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ABSTRACT

Mass spectrometry is a powerful analytical technique used to characterize various com-

pounds. A mass spectrum is a graph of ion intensity as a function of mass-to-charge ratio.

Protein study experiments generate thousands of mass spectra, generating an overload

of data that necessitates the development of sophisticated data analysis methods. Our

work aims at developing the following methods that allow for extraction of biochemically

relevant information from mass spectra.

The maximum likelihood estimator together with the non-random parameter estimation

method has been used to derive the mathematical relationship between the number of ions

generated in a mass spectrometry experiment and the variance in the experimental isotopic

distribution in a spectrum. Performance analysis of the method has been carried out using

simulated and experimental data. The method can show a factor of two improvement over

a previously developed method, and is applicable for any isotopically resolved spectrum.
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A theoretical framework has been developed and tested against experiments for estimat-

ing high-precision elemental isotopic abundances from the experimental isotopic distribu-

tions. Higher molecular weights are particularly useful for a better estimate because the

higher number of carbon atoms and isotopic peaks observed lead to a greater amount of in-

formation. This method circumvents some of the limitations experienced by the traditional

isotope ratio mass spectrometry.

Charge state determination requires methods to accurately estimate the m/z difference

between adjacent isotopic peaks. A new method for charge state determination using the

Matched Filter approach has been developed and compared with the established methods

under various conditions. Matched Filter method performs significantly better than the

existing methods and has a particular advantage in cases involving overlapping isotopic

distributions and low signal-to-noise ratio cases.

Algorithms have been developed and integrated as MasSPIKE (Mass Spectrum Interpre-

tation and Kernel Extraction) for isotopic cluster identification, charge state determination,

resolving overlapping isotopic distributions, alignment of the experimental isotopic distri-

bution with the theoretical isotopic distribution, and reducing the isotopically resolved

mass spectrum to a monoisotopic mass list.

MasSPIKE has been used to characterize post-translational modifications for biologically

interesting proteins Hemoglobin and H-Ras, allowing for differentiation of blood samples

of diseased and healthy persons.
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Chapter 1

Introduction

1.1 Significance

Mass Spectrometry (McLafferty and Turecek, 1993; McLafferty et al., 1999; Aebersold,

2003; Aebersold and Mann, 2003; Biemann, 1995) is a powerful analytical technique used

for the analysis of large molecules. It is used to identify and quantify unknown compounds,

determine molecular masses of large biological samples,(O’Connor and McLafferty, 1995)

elucidate their structural and quantitative information, and investigate intermolecular re-

actions. These properties hold high significance for an analytical chemist or a life scientist

in order to understand the behavior of biomolecules that control biological systems and,

in turn, control our bodies. Mass spectrometry provides valuable information to a wide

range of professionals: chemists, biologists, astronomers, and physicians, to name a few.

For example, it is used to detect and identify the use of steroids in athletes, monitor the

breath of patients by anesthesiologists during surgery, determine the composition of molec-

ular species found in space, and determine how drugs are used by the body. It is a highly

sensitive approach (one part in 1018 in a clean sample derived from chemically complex

mixtures can be detected).(Moyer et al., 2003) One very important point is that mass

spectrometers do not measure mass, they measure the mass-to-charge ratio of the ions

formed from the molecules (called m/z ratio, where m=molecular weight in Daltons of the

molecule under consideration; z=number of unit charges on the molecule; 1 unit charge

≈ 1.6× 10−19 Coulombs, 1 Dalton (Da)≈ 1.6× 10−17 Kg). Thus, the molecules need to be

ionized in order to be detected by an instrument.
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Proteomics (Aebersold and Mann, 2003; Aebersold, 2003; Tyers and Mann, 2003) is

the systematic and comprehensive study of diverse properties of proteins to unravel the

biological processes responsible for health and disease. The rapid advancement of mass

spectrometric technologies in the last two decades has revolutionized protein research. This

revolution started with the invention of two new ionization techniques, Matrix Assisted

Laser Desorption/Ionization (MALDI)(Karas et al., 1985; Karas et al., 1987; Karas and

Hillenkamp, 1988; Tanaka et al., 1988), and Electrospray Ionization (ESI)(Fenn et al.,

1990; Fenn et al., 1989), for which the Nobel prize in Chemistry was awarded in 2002.

These methods allow a researcher to ionize proteins and peptides, transfer them into the

gas phase and into the mass spectrometer for mass analysis, and to do so without analyte

(fragile charged molecule) fragmentation.

Once ionized, a single mass from a protein/peptide mixture can be isolated and frag-

mented (a technique called tandem mass spectrometry or MS/MS) to generate structural

information about the selection, such as sequence, post-translational modification (PTM)

identity and isolation, crosslinks, etc. This can be done multiple times (called MSn). Thus,

methods to dissociate peptide and proteins are important, and further advancements in

the field were made with the invention of new odd-electron fragmentation methods like

Electron Capture Dissociation (ECD)(Zubarev et al., 1998; Zubarev, 2006), Electron De-

tachment Dissociation (EDD)(Budnik et al., 2001), and Electron Transfer Dissociation

(ETD)(Coon et al., 2004; Syka et al., 2004). The odd-electron fragmentation methods

complement the older collisionally activated fragmentation methods by allowing complete

sequencing of peptides,(Nielsen et al., 2005) better localization of post-translational mod-

ifications (PTMs), and providing complementary information for the comparison of raw

data against the protein sequence databases.
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1.2 Fourier Transform-Ion Cyclotron Resonance Mass Spectrometer (FT-

ICR MS or FTMS)

There are many different types of commercially available mass analyzers, each with

different strengths and limitations. FTMS (Marshall and Verdun, 1990; Comisarow and

Marshall, 1974; Marshall, 2000; Marshall et al., 1998; Amster, 1996; Gross and Rempel,

1984; Zhang et al., 2005) is a preferred type of instrument due to the superior resolving

power (100,000 typically, and 1,000,000 with patience, discussed below) and mass accuracy

(1 parts-per-million (ppm) when internally calibrated (calibration and measurement done

in the same spectrum); 2-5 ppm when externally calibrated). High resolution is desirable

in order to separate closely mass spaced mixture components, to observe fragments of the

same component that are close in mass but have different elemental compositions, and for

accurate assignment of masses.(Zhang et al., 2005; Spengler, 2004)

As shown in Fig 1·1a, an FTMS consists of an ion source, followed by ion optics to

transfer the ions through the magnetic field gradient (in this case an RF-Only Quadrupole

ion guide), into the ICR (Ion Cyclotron Resonance) cell or Penning trap. (Note: The two

terms are often used interchangeably, but they rely on subtly different detection methods.)

Alan G. Marshall and Mel Comisarow (Comisarow and Marshall, 1974; Marshall, 2000),

were the first to recognize that inductive detection of the cyclotron motion (Lawrence and

Cooksey, 1936) followed by use of the Fourier Transform (Oppenheim et al., 2002) (later

the Fast Fourier Transform (Cooley and Tukey, 1965)) would allow the cyclotron to become

a high performance mass spectrometer.

Ions have a fundamental oscillation frequency in a magnetic field given by:

ωc =
zB

m
(1.1)

where ωc=cyclotron frequency, z=elementary charge on the ion, B=strength of magnetic

field, m=mass of the ion. In SI units, these can be measured in Hertz (Hz), Coulombs
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(a) Block Diagram of an FTMS

(b) ICR cell operation

(c) Time domain to m/z domain conversion

Figure 1·1: A general diagram of FTMS operation
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(C), Tesla (T), and kilograms (kg) respectively. Equation 1.1 states that the cyclotron

frequency of an ion is independent of its velocity, and hence, it is also independent of its

kinetic energy. This is not true for most other types of mass spectrometers, where the ions

are separated by their m/z values due to the spread in their kinetic energies. (Note: The

orbitrap is an exception.(Makarov et al., 2006)) The independence of an ion’s cyclotron

frequency on its kinetic energy is one of the key reasons why FTMS instruments are capable

of extremely high resolving power.

