Effect of Age on Health Literacy & Cognitive Function

Elizabeth Wilson, PhD; Allison Dahlke, MPH; Laura Curtis, MS; and Michael Wolf, PhD MPH

Disclosure

- Abbott Labs
- Earthbound LLC
- McNeil Consumer Healthcare
- Merck
 Pharmaceuticals
- Pfizer
 Pharmaceuticals
- UnitedHealthcare

- AHRQ
- CA Endowment
- CA Healthcare
 Foundation
- NIA
- NICHD
- NHLBI
- NINR
- OBSSR

Background

 Health Literacy [HL] as it is most commonly measured ≈ a cognitive skill set

Literacy, Cognitive Function, and Health: Results of the LitCog Study

Michael S. Wolf, PhD MPH^{1,2}, Laura M. Curtis, MS¹, Elizabeth A. H. Wilson, PhD¹, William Revelle, PhD³, Katherine R. Waite, BA^{1,2}, Samuel G. Smith, MSc⁴, Sandra Weintraub, PhD⁵, Beth Borosh, PhD⁵, David N. Rapp, PhD^{2,3}, Denise C. Park, PhD⁶, Ian C. Deary, PhD⁷, and David W. Baker, MD MPH¹

¹Health Literacy and Learning Program, Division of General Internal Medicine, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA: ²Department of Learning Sciences, School of Education and Social Policy, Northwestern University, Evanston, IL, USA: ³Department of Psychology, Northwestern University, Evanston, IL, USA: ⁴Health Behavlour Research Centre, Department of Psychology, University Callege London, London, United Kingdom: ⁵Department of Psychiatry & Behavloral Sciences, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA: ⁶Center for Vital Longevity, University of Texas at Dalias, USA: ⁷Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom.

Table 3. Correlations with Cognitive & Health Literacy Tests

Cognitive Ability	Literacy Measures				
	TOFHLA	REALM	NVS		
Processing Speed	0.68	0.52	0.60		
Working Memory	0.65	0.43	0.59		
Inductive Reasoning	0.71	0.54	0.71		
Long Term Memory	0.48	0.36	0.51		
Prospective Memory	0.40	0.28	0.42		
Fluid Cognitive Ability	0.76	0.57	0.73		
Crystallized Cognitive Ability	0.77	0.74	0.71		

All correlations statistically significant at p < 0.001

nce suggests the relaand health outcomes bilities.

what degree cognitive ween health literacy, tasks, and functional

 tructured interviews
 bealth literacy assessnitive battery measurlearn and apply new bilities such as backral internal medicine ified health centers in i eighty-two Englishry was measured using literacy in Medicine

g print information, 2)

d eighty-two Englishey was measured using Literacy in Medicine alth Literacy in Adults (NVS). Performance on lobally assessed and

to –26.4, p; with cognitive abilities: β =–8.5, 95 % CI –10.9 to –6.0).

LIMITATIONS: Cross-sectional analyses, Englishspeaking, older adults only.

CONCLUSIONS: The most common measures used in health literacy studies are detecting individual differences in cognitive abilities, which may predict one's capacity to engage in self-care and achieve desirable health outcomes. Future interventions should respond to all of the cognitive demands patients face in managing health, beyond reading and numeracy.

KEY WORDS: health literacy; cognitive ablitties; health tasks; patientreported outcomes; physical health; mental health. J Gen Intern Med DOI: 10.1007/s11606-012-2079-4 © Society of General Internal Medicine 2012

T he relationship between adult literacy skills, health knowledge, behaviors, and clinical outcomes has been repeatedly investigated.¹⁻³ More than 500 research publications have demonstrated associations between crude measures of reading and numeracy skills with various healthrelated outcomes, including risk of hospitalization and mortality.⁴⁻⁶ This has been the foundation for the field now known as 'health literacy' research.

Despite more expansive and accepted definitions, the problem of low health literacy has often been characterized as difficulties in reading and math skills. Early studies therefore responded by re-writing health materials at a simpler level or following other design principles to enhance reading comprehension; an approach found to have limited success.^{7,8} Still lacking a deeper understanding of the problem, recent investigations have tested comprehensive strategies with more promising results.^{9–11} However, as these were multi-faceted interventions targeting system

information, 4) dosing and organizing medication, and 5) healthcare problem-solving.

RESULTS: Health literacy measures were strongly correlated with fluid and crystallized cognitive abilities (range: r=0.57 to 0.77, all p<0.001). Lower health literacy and weaker fluid and crystallized abilities were associated with poorer performance on healthcare tasks. In multivariable analyses, the association between health literacy and task performance was substantially reduced once fluid and crystallized cognitive abilities were entered into models (without cognitive abilities: β =-28.9, 95 % Confidence Interval (CI) -31.4

Received January 27, 2012 Revised March 16, 2012 Accepted April 6, 2012

Background

- Health Literacy [HL] as it is most commonly measured ≈ a cognitive skill set
- It is well known that many cognitive abilities decline with age
 - 'fluid' abilities decline
 - 'crystallized' knowledge <u>stabilizes</u> or <u>improves</u>

Cognitive Performance Across the Lifespan

[†]Data adapted from Park et al. (2002) showing cross sectional performance on fluid

Background

- Health Literacy [HL] as it is most commonly measured ≈ a cognitive skill set
- It is well known that many cognitive abilities decline with age
 - 'fluid' abilities decline
 - 'crystallized' knowledge <u>stabilizes</u> or <u>improves</u>
- Objective: Investigate health literacy performance - as measured by TOFHLA, REALM, and NVS - across age groups

