaginal examination

At all doses:

- Nicotiana-derived G12 is safe and well tolerated
- No clinical changes of concern
- Final report available Q2 2012

(Courtesy of Julian Ma, 2012)

Summary of Greenhouse Production of Nicotiana-derived 2G12

Total production time is 6 weeks

3 weeks for plantlet growth (transgenic 2G12)

3 weeks for biomass production

Pesticide free production

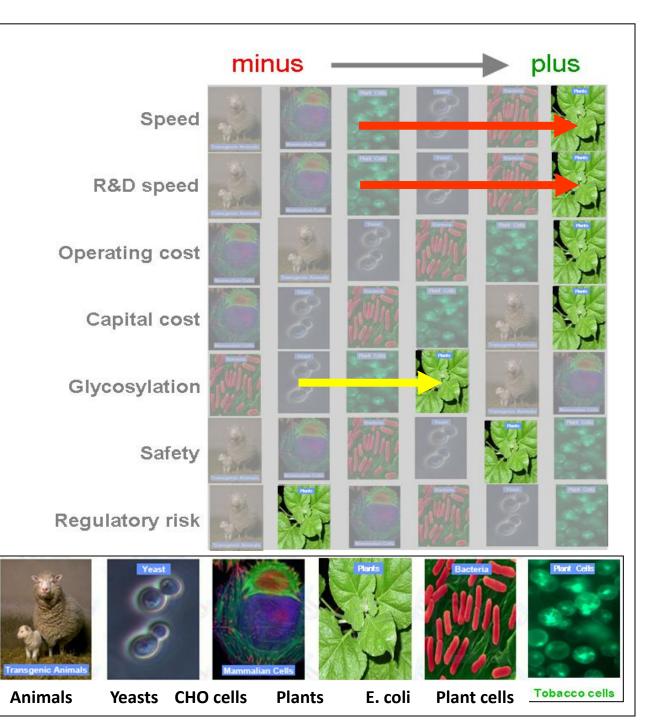
- 250Kg Nicotiana tissue/ batch / 250 m²
- Average yield 10g MAb /batch
- 20 batches / year are possible at this pilot scale (Courted)

(Courtesy of Julian Ma, 2012)

Antibody-based Multipurpose Microbicides

Nicotiana-based Manufacturing A Technology Platform for Multipurpose Microbicides: Speed, Cost, Scale, Versatility

SWOT Analysis


Courtesy of Gleba (Icon Genetics), 2012

Transient Plant Production: Strengths Manufacturing speed Fast gene to protein Production yield

Low COGs Safety benefits Low regulatory risk Weaknesses

No approved product No clear guidelines Opportunities Reduce COGs Increase R&D&M speed Increase flexibility

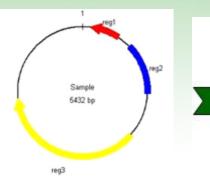
Threats Regulatory burden

IgG glycosylation

GIcNAc Mannose core glycans – plants and mammals: Fucose (α 1,3) Xylose plant glycans: Fucose (a1,6) mammalian glycans: IgG Asn297

Glycosylation of h-13F6

	Aglycosylated	Ŷ	Ţ Ţ					
	∢	M5	GnM	GnMF	5 G0	G1	G2	GnGn
Rituxan					53	35		8
h-13F6 _{CHO}		6		11	35	27	9	
h-13F6 _{∆XF}	5		5					90
h-13F6 _{agly}	100							


GlcNAc O Galactose O Mannose Core α1,6Fucose

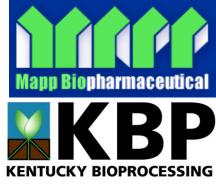
Antibody IPCP: mapp66 mAbs

- HSV8-N, VRC01-N, 4E10-N
- lgG1, lgG2, lgG3, lgG4, lgA, S-lgA
- GnGn, Aglycosylated, +fucose/xylose, GnGn+galactose, GnGnNaNa