After ions are trapped in the ICR cell (A modern ICR cell is drawn in Fig 1·1b(i), a

typical diameter could be ∼7 cm), they are excited by a resonant excitation pulse into

a coherent orbit as illustrated in Fig 1·1b(ii). The excitation amplifier is then turned off

and the ions continue to orbit at their final radius. Ions moving near electrodes cause

an image charge to form on these electrodes to balance the ions’ electric field. Since the

orbit is circular, the image charge induced on the detection plates will oscillate at the

ions’ resonant frequency, generating a sine wave between the detection plates which can

be detected by a sensitive preamplifier circuit, digitized, and stored in computer memory.

Since we wish to detect all ions (particularly those we don’t expect) within some known

mass range, we must sweep through all the possible frequencies (typically 10 KHz-10 MHz)

to excite and detect all the corresponding ions. The detected transient image current is

a time-domain signal which is then Fourier transformed to get the the signal intensity

contributions as a function of frequency of various ions to the transient. Application of a

dc voltage (VT) to the trap plates of the ICR cell confines ions along the magnetic field

direction, by introducing a potential that varies quadratically with axial z position (to a

first order approximation). This leads to the harmonic oscillations of ions in the z direction

at an angular frequency, ωz (Brown and Gabrielse, 1986)

ωz =

√
2 q VT α

m a2
(1.2)
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in which α, the trapping scale factor, depends upon the trap geometry, and ranges typically

from 2 to 4, and a is a characteristic dimension (i.e., distance between the trap plates) of

the ICR cell. The quadratic variation in electrostatic potential as a function of z is also

accompanied by a quadratic variation as a function of radial position r.(Marshall et al.,

1998) This outward-directed force hence slightly reduces the effect of the radially inward-

directed Lorentz force responsible for cyclotron rotation. In a plane perpendicular to the

magnetic field, the force acting on an ion is:

F = m a = mω2r = qB0ωr − qVTα

a2
r (1.3)

where r is the radial distance between the ion and z axis. Rewriting the above equation:

ω2 − qB0ω

m
+

qVTα

ma2
= 0 (1.4)

Solving equation 1.4 yields the following two solutions for rotational frequency in a plane

perpendicular to the magnetic field (with ωz and ωc defined above):

ω+ =
ωc

2
+

√
(
ωc

2
)2 − ω2

z

2
(1.5)

ω− =
ωc

2
−

√
(
ωc

2
)2 − ω2

z

2
(1.6)

ω+ is close to the unperturbed cyclotron frequency (equation 1.1), and is called the “reduced

ion cyclotron frequency”, while ω− is called the “magnetron frequency”, representing a new

“magnetron” motion.(Amster, 1996) Assuming that ω+ = ωc, rearranging equation 1.4, and

substituting for ωc from equation 1.1 gives:

ω+
2 − qB0ω+

m
+

qVTα

ma2
= 0 (1.7)

Using the fact that q = ze, in which z is the number of elementary charges per ion and

e is the elementary charge, and multiplying equation 1.7 by m
ω+

2 leads to the following

frequency to mass conversion relation (Ledford et al., 1984):
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m

ze
=

ALedford

ω+
+

BLedford

ω+
2

(1.8)

where

ALedford = B0 (1.9)

BLedford =
VTα

a2
(1.10)

Another similar approach for calibration proposed by Francl et al. leads to the following

relation between m/z and frequency:(Francl et al., 1983)

m

z
=

AFrancl

BFrancl + ω+
(1.11)

in which

AFrancl = eB0 (1.12)

BFrancl =
VTα

B0a2
(1.13)

During calibration, constants AFrancl, ALedford, BFrancl, and BLedford can be determined

by calibrant samples of known m/z values, and Shi et al. have shown that these two

calibration methods are essentially equivalent.(Shi, 2000)

The time-domain signal recorded from the detect plates is real, and its frequency-domain

representation after fast Fourier transform is complex and symmetrical. The final mass

spectrum plot is normally obtained by taking the magnitude of the Fourier transform of the

detected signal. In a typical FT-ICR mass spectrum, the detection process has to be delayed

until after the excitation in order to avoid the saturation of the detection preamplifier by

capacitive crosstalk from the excite plates. That delay, along with contributions from other

factors such as a temporally dispersed excitation event (e.g., frequency sweep), causes a

continuous variation of phase with frequency in the time-domain data. Thus, the initial

time-domain phase, φ(t0), varies with frequency. However, this phase information is absent
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Figure 1·2: Theoretical mass spectrum of CO2

from the detected time-domain signal due to the delayed detection process, and leads to

loss in spectral resolution in the frequency-domain.(Beu et al., 2004) Special techniques

have been proposed recently for simultaneous excitation and detection processes, leading

to increased resolving power.(Beu et al., 2004)

1.3 Mass Spectrum

The output generated by a mass spectrometry experiment is a graph of ion intensity as

a function of m/z ratio. Fig 1·2 shows a mass spectrum of the simple molecule carbon

dioxide, CO2. This record of ions and their intensities serves to establish the molecular

weight and structure of the compound being mass analyzed. In this example, all the ions

are positively charged (It is possible to generate and detect negative ions as well). The

ionized CO2 molecule (or molecular ion) appears at m/z 44. The ion is singly charged

and the “nominal ion mass” (integer mass value) is 44 Da: carbon=12 and oxygen=16 (in

calculating nominal ion mass, atomic masses are rounded to the nearest integer). Although

only one peak is the most prominent at m/z ≈44 representing the monoisotopic mass of the
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intact molecule CO2(one 12C and two 16O atoms), there are six different isotopes possible,

even for this simple molecule. For example, there is a possibility of observing the following

combinations of isotopes at different nominal masses:

Nominal Mass Isotope Combinations

44 12C1
16O2

45 12C1
16 O1

17 O1, 13C1
16O2

46 12C1
17O2, 12C1

16O1
18O1, 13C1

16O1
17O1

47 12C1
17O1

18O1, 13C17
1 O2, 13C1

16O1
18O1

48 12C1
18O2, 13C1

17 O1
18O1

49 13C1
18O2

Since the abundances are extremely small for most isotope combinations except for the

first case representing the most abundant isotopes of carbon and oxygen, the insets in Fig

1·2 are drawn as log scale plots of the natural intensities as a function of m/z . Since the

ionization process breaks up, or fragments, some of the CO2 molecules, a fraction of the

ions appear in the spectrum at m/z values less than 44. Cleavage of a carbon-oxygen bond

in the molecular ion to produce ionized carbon monoxide or ionized atomic oxygen results

in the fragment ions at m/z 28 and 16; loss of two neutral oxygen atoms results in an

additional fragment at m/z 12 for carbon. The molecular ion is usually designated as M+

or CO2
+ and the fragment ions are designated as CO+, O+ and C+. Since carbon is present

in the form of two stable isotopes, 12C and 13C, there are two peaks at m/z values 12 and

13.003355 corresponding to these isotopes (bottom inset in Fig 1·2). In reality, modern

mass spectrometers have much higher resolution than simply “nominal mass”, so masses

are usually calculated to an accuracy defined by the instrument. Since FTMS instruments

yield ≈1 ppm mass accuracy, CO2 is usually detected as (C=12.0000, O=15.9949) 43.9898

Da, and CO=27.9949 Da.
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1.3.1 Resolving Power

One of the biggest advantages of an FTMS instrument is that it is able to provide much

higher mass resolving power (100,000 typically) than most other types of mass spectrom-

eters.(Marshall and Verdun, 1990; Shi et al., 1998) The resolving power of an instrument

is defined as follows:

Resolving Power =
m
z location of peak

peak width at FWHM
(1.14)

where FWHM is Full Width at Half Maximum. The terms “resolving power” and “res-

olution” are often, and incorrectly, used interchangeably. “Resolution”, measured in m/z

units, usually refers to the mass spacing of FWHM, when two peaks of comparable height

are just resolved at their half height. There are different ways to define “resolving power”.

