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Introduction

While the estimated ranges produced by this method are too large to be forensically relevant, the best point 
estimates were fairly reliable for both sexes, with females performing better than males. For both males and 
females, more than half of the individual’s best point estimates were within ten years or less of their 
chronological age at death, which is impressive, in comparison to other methods. Additionally, only a small 
percentage for each sex was estimated twenty years or more from their chronological age at death.  However, 
a best point estimate cannot solely be used to estimate age, as it does not account for the wide range of 
human variation. However, considering how the best fit point estimates performed in this analysis, it could be 
beneficial to incorporate this analysis into the overall age assessment of unknown remains. Additionally, 
incorporating the first rib best point estimate could be helpful for estimating a more accurate age for older 
individuals, which is an issue for many current aging methods, particularly into the eighth and ninth decade.

This research highlights the importance of analyzing bone quality as a separate component when estimating 
age at death. Multiple studies have found that bone degenerates with age due to an imbalance in the rates of 
bone resorption and remodeling (Lee et al., 2009; Qiu et al., 2010). Note that in Tables X and X, the best fit 
estimate for bone quality, score 3 have one of the largest values in the tables, at 23.709 for males and 
26.1146 for females. Conversely, bone quality, score 1 has a value of 0 for both sexes. The best fit estimate 
values will ultimately be summed to produce the final best point estimation. Therefore, when performing this 
method, the score assigned to the quality of the bone is going to be a critical factor in the summed best point 
estimate. This study also emphasizes the importance of exploring the necessity of sex-specific methods for 
estimating age. This is largely linked to the ways in which age-related bone degeneration differs between 
males and females, with females typically exhibiting bone mineral loss earlier than males (Cowthon, 2011; 
Devlin, 2011; Wilson et al., 2020). Additionally, the male and female models in this study differed drastically; 
thus, in order to perform this method correctly, knowledge of an individual’s sex before analysis would be 
crucial. 

Discussion and Conclusions

Results
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FIG 1.  An example of the presented aging method using the male model.

Estimating the age-at-death of an individual is a significant aspect of building the biological profile, which is 
necessary for establishing demographics in forensic and bioarcheological contexts. Currently, no 
anthropological methods exist which produce estimated age ranges that are both narrow and precise for 
adult individuals due to significant variation in the aging process (Buckberry and Chamberlain, 2002; 
DiGangi et al., 2009; Hartnett, 2010a,b; Iscan et al., 1984,1985; Osborne et al., 2004; Suchey and Katz, 
1998). The first and fourth ribs demonstrate considerable potential for establishing more accurate aging 
methods due to their relatively immobile nature during life and because age-related changes may extend 
into the eight decade (DiGangi et al., 2009; Hartnett, 2010b; Iscan et al., 1984, 1985; Kunos, 1999). 
However, the first rib is easily identifiable and more resistant to taphonomic processes compared to the 
inferior ribs. In particular, DiGangie et al.’s (2009) alteration of Kunos’ (1999) method demonstrated that 
morphological changes of the costal face geometric shape and the tubercle facet surface texture in the first 
rib are correlated with age. However, DiGangi et al.’s (2009) method produces age ranges which are too 
large to be forensically relevant and, therefore, the method is generally not preferred (Garvin and 
Passalacqua, 2012; Meritt, 2017). This study revaluates Kunos’ (1999) traits of the first rib to see if they are 
correlated with age and provide increased accuracy in age predictions. Additionally, bone quality is 
incorporated as a potential variable as bone is known to degenerate with age, which can provide insight into 
age-at-death (Hartnett, 2010a, b; Lee et al., 2009; Qiu et al., 2010). The present study not only provides an 
additional aging method to the existing literature, but also underscores the importance of developing age 
estimation methods on skeletal regions that are under-researched, particularly those that are more resistant 
to taphonomic damage.