Mapp66 Upstream

Agrobacterium Strain Development

Infiltration Chamber


Plant AgroInfiltration

Plasmid Vector

•mAbs held in Apoplast

www.kbpllc.com

Large scale manufacturing in *Nicotiana* at KBP

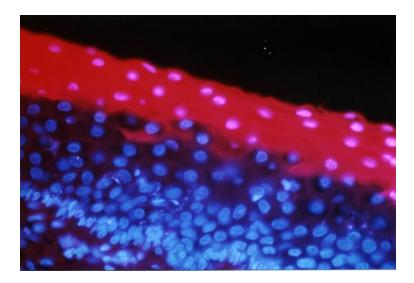
- More than 1 acre of indoor controlled growth space
- Recently completed Blue Angel project for DARPA: 10 M doses of H1N1 vaccine under GMP in 1 month

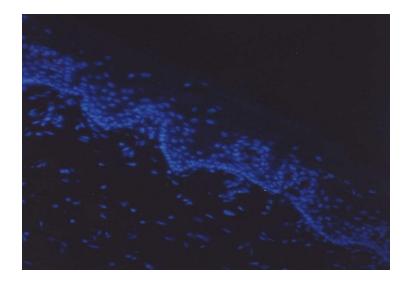
Study: PAVEG 8	894, VRC01	produced	in N. bentha	miana	
Assays: Neutra	lization in ⁻				
Virus stocks: Do Stock IDs shown	-	ransfection	in 293T cells		
Report Date: N	1arch 8, 20	12			
Virus	Tier	Stock ID	Mapp66 VRC01 Lot#12V001 QC#6738-1	VRC01 (in house control)	
SF162.LS	1	1825	0.34	0.43	
6535.3	2	4439	1.76	1.59	
QH0692.42	2	2189	1.72	1.32	
PVO.4	2	845	0.38	0.44	
TRO.11	2	847	0.33	0.34	
RHPA4259.7	2	855	<0.02	0.03	
AC10.0.29	2	1798	2.35	1.82	
THRO4156.18	2	949	3.9	2.95	
REJO4541.67	2	792	0.03	0.06	
TRJO4551.58	2	963	0.1	0.08	
WITO4160.33	2	851	0.1	0.11	
CAAN5342.A2	2	858	3.54	2.51	

(courtesy of David Montefiori, 2012)

Table 3. Cost and time comparisons for mAb manufacturing systems

Manufacturing system	Time to Phase 1 cGMP supply	Cost to Phase 1 cGMP supply
Mammalian cell culture (CHO, NS0, PER.C6)	18 months	\$5–6 M
Transient Nicotiana (magnICON, Geneware)	6–12 months	\$0.5-0.8 M
Deced upon guetes from Lonza (Clough LIV) and Kentusky Die Dre	cossing (Owenshare KV)	

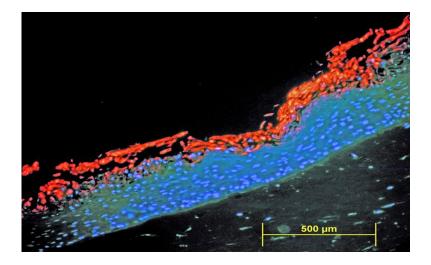

Based upon quotes from Lonza (Slough, UK) and Kentucky BioProcessing (Owensboro, KY).

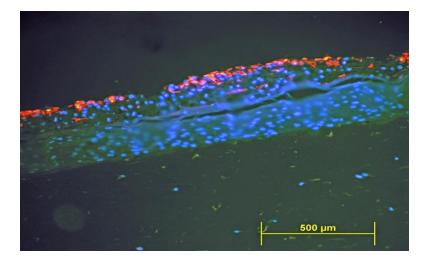

(Whaley, Hiatt, Zeitlin, Human Vaccines, 2011)

Antibody-based Multipurpose Microbicides: NIAID funded IPCP

- Purpose: evaluate safety, efficacy, and mechanisms of antibody-based microbicides
- Principal Investigators: Deborah Anderson (BUMC), Thomas Moench (ReProtect), Kevin Whaley (Mapp), Larry Zeitlin (Mapp), Richard Cone (JHU), Sam Lai (UNC), Francois Villinger (Yerkes Primate Center), Thomas Smith (Auritec), Ken Mayer (Fenway), Susan Cu-Uvin (Brown)
- Methods: in vitro, NHP, clinical