The most commonly accepted definition is presented above. It is also defined in terms

of FWHM when two neighboring peaks of comparable height are just resolvable at 10%

of their height. Fig 1·3 illustrates the effect of varying resolving power on two consecu-

tive Lorentzian peaks (Marshall and Verdun, 1990) of comparable height. The peaks are

separated by 1.00 Dalton. As the resolving power drops, the peaks tend to exert greater

influence on each other and get closer in proximity. If the resolving power further drops,

the peaks will eventually merge together into a single peak with greater peak width. Fig

1·3 shows that, in order to separate isotopic peaks at their half height, a resolving power

of at least 1.4×mass is required.

As equation 1.1 suggests, mass analysis in an FT-ICR mass spectrometer is based upon

the measurement of ion cyclotron frequency. In more convenient units, the equation can

be rewritten as:

ν = 1.53561184× 107 × zB

m
(1.15)

in which ν represents ion cyclotron frequency in Hz, z is ion charge in units of elementary

charge, and m is the ion mass in Daltons. The electric-field-induced frequency shift has
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Figure 1·3: Effect of resolving power on the separation of two peaks of
identical height, and space 1.000 m/z apart

been neglected for simplicity. Since equation 1.15 is linear, the following relations hold

true:
m/z

∆(m/z)
=

m

∆m
=

ω

∆ω
=

ν

∆ν
(1.16)

where ∆m, ∆ω, ∆ν specify the FWHM in the respective domain. Under ideal vacuum

conditions the frequency-domain magnitude mode spectral peak width at FWHM is given

by (Comisarow and Marshall, 1976; Marshall et al., 1979; Marshall and Hendrickson, 2001):

∆ν =
1.2066

T
(1.17)

in which T is the total time for taken data acquisition. This equation assumes that (i) the

time-domain signal, usually called the “transient”, is not damped substantially during time

T , and (ii) the transient is present for the entire time T . If either assumption is incorrect,

∆ν increases, so equation 1.17 represents the lower bound for ∆ν. Equation 1.17 indicates

that under zero pressure conditions FTICR width is independent of ion mass and charge.
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Combining equation 1.15 and 1.17 leads to:

m

∆m
=

ν

∆ν
= 0.8288ν × T (1.18)

The above equation states that in the case of FTICR, mass resolving power is approx-

imately equal to ν × T , which is the number of cyclotron orbits an ion makes during the

data-acquisition process. This illustrates why FTICR is capable of such high resolving

power. For example, in order to achieve a resolving power of 105 at m/z 1000 with a 7

Tesla magnet, data acquisition is required only for 1.12 seconds. Under these conditions,

the ions make 112000 cyclotron orbits, which, with a typical orbit circumference of 10 cen-

timeters represents a total flight distance of ≈ 12 kilometers. Substituting ν from equation

1.15 into equation 1.18, one obtained the following:

m

∆m
= 1.2727× 107 × zBT

m
(1.19)

Therefore, for a given acquisition time and magnetic field, mass resolving power is inversely

proportional to m/z . So charge reduction is not desirable on a biomolecule in the case

of electrospray ionization because a decrease in charge leads to an increase in m/z , and,

hence, a decreased resolution which is proportional to z.(Marshall and Hendrickson, 2001)

In general, mass accuracy is proportional to the resolving power, if all other factors remain

the same. Hence, mass accuracy also drops with increase in m/z .

The mass resolution achieved by an instrument depends on both the type of analyzer

and the experimental conditions. Higher resolving power is desirable in order to resolve

ion species that are very close in their m/z values. This helps in the increased ability to

assign the ion identities. For example, with an average resolving power of ≥80 000, across

an m/z range of 200-1000 Daltons, Qian et al. were able to distinguish as many as 15

distinct chemical formulas within a 0.26 Da mass window, and more than 3000 chemically

different elemental compositions were determined in a heavy crude oil sample.(Qian et al.,

2001) Ultra-high resolving power has been used to determine the fine structure within an
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Figure 1·4: Mass spectral resolution versus the instrumental resolving
power per unit of molecular weight, with experimental ESI FT-ICR mass
spectra (insets) for the protein bovine ubiquitin with a monoisotopic mass
of 8559.62 Da. As instrumental resolving power improves, ions of different
charge (but the same mass) are resolved first, followed by ions differing in
nominal closest-integer mass; ions of the same chemical formula but different
isotopic composition; ions of the same nominal mass but different elemental
composition; and ultimately, ions of different internal energy or isomers
with different heats of formation. Parentheses indicate splittings that have
not yet been observed experimentally. (Reprinted with permission from
(Marshall et al., 2002). Copyright (2002) American Chemical Society)

isotopic distribution of high mass proteins, leading to results that confirm its molecular

formula.(Shi et al., 1998; Spengler, 2004)

In a mass spectrum, m/z values are inherently quantized. This is because the charge,

z, is quantized, and can take values only in integer multiples of the elementary charge e

(charge on an electron). Mass values also progress in steps according to molecules, func-

tional groups, elements, isotopes, and elemental compositions. As a result, with increasing

resolving power, peaks suddenly start separating into finer and finer detail upon reaching

certain thresholds or plateaus of resolving power. (Fig 1·4,(Marshall et al., 2002)) The
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X-axis in the figure represents 1
∆m50%

(where ∆m50% is the FWHM of mass spectral peak).

It can be viewed as the ratio of mass resolving power to the ion mass m. Thus, it rep-

resents a mass-independent measure of resolving power. Fig 1·4 indicates that when the

resolving power reaches the first plateau of about 0.8, different charge states of the same

mass are resolved. The leftmost inset shows the charge states 6-15 for the protein ubiquitin

(MW=∼8.5 kDa). The next spectral resolution plateau results in the separation of ions

of the protein and protein with adducts like sodium (shown) with the same charge state.

The subsequent step allows for the separation of ions with different nominal (nearest inte-

ger) isotopic masses. This permits the resolution of isotopes of the same molecule, having

the same elemental but different isotopic composition, for example, substitution of 13C for

12C. If the resolving power rises farther to a level of 8× 109, isotopic fine structure can be

observed for ubiquitin, i.e., ions of the same nominal mass but different elemental composi-

tion and exact masses. The ultimate step is to resolve ions with different internal energies

(because E = mc2, where E=energy, m=mass, c=velocity of light; internal energy can

be measured as mass), which has not been realized so far, except in some esoteric physics

experiments.(Brown and Gabrielse, 1986; Gabrielse et al., 1999)

1.3.2 Mass Accuracy

Mass accuracy is a measure of how close the experimental mass value is to the theoretical

value of a known analyte. It is defined in ppm units as follows:

Mass Accuracy =
(MExp −MTheo)× 106

MTheo
(1.20)

where MExp and MTheo denote the experimentally observed and the theoretical values

of the mass respectively. Mass measurement accuracy for a mass spectrometer depends

primarily upon the type of mass analyzer being used and the calibration procedure/data

processing methods used to calculate the mass values from the mass spectrum. FTMS

instruments are capable of providing the best mass accuracy (low sub-ppm range with

internal calibration) among the mass spectrometers currently available.
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Accurate mass measurements are required for the characterization of both small molecules