The skeletal sample analyzed for this study consists of 400 European American individuals from the William 
M. Bass Donated Skeletal Collection at the University of Tennessee, Knoxville (f = 200, m = 200). To ensure 
that the ages of the individuals used for this study are evenly distributed, individuals were randomly selected 
within an age range of 10 years, resulting in eight age cohorts (20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 
80-89, and 90-99 years). Kunos’ (1999) five traits for both the costal face (CF) and the tubercle fact (TF) 
were observed and an ordinal score was assigned to each trait: geometric shape of the costal face/tubercle 
facet; the surface texture; the surface topography; margins of the costal face/tubercle facet; and the 
periarticular margins of the costal face/tubercle facet. The geometric shape refers to the outline shape of the 
feature. Additionally, the quality of the bone was scored as 1 good, 2 fair and 3 poor. Subsequently, 10% (n = 
40) of the individuals were rescored by the first author in order to assess interobserver error rates. 

Spearman’s correlation coefficients were used to establish which of the eleven traits have the highest 
statistical correlation with age. Next, the traits with the highest correlation coefficients were used to build 
linear regression models for each sex with the goal of predicting age from the ordinal scores. Akaike 
information criterion were implemented for choosing the best model for each sex, and the model was cross-
validated via 100 bootstrap procedures. The models can be used to estimate the age of an individual by 
summing the standard estimate of the appropriate scores and the intercept, which produces a “best fit” age 
estimation. Lower and upper boundaries can also be produced by adding together the standard errors of 
each score to produce the total standard error, which is then added and subtracted from the estimate point, 
producing a lower and upper boundary. For the sake of this method, upper limits were capped at 100 years, 
as life beyond the 100th year is unlikely, and the lower limit was capped at 17 years, as this is the earliest 
age of fusion for the first rib (Scheuer and Black, 2004).

Materials and Methods Table 2. Model Coefficients for Females.

Table 1.  Model Coefficients for Males.

Table 3. Method Performance for Females and Males. 

All 11 traits are correlated with age (male coefficient correlations ranged from 0.21 – 0.56, female coefficient 
correlations ranged from 0.25 – 0.71). However, bone quality was the most correlated trait for both sexes, 
being slightly more significant in females. After quality, trait correlation differed between females and males. 
For males, the traits which have a high correlation to age are CF periarticular margins, TF surface texture, 
TF margins of the facet, TF periarticular margins, and quality. For females, those traits which have a high 
correlation to age are CF periarticular margins, TF margins of the facet, and quality. As all traits are 
correlated with age, Akaike information criterion was performed to select the best model from all possible 
combinations of traits. Backwards selection was applied to the original model, which consisted of all traits 
until the model with the smallest Akaike information criterion value was determined. Male and female 
coefficient tables were produced to estimate the ages of the individuals in this study (Tables 1 and 2). Absent 
scores equate to an estimate standard and a standard error of  0.00.

Intraobserver error rates were relatively low. For females, five of the eleven female traits were rescored 
almost perfectly, and no trait was rescored worse than moderately. Of the five traits incorporated in the 
prediction model, three  (CF geometric shape, CF surface texture, and CF margins of the face) were 
rescored almost perfectly, quality was rescored substantially, and TF margins of the facet was rescored with 
the lowest agreement but, still considered moderate (Landis and Koch, 1997). In males, five of the eleven 
traits were rescored almost perfectly, and no trait was rescored worse than moderately. Of the three traits 
incorporated in the prediction model, quality was rescored almost perfectly, and both CF margins of the face 
and TF margins of the facet were rescored substantially (Landis and Koch, 1997).