- Funded by National Institute of Aging (R01AG03611)
 2007 to present
- 1100 Community-dwelling older adults (55-74)
 (798 available for current analyses)
- Recruitment at1 Academic GIM practice and 6 federally qualified health centers (FQHCs)
- 2 interviews ~1 week apart (2.5 hours each)
- Full medical record access and review

Table 1. LitCog Interview Schedule					
Day 1	Day 2				
Health Questionnaire	Cognitive Assessments				
Mini Mental Status Exam	Induction Motor Assessment				
Quality of life (SF-36)	Speed of Processing				
Depression, Anxiety (PROMIS)	(Digit and Pattern Comparison, Symbol Digit)				
Social Support Index	Verbal Ability				
Patient Activation (PAM)	(Shipley Vocab, AM-NART, Graded Naming)				
Demographics	Working Memory				
Socioeconomic status	(Spatial working memory, size judgment, spatial span)				
Health Literacy Tests	Long Term Memory				
REALM, TOFHLA, NVS	(New York paragraph, verbal recognition)				
Performance on Everyday Health Tasks	Inductive Reasoning				
Comprehend print information	(Ravens Progressive Matrices, ETS Letter Sets,				
Recall spoken information	Stockings of Cambridge)				
Recall multimedia information	Prospective Memory Assessment				
Organize and dose medications	Measures of Personality				
Healthcare problem solving	IPIP, NEO				

* Full access to medical record

Methods

- Examine correlations between HL, cognition, and age.
- Replicate Park et al. lifespan model for HL performance
- Limited age range (55-74); utilize age groups:
- 55-59 60-64 65-69 70-74

[†]Data adapted from Park et al. (2002) showing cross sectional performance on fluid

and crystallized cognitive abilities for a sample of adults aged 20-89.

Sample

- More female
- AA and White
- Diverse by
 - education
 - income
 - employment
- Moderate comorbidity
- Average health status

(based on normative data from SF-36, PROMIS)

Table 3. Characteristics of LitCog Sample (N=827)				
VARIABLE	SUMMARY VALUE			
Age, M (SD)	63 (5.5)			
Gender (%)				
Female	68			
Race (%)				
Black	42			
White	51			
Other	7			
Education (%)				
High school or less	26			
Some college or technical school	22			
College graduate	21			
Graduate degree	31			
Income (%)				
< \$10,000	12			
\$10,000 - \$24,999	19			
\$25,000 - \$49,999	16			
> \$50,000	54			
Employment Status (%)	·			
Full-time	21			
Part-time	15			
Not working	64			
Chronic Conditions, M (SD)	2 (1.4)			
Number of prescription medications, M (SD)	4 (3.1)			

Results

	FLUID			CRYSTALLIZE	р н	HEALTH LITERACY		
	Processing Speed	Working Memory	Inductive Reasoning	LT Memory	Verbal Ability	TOFHLA	REALM	NVS
Processing	N/A					HL to HL:	0.46 to	0.75
riocessing	110					FA to HI	0.37 tc	071
Working Memory	0.64*	N/A				CA to HL	: 0.71 tc	0.74
Inductive Reasoning	0.72*	0.73*	N/A					
LT Memory	0.54*	0.49*	0.54*	N/A				
Crystal Abilities	0.66*	0.63*	0.75*	0.50*	N/A			
TOFHLA	0.68*	0.65*	0.71*	0.48*	0.77*	N/A		
REALM	0.53*	0.43*	0.54*	0.37*	0.74*	0.75*	NA	
NVS	0.61*	0.59*	0.71*	0.51*	0.71*	0.62*	0.46*	NA
Age	-0.17*	-0.12**	-0.13*	-0.11**	0.02	-0.11**	0.01	-0.09

Results

	FLUID			CRYSTALLIZED HEAL		EALTH LITERACY	LTH LITERACY	
	Processing Speed	Working Memory	Inductive Reasoning	LT Memory	Verbal Ability	TOFHLA	REALM	NVS
						HL to HL:	0.46 to	0.75
Processing	N/A							
Working	0.64*	N/A				FA to HL	: 0.37 tc	0.71
Memory						CA to HI	.: 0.71 tc	0.74
Inductive	0.72*	0.73*	N/A					
Reasoning						Age to F	A :	+
LT Memory	0.54*	0.49*	0.54*	N/A		Age to C	CA:	-
Crystal Abilities	0.66*	0.63*	0.75*	0.50*	N/A	Age to I	OFHLA:	+
TOTILLA	0.49*	0.45*	0.71*	0.49*	0.77*	Age to R	EALM:	-
IOFILA	0.00*	0.65	0.71	0.40*	0.77*			
REALM	0.53*	0.43*	0.54*	0.37*	0.74*	0.75*	NA	
NVS	0.61*	0.59*	0.71*	0.51*	0.71*	0.62*	0.46*	NA
Age	-0.17*	-0.12**	-0.13*	-0.11**	0.02	-0.11**	0.01	-0.09
* p<.001 **	P<0.05							

The Effect of Age on Health Literacy and Cognitive Function

Age Categories

The Effect of Age on Health Literacy and Cognitive Function

Age Categories

The Effect of Age on Health Literacy and Cognitive Function

Discussion

- HL is strongly linked to cognitive function
- TOFHLA and NVS decline, as do fluid abilities
- REALM scores tend to be maintained, as with world knowledge

Discussion

- Patients continue to learn and acquire health information across life course.
- Yet the skills needed to obtain, access, process, understand and use health information are marginalized with age.
- Interventions should be aimed at simplifying health tasks and supporting processing of health information and memory, among other targets

Other Implications

- Important implications for measurement
- Prior studies consistently find HL is strongly associated with health knowledge
- REALM may be closer proxy of knowledge
- TOFHLA/NVS more reflect problem-solving abilities for healthcare
- Both may be important for aging research