(like chemical synthesis products, metabolites, flavors, fragrances, etc.) (Zhang et al.,

2005; Marshall et al., 1998; Marshall, 2000), and larger biomolecules.(Zubarev et al., 1995;

Strittmatter et al., 2003; Kaiser et al., 2005; Henry et al., 1989; Zubarev et al., 1996; Spen-

gler, 2004) Elemental composition of an unknown peptide can be determined on the basis

of its accurate parent ion mass and a small number of fragment ion mass values.(Spengler,

2004; Zubarev et al., 1996) As the peptide mass increases, the mass accuracy requirements

increase in order to uniquely assign the identity. For example, for a 200 Dalton peptide,

an accuracy of 10 ppm is sufficient for unambiguous identification, while the identification

of a peptide of molecular weight 1500 Daltons based upon the observed mass value alone

requires an accuracy of greater than 0.01 ppm.(Spengler, 2004; He et al., 2004)

Increased resolving power is expected to lead to an increase in the mass accuracy in

the spectrum, but this not always true (Marshall and Hendrickson, 2002) for an FTMS

instrument. There are a number of factors such as space charge (Kaiser et al., 2005;

Aizikov and O’Connor, 2006), peak coalescence (Huang et al., 1994; Mitchell and Smith,

1995) and mass calibration errors (Shi, 2000) that can limit the mass accuracy even under

high-resolution conditions. Space charge effects arise because the electric fields associated

with the ions influence each other, causing shifts in the cyclotron frequency in equation

1.1. Space charge essentially reduces the second term (the trapping field) by a time-varying

quantity. This effect increases with both the increase in the number of ions present within

the ICR cell and the amount of charge present on each ion. Peak coalescence is an extreme

form of space charge effect. Under certain conditions, peaks that are closely spaced in

frequency coalesce into one bigger peak. The mechanism proposed by Huang et al. (Huang

et al., 1994; Mitchell and Smith, 1995) suggests that under high ion density conditions, ions

with closely spaced cyclotron frequencies begin to move in synchronization with one another

due to an interaction between the electric fields associated with each ion packet. This effect

is particularly pronounced in cases where a low intensity peak is close (in frequency) to a
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high intensity peak, and can be thought of as the fewer, low abundance ions being “swept

up” into the electric field of the more numerous latter ions. This phenomenon depends

upon the number of ions in the cell, the frequency spacing between the ions, the trapping

voltage on the trap plates, the size and geometry of the ICR cell, and the radius of the

ion’s orbit.(Nikolaev et al., 1995) Mass calibration in an FT-ICR instrument refers to the

process of converting the cyclotron frequency values obtained as the instrument output

into mass-to-charge ratio values in the mass spectrum, generally by equations 1.8 and

1.11. The effect on calibration of the non-ideal behavior of the magnetic, electrostatic,

and alternating electric fields created by space charge have been studied in great depth,

resulting in the calibration equations yielding errors in the range of sub ppm.(Shi, 2000;

Zhang et al., 2005; Amster, 1996; Kaiser et al., 2005)

1.3.3 Ion intensities

It is important to note that the ion intensities observed in a mass spectrum are a function

of several parameters like the concentration of the given analyte, ionization efficiency,

transmission efficiency across the ion optics, and detection efficiency of the instrument

across the m/z range. For example, Fig 1·5 shows the mass spectrum of peptides from a

protein called p21ras (Zhao et al., 2006), digested with trypsin, an enzyme known to cleave

the given protein at specific positions of C-terminal to arginine and lysine residues.(Olsen

et al., 2004) Since the whole protein was subjected to tryptic digestion, it is expected to

result in an equal number of tryptic peptides from each region of the protein (assuming

a full digestion). The spectrum (Fig 1·5) indicates varying ion intensities across different

peptide positions within the protein. If the ion abundances depend only upon the analyte

concentration, all the ion intensities of various peptides across the spectrum would be

identical. Because of the various experimental factors mentioned above, the abundances

of various peptides from the same protein can exhibit great variability. Clearly, peak

intensities do not correlate well with the relative concentration of the components of a

mixture, which has important implications in quantitative experiments.(Ong and Mann,
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Figure 1·5: Mass Spectrum of p21ras protein digested with trypsin. The
major peaks are labeled with peptide positions. (Reprinted with permission
from (Zhao et al., 2006). Copyright (2006) American Chemical Society.)

2005)

1.4 Isotopic Distribution

Isotopes are atoms of the same element with the same atomic number (number of elec-

trons or protons) but different atomic mass due to different number of neutrons. For

example, carbon has two naturally occurring isotopes, 12C and 13C. Both isotopes are ex-

actly the same except that 12C has 6 neutrons, while 13C has 7 neutrons, so they have an

atomic mass of 12.00000 (by definition) and 13.00335 respectively. Some of the commonly

occurring isotopes are shown in table 1.1. The successive isotopic elements are commonly

referred to as A, A+1, and A+2 elements. For example, for oxygen, A denotes the 16O

isotope, A+1 refers to the 17O isotope, and A+2 indicates the 18O isotope.

1.4.1 Theoretical Isotopic Distribution (TID)

An Isotopic Distribution (ID) is an experimental measure of the probability distribution

of the various isotopes in a molecule. The probability of any ion having a certain number

of heavy isotopic atoms (e.g.,13C, 2H, 18O etc.) can be calculated using the binomial
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Element Isotope Accurate Mass Natural Abundance
Carbon 12C 12.00000 98.9%

13C 13.00335 1.1%
Hydrogen 1H 1.00782 99.985%

2H 2.01410 0.015%
Nitrogen 14N 14.00307 99.63%

15N 15.00010 0.37%
Oxygen 16O 15.99491 99.76%

17O 16.99913 0.04%
18O 17.99916 0.2%

Sulphur 32O 31.972070 95.02%
33O 32.971456 0.75%
34O 33.967866 4.21%

Table 1.1: Isotope table of natural elemental abundances (McLafferty and
Turecek, 1993)

distribution (Yergey, 1983) for that particular elemental composition using the known

natural abundance distribution for each element. For example, for carbon, the binomial

distribution is

pi =
(

Nc

i

)
pc

i(1− pc)
Nc−i (1.21)

where pi represents the area of each individual peak in the ID (Fig 1·6a) (i.e., p0 fraction

of the total ions in the cell contain no 13C, p1 fraction of the total ions contain exactly

one 13C, etc.), Nc is the total number of C atoms in the molecule, pc (∼= 0.011) is the

natural abundance of 13C isotope, and i is the total number of 13C atoms in one molecule.

Equation 1.21 accounts only for the stable isotopes of C, it may be extended by summation

to account for other isotopic elements.(Yergey, 1983; Rockwood, 1995; Rockwood, 1996)

Thus, the true theoretical isotopic distribution is a sum of these binomial distributions,

one for each isotope. In general, if there is a compound with the composition XNxYNyZNz

(representing Nx, Ny, and Nz atoms of elements X, Y, and Z respectively), the theoretical

isotopic distribution can be calculated by expanding the sum of binomial distributions

using the polynomial method.(Yergey, 1983) Let PXi, PY i, and PZi represent the natural

elemental abundances (Table 1.1) of the ith isotopes of X, Y, and Z elements respectively.

For an isotopic peak containing Nxj , Nyj , and Nzj atoms of the jth isotope of X, Y,
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and Z elements respectively, the theoretical isotopic abundance can be represented by the

following expression:

Nx!
Nx1 !Nx2 ! . . .