Estimate	point Standard	Error t	value	 Pr (>/t/)

Intercept	 25.787 16.258 1.586 0.11442

CF	periarticular	margins	(2) 3.213 8.804 0.365 0.71560

CF	periarticular	margins	(3) 6.381 8.451 0.755 0.45118

CF	periarticular	margins	(4) 15.714 8.383 1.874 0.06247

CF	periarticular	margins	(5) 16.522 8.312 1.988 0.04834

CF	periarticular	margins	(6) 22.201 8.522 2.605 0.00994

CF	periarticular	margins	(7) 22.043 16.202 1.361 0.17534

TF	periarticular	margins	(2) -2.334 14.209 -0.164 0.86973

TF	periarticular	margins	(3) 6.986 14.328 0.488 0.62646

TF	periarticular	margins	(4) 5.442 14.434 0.377 0.70659

TF	periarticular	margins	(5) 12.814 14.494 0.884 0.37782

Quality	(2) 12.727 2.481 5.129 7.37e-07
Quality	(3) 23.709 2.854 8.307 2.14e-14

Estimate	point Standard	Error t	value Pr (>/t/)

Intercept 35.9535 14.8336 2.424 0.0164
CF	geometric	shape	(3) -3.0547 11.8766 -0.257 0.7973

CF	geometric	shape	(4) -0.7884 12.2484 -0.064 0.9488

CF	geometric	shape	(5) 7.1225 11.6484 0.611 0.5417

CF	geometric	shape	(6) 5.7940 11.7499 0.493 0.6226

CF	geometric	shape	(7) 14.9092 12.0491 1.237 0.2177

CF	geometric	shape	(8) 7.3090 12.2139 0.598 0.5504

CF	surface	texture	(3) -10.5147 6.5559 -1.604 0.1106

CF	surface	texture	(4) -11.9082 6.7707 -1.759 0.0804

CF	surface	texture	(5) -6.1792 6.1852 -0.999 0.3192

CF	surface	texture	(6) -18.0406 7.6523 -2.358 0.0195

CF	surface	texture	(7) -8.3338 6.7384 -1.237 0.2179

CF	margins	of	face	(3) 5.1648 5.8016 0.890 0.3746

CF	margins	of	face	(4) 2.4473 5.6342 0.434 0.6646

CF	margins	of	face	(5) -0.1338 5.9215 -0.023 0.9820

CF	margins	of	face	(6) 7.0754 5.9906 1.181 0.2392

CF	margins	of	face	(7) 1.7907 6.0776 0.295 0.7686

TF	margins	of	facet	(2) 8.2609 7.2332 1.142 0.2550

TF	margins	of	facet	(3) 4.9626 6.3055 0.787 0.4324

TF	margins	of	facet	(4) 10.8250 5.9309 1.825 0.0697

TF	margins	of	facet	(5) 9.1953 5.9320 1.550 0.1230

TF	margins	of	facet	(6) 14.0898 5.9900 2.352 0.0198

TF	margins	of	facet	(7) 14.0648 6.1847 2.274 0.0242

Quality	(2) 11.8700 2.5042 4.740 4.51e-06
Quality	(3) 26.1146 2.6444 9.875 <	2e-16

Figure 1 provides an example of how to use the method. This represents a male with CF periarticular 
margins: 4, TF periarticular margins: 2, and quality: 2. The appropriate estimates (based on how the 
feature was scored) are summed together with the estimate intercept to produce a best point estimation. 
To calculate upper and lower limits, the appropriate standard error (based on how the feature was 
scored) are summed together with the standard error intercept. This value is added and subtracted from 
the best point estimate to produce an age range. 

Best	point	estimate	
compared	to	chronological	
age

Female	Number	of	
Individuals

Female	Percentage	of	
Individuals

Male	Number	of	
Individuals

Male	Number	of	
Individuals

Within	10	years	of	
chronological	age

N	=	132 68	% N	=	114 57	%

Within	15	years	of	
chronological	age

N	=	34 17	% N	=	37 18.5	%

Within	20	years	of	
chronological	age

N	=	18 9	% N	=	24 12	%

Higher	than	20-year	
difference	from	
chronological	age	

N	=	11 6	% N	=	25 12.5	%