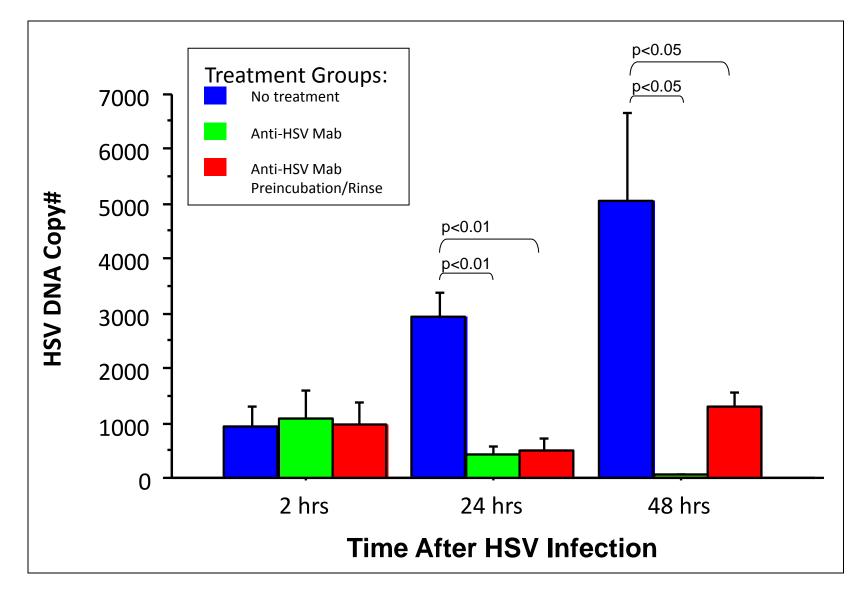
IgG Uptake by Apical Vaginal Epithelial Cells




lgG-Cy3

Negative Control

Retention of HSV-Cy3 mab by vaginal stratum corneum



After 1 hour

After 12 hours

Suppression of HSV-2 Infection in vitro with Anti-HSV Mab

Vaginal Stratum Corneum Battlefront Summary

Pathogens (HIV, HSV-2) can enter the SC

Soluble immunological mediators and leukocytes provide SC immune defense

It may be possible to further fortify SC defense with microbicides (eg. plantibodies)

Antibodies and Cell-Associated HIV

• Cell-associated vaginal HIV transmission is highly efficient and not prevented by topically applied 1% tenofovir (Swanson and Garcia-Martinez, CROI 2012)

Table 5. Antiviral efficacy of m9 in CCR5-dependent cell-to-cell transmission assay

Compound	IC _{so} (nM)	IC ₉₀ (nM)	
AMD3100ª	>10,000	>10,000	
TAK779 ^b	3.0	6,420	
enfuvirtide	35	>1,000	(ZhangDimitr
m9	0.066	2.3	mAbs 2010)
4E10	1.4	9.1	
2F5	1.5	6.4	

Antibody-based Contraception

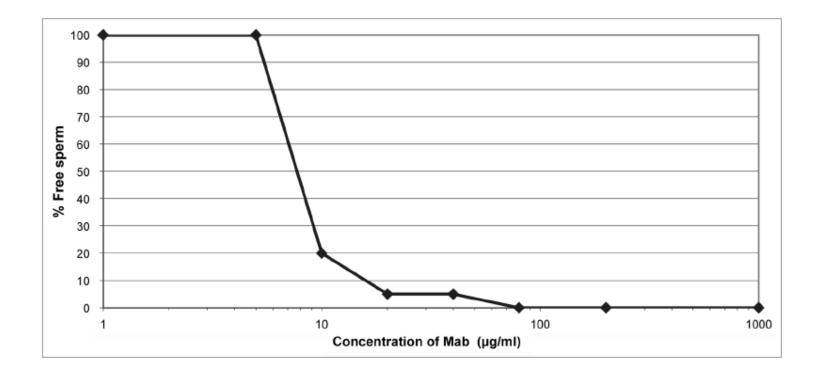
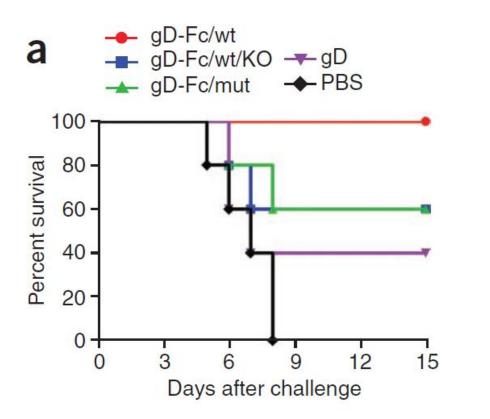
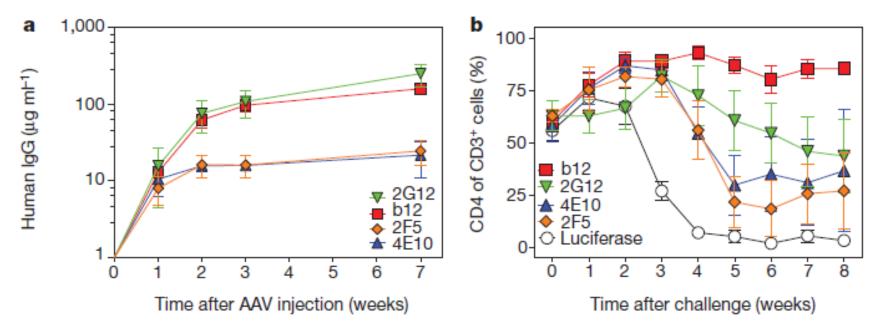