P
Nx1
X1 P

Nx2
X2 . . .

Ny!
Ny1 !Ny2 ! . . .

P
Ny1
Y 1 P

Ny2
Y 2 . . .

Nz!
Nz1 !Nz2 ! . . .

P
Nz1
Z1 P

Nz2
Z2 . . . (1.22)

Nx =
IX∑
i=1

Nxi , Ny =
IY∑
i=1

Nyi , Nz =
IZ∑
i=1

Nzi (1.23)

where IX , IY , and IZ denote the total number of naturally occurring isotopes for each of

the elements.

Direct implementation of the polynomial method has both computation and memory

intensive requirements. This is because of the multiple factorial evaluations, multiplica-

tions, and divisions, which can lead to memory overflow problems, specially for larger

numbers resulting from the calculations involving analysis of biomolecules like proteins.

Moreover, there is a combinatorial explosion of terms with the increase in the number

of atoms involved in the analysis, and a small protein like ubiquitin (average molecu-

lar weight=8565 Da) already has 1228 atoms (C378H627O117N105S1). This problem was

partly solved by optimizing certain factorial calculations, and rejecting certain terms be-

low a certain threshold.(Yergey, 1983) These improvements helped solve some of the initial

computational problems, but the scalability issues with the increasing complexity still re-

mained. Also, pruning the low intensity terms led to computational errors, which is severe

for elements which have a large number of natural isotopes, such as most metals. To al-

leviate these obstacles, Rockwood proposed a new approach using Fast Fourier Transform

(Cooley and Tukey, 1965) methods to do the multiple convolutions required to generate

the molecular isotopic distributions.(Rockwood, 1995; Rockwood, 1996) This approach re-

organizes the polynomial multiplication problem as the convolution operation of individual

isotopic abundances of each of the elements, and then maps the problem into the Fourier

domain, converting the convolution operations in the mass domain into multiplications

in the Fourier domain. This method produces fast and accurate results with minimal
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(a) TID of C60 (b)Isotopic distribution represents the molecular mass

Figure 1·6: Isotopic Distribution

computational and memory overhead.

As the isotopic distribution illustrates, large molecules do not have a unique mass value

due to the presence of multiple isotopes of the constituent elements. For example, Fig 1·6b

shows different ways the molecular mass is defined. It is important, therefore, to specify

what mass value out of this range of possibilities is being reported. One way is to report the

average molecular mass, which is the average mass of all the isotopic species. However, there

is a variability in the isotopic abundances of various elements across different organisms

that limits the average mass accuracy to 10 ppm.(Beavis, 1993; Zubarev et al., 1996) The

most significant and accurate value that can be reported is the monoisotopic mass, which

is defined as the sum of the masses of the lowest-mass isotope for each of the constituent

atoms of the molecule. This is because only the monoisotopic mass has a unique elemental

composition, and remains unaltered by isotope ratio variability across various species. For

example, in Fig 1·6b, the most abundant isotope is ≈2 Da heavier than the monoisotopic

peak. This ≈2 Da can be either 2 13C substitutions for 12C (2×(13C-12C)=2×(13.003355-

12.0000)=2.0067) or one 18O substitution for a 16O (2.0042), etc.

Every isotopic peak (except for the monoisotopic peak) is located at approximately

integer multiples of 1 Da higher in nominal mass than the monoisotopic mass; i.e., at unit
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Figure 1·7: ESI FT-ICR mass spectrum (Upper Left), from a single time-
domain data acquisition, of bovine insulin. Theoretical (Upper Right) and
experimental (Lower) isotopic fine structure is shown for the isotopic peak
(star ∗) ∼5 Da above the monoisotopic mass. Individual elemental com-
positions are clearly resolved at approximately correct relative abundances.
Reproduced with permission from (Shi et al., 1998). Copyright 1998 Na-
tional Academy of Sciences, U.S.A.

(nominal) mass resolution, the isotopic distribution consists of isotope peaks spaced ∼1 Da

apart. Except for the monoisotopic peak, each other peak represents a sum of contributions

from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C

and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass).

At sufficiently high mass resolving power, each isotopic peak resolves into its isotopic fine

structure, which means separation of the masses differing by a few milli-Daltons, and there

are clearly several, low abundance contributions. Resolution of isotopic fine structures

has been shown to confirm or determine the molecular formulas of certain molecules.(Shi

et al., 1998; Stults, 1997) Fig 1·7 shows an example of the isotopic fine structure from

the mass spectrum of bovine insulin.(Shi et al., 1998) The nominal mass of each of the

components is ∼5 Daltons higher than the monoisotopic mass, but they are separated into

five different components differing by a few milli-Daltons. Such fine structures are difficult

to obtain for large molecules because of the tendency of closely spaced peaks to coalesce
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Figure 1·8: Variation in isotopic distributions with increasing molecular
weight

into a single resonance.(Huang et al., 1994; Mitchell and Smith, 1995) The coalescence

tendency decreases with the increasing magnetic field strength, so isotopic fine structures

can be resolved at sufficiently high magnetic field strength (9.4 Tesla in this case).

The isotopic pattern of “average” proteins (Senko et al., 1995b) varies with the molecu-

lar mass. At low-mass values (≤1100) the monoisotopic peak is the dominant peak in the

spectrum as shown in Fig 1·8a. This is because the elemental abundance of lowest-mass

isotopes is usually highest for most of the elements (Table 1.1). For low-mass molecules

there is a high probability for all the atoms in the molecule to represent the smallest iso-

tope, as can be calculated from equation 1.22. The relative intensity of the monoisotopic

mass decreases with increasing molecular mass because of the increased probability of the

presence of heavier isotopes. The monoisotopic peak is not visible experimentally for mass

values greater than 5 kDa for most instruments because the tiny peak is buried in the back-
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ground noise in the spectrum. When the molecular mass rises further, the isotopic pattern

becomes broader, spanning a greater range of mass values, and the monoisotopic peak be-

comes vanishingly small, as seen in Fig 1·8d. This is due to the fact that combinations of

higher isotopes become more probable with increasing mass (Equation 1.22). With bigger

molecules the problem usually arises that the monoisotopic peak is not visible in the ex-

perimental isotopic distribution. In such cases the monoisotopic mass is usually estimated

by comparing the experimental and theoretical isotopic distributions.(Horn et al., 2000;

Kaur and O’Connor, 2006a) It is very important to correctly align the two distributions

in order to obtain the correct value of monoisotopic mass. The value can be measured as

accurately as the instrument allows, provided the monoisotopic peak has been correctly

identified. If the distributions are misaligned, the mass value will be off by one or more

Daltons, however many decimal places are present. Such situations illustrate the difference

between accuracy and precision.

1.4.2 Experimental Isotopic Distribution (EID)

The discussion so far has been focused on the TID, where all the factors were deter-

ministic, and the resulting distribution can be known exactly using the analysis discussed

above. The TID determines the pattern of an isotopic distribution in theory. On the

other hand, an EID is an experimental measure of the isotopic distribution, which involves

certain random parameters, which vary from experiment to experiment. Other than the

instrumentation-based parameters, one of the most important factors is the number of

ions used to generate the EID. An EID can be interpreted as a result of a multinomial

experiment (Papoulis, 1984) having multiple outcomes, with the number of trials being

the number of charged molecules used to generate the distribution. Each of the outcomes

is equivalent to an isotopic peak in the TID, and is associated with a certain probability,

which can be determined using equations 1.21, 1.22, or the Mercury algorithm.(Rockwood,

1995; Rockwood, 1996) An EID can be reproduced in silico by means of generating a

multinomial experiment, knowing the number of trials (equal to the number of ions gen-
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(a) (b)

(c) (d)

(e) (f)

Figure 1·9: Experimental isotopic distributions approach theoretical iso-
topic distributions as the number of ions increase and variance decreases
with increasing ions (a) 100 ions (b) 1000 ions (c) 10000 ions (d) infinite
number of ions for myoglobin (e) over plotting 300 spectra of C60 with 100
ions (f) over plotting 300 spectra with 5000 ions (Reproduced with per-
mission (Kaur and O’Connor, 2004). Copyright (2004) American Chemical
Society)
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erating the distribution) and likelihood of occurrence of each outcome. Fig 1·9a-d shows

the simulated isotopic distributions of myoglobin, a single-chain protein with an average

molecular weight of 16.7 kDa. It has been observed that the variance in the EID varies

inversely with the number of ions used for its generation.(Senko et al., 1995b; Kaur and

O’Connor, 2004) With only 100 ions in the cell (Fig 1·9a), the distribution can look quite

“jagged”, but as the number of ions increases (Fig 1·9b-c), the measured distribution ap-

proaches the theoretical (Fig 1·9d) distribution. Fig 1·9e-f are obtained by over plotting

300 Monte Carlo generated isotopic distributions of C60 with 100 ions (Fig 1·9e) and 5000

ions (Fig 1·9f). With only 100 ions in the cell, the scatter is higher than the case when

there are 5000 ions. This topic shall be covered in greater depth in a later chapter.

For the analysis of unknown compounds, it is often useful to have a model based on their

average molecular mass. This is particularly useful for analyzing the behavior of EIDs of

a protein with a particular molecular weight. To this end, an approach was proposed

that establishes a relationship between the average and monoisotopic mass of peptides and

oligonucleotides.(Zubarev and Bondarenko, 1991) This method had a somewhat flawed

assumption that all the amino acids (building blocks of proteins) have identical distributions

across the proteins, which led to erroneous results. This limitation was later corrected,

resulting in an improved model using the true distribution of amino acids from the Protein

Identification Resource database.(Senko et al., 1995b) This approach led to a model amino

acid, averagine, with molecular formula C4.9384H7.7583N1.3577O1.4773S0.0417, and an average

molecular mass of 111.1254 Da. This model helps to determine the “average” elemental

composition of the molecule and isotopic distributions associated with that composition. To

determine the model molecular formula, one calculates the total number of averagine units

from its molecular weight, which is then multiplied by the number of atoms of each type in

the averagine residue. Once the model molecular formula is established, this information

can be used to determine a model TID and simulate the EID for a given number of ions,

which can serve a variety of analytical purposes. The peaks of the EID are known to form
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Lorentzian peak shapes (Marshall and Verdun, 1990) in an FT-ICR mass spectrometer,

and an EID is the overall sum of individual Lorentzian peaks. It is very important to fit

the EIDs to properly modeled distributions in order to do rigorous analysis. Fitting EIDs

to improper peak shapes leads to mass assignment errors.

It has been observed that peaks in EIDs can be distorted by a variety of factors. For

example, RF (radio frequency) interference peaks are frequently observed, which are at-

tributed to the electronics used for controlling the instrument or inadequate shielding of

detection electronics. Another cause of interference is chemical noise, which refers to the

contaminants introduced during the sample preparation. These effects can be mitigated

using rigorous sample preparation techniques. A common source of mass spectral signal

perturbations is the interference from other isotopic distributions in the close vicinity of

the peaks of interest. This happens frequently in the case of dense, complicated mass spec-

tra resulting from the fragmentation of large biomolecules, so called “Top-down” protein

analysis.(Reid and McLuckey, 2002; Kelleher et al., 1999) This is because multiple isotopic

peaks are often produced at the same nominal m/z value. Automatic spectral interpreta-

tion becomes increasingly difficult under these circumstances, and special methods need to

be developed to handle such complexity. The goal of this thesis is to develop such methods.

1.4.3 Non-natural Isotopic Distributions

The discussion so far has been based on the isotopic distributions resulting from the

natural variation in the elemental isotopes. There are special situations when the natural

distribution of isotopes is perturbed for the convenience of certain experimental studies.

The methodologies for altering the isotope ratios include isotope labeling (Ong et al., 2002;

de Godoy et al., 2006), radioactive labeling (Rice and Means, 1971), hydrogen-deuterium

exchange (Engen and Smith, 2000; Wales and Engen, 2006; Jorgensen et al., 2005; Mandell

et al., 1998), and isotopic depletion (Zubarev and Demirev, 1998; Marshall et al., 1997).
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Isotope labeling is a method used for gauging the movement of a chemical through a

system or a chemical reaction. The chemical is ‘labeled’ by including special isotopes in its

composition i.e., by altering the natural isotopic abundances of certain elements. If these

special isotopes are later discovered at some stage in the system, their source is attributed

to the labeled element.

There are also ways other than mass spectrometry to detect the isotope labeling. Due

to the difference in mass, molecules containing labeled isotopes have different vibrational

modes. These can be detected by infrared spectroscopy. Another variation of this method

is radioisotopic labeling, in which the specially introduced isotopes are radioactive and

detected by their radioactivity.

Protein Nuclear Magnetic Resonance (NMR) spectroscopy (Wuthrich, 1990) uses NMR

(Ramsey and Purcell, 1952; Bloch and Rabi, 1945; Jeener et al., 1979) spectroscopy to

obtain information about the structure and dynamics of proteins. For protein NMR exper-

iments, it is desirable to isotopically label the protein with 13C or 15N. This is because the

predominant isotope 12C has no net nuclear spin, which is the physical property nuclear

magnetic resonance spectroscopy exploits, whereas the nuclear quadrupole moment of the

predominant 14N isotope prevents high resolution information from being obtained from

this nitrogen isotope.

Hydrogen-deuterium exchange is a technique of studying proteins to gather information

about their structure and dynamics. Some of the constituent hydrogen atoms in proteins

exchange positions with the hydrogen atoms from the surrounding solvent molecules. If

the solvent consists of the heavier isotope of hydrogen (deuterium), its heavier mass gets

incorporated into the protein during the exchange. This increases the protein molecular

weight, which can be detected in the mass spectrum. The exchange of hydrogens occurs

at a specific rate at each position, which depends upon the protein structure and solvent

accessibility. The measure of these exchange rates provides insights into the dynamics of
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protein folding.

As discussed previously, it is difficult to observe the monoisotopic peak in large molecules.

This is due to either low ion intensity of the peak or insufficient mass resolution. A potential

solution to this problem can be achieved by enriching the proteins with the 12C isotope,

which is equivalent to depleting the relative content of the 13C isotope .(Zubarev and

Demirev, 1998; Charlebois et al., 2003; Marshall et al., 1997) This enrichment extends

the isotopic distributions to lower mass values due to the greater percentage of the lighter

isotope of carbon. This phenomenon causes the monoisotopic peak to become one of the

most abundant species, resulting in more accurate characterization. This procedure is

particularly beneficial for large molecules and low resolution mass analyzers.

Such perturbations in the isotopic abundances may cause the isotopic distributions to

change drastically. These changes must be given due consideration for proper spectral

analysis.

1.5 Charge State Determination

Spectrum interpretation represents one of the biggest bottlenecks in a mass spectrometry

experiment. Manual analysis of such complex data is very tedious and time consuming.