Figure 2. Agglutination of human sperm with Mab HC4 produced in *N. benthamiana*. Purified Mab was added to undiluted human semen and observed within 30 seconds via light microscopy.

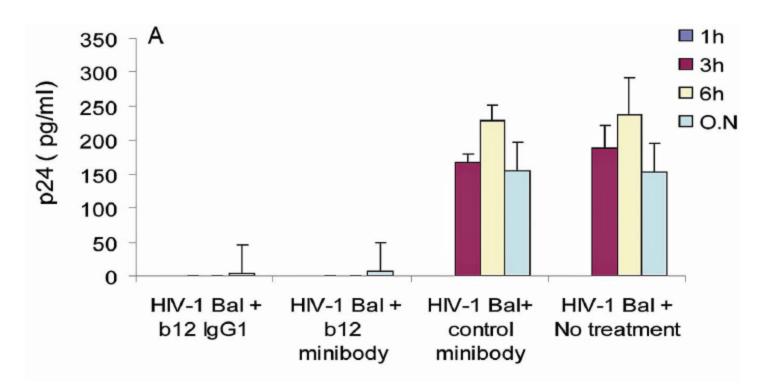

(Whaley, Hiatt, Zeitlin, Human Vaccines, 2011)

Anti-inflammatory Antibodies

- HIV upregulates inflammatory cytokines that lead to impairment of mucosal epithelial barrier functions. Antibodies to TNF prevented the loss of barrier function (Nazli et al., PLoS 4-10)
- Mapp is producing TNF and IL-6 mAbs.


Anti-Idiotype Vaccines

- FcRn-mediated uptake
- HIV vaccine based on 2F5 anti-Id
- HSV vaccine based on gD-Fc


(Ye...Zhu, Nat. Biotech 2011)

AAV-vectored HIV antibodies and Systemic Protection

(Balazs...Baltimore, Nature 2011)

AAV-vectored HIV Antibodies and Mucosal Protection

(Abdel-Motal...Anderson... Marasco, PLoS One 2011)

Acknowledgements

<u>Mapp</u>

Natasha Bohorova Ognian Bohorov Andrew Hiatt Do Kim Michael Pauly Jesus Velasco Larry Zeitlin

Antibody IPCP

Deborah Anderson Thomas Moench Richard Cone Francois Villinger Kenneth Mayer Larry Zeitlin Sam Lai Susan Cu-Uvin

Icon Genetics (Halle)

Yuri Gleba Victor Klimyuk

BOKU (Vienna)

Herta Steinkellner Fredrich Altmann Richard Strasser Renate Kunert

Aridis Pharmaceutical

Vu Truong Jeff Anderl

Mapp Biopharmaceutical

<u>KBP</u>

Barry Bratcher Hugh Haydon Steve Hume Ernie Hiatt Josh Morton Katrina Whelan Ashley Johnson

Funding

NIAID: U19AI096398