Hence, there is a great need for reliable sophisticated data analysis methods (Mann et al.,

1989; Reinhold and Reinhold, 1992; Henry and McLafferty, 1990; Ferrige et al., 1991; Senko

et al., 1995a; Senko et al., 1995b; Zhang and Marshall, 1998; Horn et al., 2000; Kaur and

O’Connor, 2006a; Chen et al., 2006) in order to achieve high throughput results. One of the

problems commonly encountered in automatic spectrum analysis is determining the charge

state of ions representing the spectrum. For proteins in standard electrospray solutions,

these charges usually arise by the adduction of available protons from the acidic solution

to the protein. As both the solution and the protein itself partially shield the protons

from each other, the number of charges can be quite large. Since all mass spectrometers

measure mass-to-charge ratio (m/z ), in order to measure the mass, the charge value must
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be determined. A typical example is the charge state distribution of ubiquitin, a ∼8.5 kDa

protein, whose charge states range from 6+ (m/z ∼1433) to 12+ (m/z ∼715).

1.5.1 Deconvolution

The first attempt for automatic charge state determination was (somewhat erroneously)

called “deconvolution”.(Mann et al., 1989; Reinhold and Reinhold, 1992; Zhang and Mar-

shall, 1998; Henry and McLafferty, 1990) Since charge states can take only integer values,

the idea behind “deconvolution” methods is to combine the isotopic peaks of the same mass

with different charge states to determine the mass of the ion. For example, a molecule with

mass=3000 Da will exhibit isotopic clusters roughly at m/z values of 1000, 1500 and 3000

corresponding to z=3, 2, and 1 respectively. By examining the locations of the isotopic

clusters representing the same molecule with consecutive series of charge states, the mass

value of the corresponding ion can be determined. These methods are particularly well

suited for low resolution mass analyzers such as triple quadrupoles and ion traps, where

charge states can be separated whereas isotopic peaks usually cannot.

The first “deconvolution” algorithm mathematically transforms a spectrum of several

peaks for multiply charges ions into one peak corresponding to a singly charged ion.(Mann

et al., 1989) It proposed the following function:

F (M∗) =
Zmax∑
i=1

f(
M∗

i
+ ma) (1.24)

Here M∗ denotes the mass value under consideration that takes on values from a certain

range of values from, say, Mmin to Mmax, ma indicates the mass of an adduct (such as

a proton or sodium ion), i is an index that goes from 1 to the maximum possible charge

state, Zmax. The function f represents the distribution function for peak heights in the

measured spectrum. For example, if there is a peak of relative intensity 10 at m/z =800,

then f(800) = 10. The function is evaluated for all possible values of masses M∗, with

Mmin ≤ M∗ ≤ Mmax. The result yields a transformed spectrum in which the peak with the
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maximum height corresponds to the parent species with no charge. This method has been

found to fail for complex mixtures of proteins, and also results in many false assignments

of masses.

An alternative approach was later suggested, which is similar to the first one, except

that it uses an entropy-based measure to detect the presence of a specific pattern, the

envelope of charge state distributions corresponding to the trial parent ion mass, in the

observed spectrum.(Reinhold and Reinhold, 1992) In this method the mass spectrum is

interpreted as the output resulting from a large number of distinct random events of a

Poisson distribution process, each event being the detection of an ion within the mass

range of the experiment. The entropy method uses relative entropy as a measure of the

difference between the two distributions as follows:

l2ρ(ν) = −
N∑

i=1

νi log(
νi

ρi
) (1.25)

Here, vectors ν and ρ represent the normalized model charge state distribution for a given

mass M and the observed spectrum respectively, N denotes the length of the shorter of

the two vectors, and l2ρ(ν) denotes the “difference” between ν and ρ. For each parent mass

M, a model distribution is constructed and the “difference” between this model distribu-

tion and the actual data is obtained. The plot of this difference as a function of parent

mass is the deconvoluted spectrum. This method has been found to produce fewer false

mass assignments and to be more discriminative than the previous method but results in

substantial abundance distortion.

Another deconvolution method called Zscore is based on a charge scoring scheme that

includes all the ion intensities above a user-defined threshold.(Zhang and Marshall, 1998)

This technique uses various scoring schemes for charge assignments, which vary with the

situation. For example, there are different scoring functions used when the spectrum is

high resolution vs. low resolution cases, which are further classified into whether it’s a low
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(a) z=1 (b) z=2

(c) z=3 (d) z=4

Figure 1·10: Spacing between isotopic peaks varies inversely with the
charge state

charge state or a high charge state etc. This procedure was found to eliminate some of the

artifacts associated the earlier methods.

The drawback of “deconvolution” methods is that they perform poorly if a given mass is

represented by only one charge state, as is often the case in case of multistage mass spec-

trometry experiments. Due to these inherent problems in the “deconvolution” approach,

techniques were developed for automated assignment of charge states from the isotopic

spacings.(Senko et al., 1995a; Kaur and O’Connor, 2006a)

1.5.2 Charge state determination based on isotopic spacings

High resolution mass spectrometry such as that provided by the FTMS and Time-of-

Flight instruments can generate resolving powers of greater than 104. When these high

resolution instruments are used in conjunction with the modern ionization techniques that

give rise to multiple charges, determination of a charge state, z, of an ion is simply a

question of measuring the distance between neighboring isotopic peaks. This is because
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(a)

(b) (c)

Figure 1·11: (a) EID from top-down spectrum of Bovine Carbonic Anhy-
drase (b) Shifted TID (red) (shift corresponding to maximum cross corre-
lation coefficient (r=0.978 for Z=3)) plotted on the top of EID (blue) (c)
Charge state maps using different methods. The Zmaps were imported from
BUDA (Boston University Data Analysis)(O’Connor, 2004)

the m/z distance between adjacent isotopic 12C and 13C peaks is nearly 1.00235/z.(Horn

et al., 2000) Fig 1·10 shows isotopic distributions with the charge states (z) varying from

1 to 4, illustrating that the isotopic peak spacing decreases with the increasing charge

state. Note that with the increasing charge states and m/z being the same, the molecular

weight representing the IDs increases, and, hence, changing the isotopic pattern in Fig

1·10a-d. This “delta-mass” method to measure the distance between isotopic peaks works

well when the signal intensities are high and there are no interfering peaks from other

isotopic distributions. But difficulty arises with poorly resolved data or low signal/noise

spectra. Under such conditions, it is difficult to pick the correct isotopic peaks. Senko et al.

first explored alternative methods for automatic assignment of charge states(Senko et al.,

1995a) based on the principle of isotopic spacing. These procedures include Patterson,

Fourier transform, and a combination of the two, called Combo methods.
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Patterson Method The Patterson routine (Senko et al., 1995a) uses a function similar

to the Autocorrelation (Oppenheim et al., 2002) function, except that it uses a certain

number of pre-determined lag values for calculating the autocorrelation values. Generally,

there appears a maxima in the Patterson function plot corresponding to a lag of 1.00235/z.

Fig 1·11a shows an Experimental Isotopic Distribution (EID), taken from a tandem mass

spectrum of carbonic Anhydrase, that corresponds to z=3. Fig 1·11c shows the “score”

(called the Zmap) of each of the charge states as function of the charge state using various

methods. The Patterson Zmap shows a strong peak at the correct value of z=3 (Zmap

value for 0 lag was defined to be 0).

Fourier Transform Method In this case, the Fast Fourier Transform (FFT) of the

EID is taken after zero-filling the input signal to the next power of 2 as shown in Fig 1·11c.

Ignoring the large dc component at z=3, the largest peak is at z=3, with harmonics at z

multiples.

Combo Method This method takes point-by-point multiplication of the above two meth-

ods to arrive at the Combo Zmap shown in Fig 1·11c. The peak in the Patterson and Fourier

Zmaps corresponding to the true charge state is amplified by multiplication as shown in the

Combo Zmap, with the highest peak being at z=3. This method suppresses the harmonic

peaks observed in earlier methods.

Modified Fourier Transform Method Another variant to the above discussed Fourier

transform approach first subjects the experimental isotopic distribution to Fourier trans-

formation.(Tabb and Shah, 2006) The Fourier transform of each of the model isotopic

distributions for all possible charge states is then computed. The EID’s FFT is then com-

pared to the FFT of the model isotopic distributions by normalized dot product. High

scores indicate the most likely charge states.
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Entropy-of-Fourier This unpublished method was developed by O’Connor at Boston

University School of Medicine. It uses the Reinhold entropy distance function (Eq 1.25)

to calculate the “entropy distance” between the FFT of the EID and the model distribu-

tion. The model distribution corresponding to the true charge state leads to the minimum

distance between the two FFTs.

All of these methods were a big leap forward towards the automated interpretation of

spectra. But they have certain limitations. These methods function very well when the

the signal quality is high, but they all tend to break down when SNR is low or when the

input signal represents multiple IDs overlapping with one another. So there was a need of

a method that is capable of handling these limiting conditions. To this end, the Matched

Filter approach for charge state determination was developed and is discussed in detail as

a part of this dissertation. A brief overview is presented here.

Matched Filter (MF) This approach works by convolving the normalized EID with the

TIDs from all possible charge states.(Kaur and O’Connor, 2006b) The TID representing

the true charge state results in the highest cross-correlation value between the TID and

the EID. Fig 1·11b illustrates detection of Z=3 using the MF approach. The coefficient

values are plotted in the MF Zmap in Fig 1·11c as a function of z, with the highest value

corresponding to z=3. Fig 1·11b shows TID (red) for z=3 plotted on the top of EID (blue),

with the shift in TID corresponding to the maximum cross correlation coefficient value.

A detailed analysis of the comparison of the charge state determination methods has

been carried out.(Kaur and O’Connor, 2006b) It concludes that the Patterson and Fourier

Transform methods give poor performance under low charge states, both the Combo and

Matched Filter performed much better under these conditions. The Patterson method

was shown to break down (less discrimination) most rapidly as SNR decreased, followed

by Fourier Transform, Combo, and Matched Filter method in that order. Furthermore,

since the Matched Filter essentially matched a TID to the EID, the information about the
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location of the EID is inherently present in the results, which is especially useful when

overlapping IDs are present. This gives the Matched Filter an additional advantage over

the previous methods. The Matched Filter (Chapter 4) gives improved performance at the

expense of greater computational complexity due to the multiple convolution operations

involved in the analysis.

1.6 Conclusions

Mass spectrometry is an indispensable tool for studying a wide variety of problems chem-

istry, biology, astronomy, and clinical applications, to name a few. FTICR instruments have

been especially useful for solving mass spectrometry problems due to their high resolving

power and mass accuracy. The output from a mass spectrometer, the mass spectrum,

measures ion intensity as a function of mass-to-charge ratio. High spectral resolution is

important to resolve species that are very close in their m/z values, a situation common in

the analysis of larger molecules or complex mixtures. Mass resolving power progresses in

a series of steps, with peaks separating into finer structures upon reaching certain thresh-

olds, called MS plateaus. Higher resolving power typically leads to higher mass accuracy,

provided other factors remain the same. If sufficient mass accuracy is available, elemental

composition of an unknown molecule can be determined based upon the information of

the accurate mass of parent ion and a certain number of its fragments.(Mann and Wilm,

1994; Mortz et al., 1996) Sophisticated mass calibration procedures, taking into account

non-ideal behavior of electric and magnetic fields, play a key role in ensuring high mass

accuracy.(Zubarev et al., 1995; Marshall et al., 2002; He et al., 2004; Zhang et al., 2005;

Kaiser et al., 2005)

Ion intensities observed in a mass spectrum are a function of various parameters like

concentration of an analyte, ionization and transmission efficiency across ion optics, detec-

tion efficiency in the mass analyzer, etc. Thus, ion intensities observed in a spectrum do

not correspond only to its concentration in the original sample.
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Isotopic distributions are generated as the result of observing heavier isotopes in larger

molecules. Different methods have been proposed to generate the theoretical isotopic dis-

tributions for a given molecular formula.(Yergey, 1983; Rockwood, 1996) Experimental

isotopic distributions can be modeled and generated in silico based on their theoretical

counterpart for a given number of ions. As the number of ions generating an experimental

isotopic distribution increases, the EID approaches the TID.

EID patterns experience distortions due to noise and other interfering sources. The noise

sources could be chemical, arising from sample preparation artifacts, electronic, such as

RF interference peaks from instrument electronics, etc. In a dense spectrum, overlapping

isotopic distributions are commonly observed, making the data interpretation more chal-

lenging. There is a great need for sophisticated data analysis algorithms to interpret such

complex data. Progress has been made in various facets of data analysis, including, but not

limited to, spectral calibration, deconvolution, charge state determination, monoisotopic

mass determination.

Non-natural isotopic distributions are of interest to handle specific analytical challenges.

There are different methods for changing the isotope ratios include isotope labeling (Ong

et al., 2002; de Godoy et al., 2006), radioactive labeling (Rice and Means, 1971), hydrogen-

deuterium exchange (Engen and Smith, 2000; Wales and Engen, 2006; Jorgensen et al.,

2005; Mandell et al., 1998), and isotopic depletion (Zubarev and Demirev, 1998). Iso-

tope labeling is used for tracing the movement of a chemical through a system in vivo

or a chemical reaction. Protein Nuclear Magnetic Resonance spectroscopy also uses iso-

topically labeled proteins for structural studies. Hydrogen-deuterium exchange is another

methodology used for structural and dynamics characterization of proteins.

Outline of Dissertation The potential of biological mass spectrometry has been lim-

ited by the lack of fast and reliable methods for automated spectrum analysis methods.

The employment of these methods in various applications can reveal very useful multi-
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dimensional information. This dissertation aims at reducing the spectral interpretation

bottlenecks experienced in mass spectrometry experiments. Towards this end, five specific

problems are addressed:

1. Estimation of the number of ions in the instrument cell by examining the

isotopic distributions in the spectra: Determination of the number of ions in a

mass spectrometry experiment is required for the analysis of instrumental features

such as ionization efficiency, collision-induced dissociation efficiency, ion transfer effi-

ciency, ion trapping efficiency, preamplifier detection limit, calibration, the studying

of space charge, etc. This project targets this problem by analyzing the variation in

the intensities of the IDs, which depend upon the number of ions in the cell. The

theory has been developed, based on the maximum likelihood estimation method,

that estimates the number of ions in the ICR cell using non-random parameter esti-

mation.(Kaur and O’Connor, 2004)

2. Determination of high-precision isotope ratios from experimental isotopic

distributions: Isotope variability occurs in nature due to natural processes such

as evaporation, photosynthesis, nitrogen fixation in forests, etc. This phenomenon

provides insight into a diverse range of studies from authenticity control informa-

tion for various foods (like fruit juices, butter, and cheese) to dietary patterns of

ancient humans. These studies require the determination of elemental isotope ratios

to a very high-precision. Isotope Ratio Mass Spectrometers (IRMS) are specialized

mass spectrometers for such studies, which have some experimental limitations. This

project develops the mathematical framework for estimating the elemental isotopic

abundance from the experimental isotopic distributions.(Kaur and O’Connor, 2007)

3. Developing and comparing charge state determination methods for high

resolution mass spectra: Charge state determination techniques are based upon

accurately estimating the m/z difference between consecutive isotopic peaks. This

becomes a particularly challenging problem under the conditions of low SNR and low
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resolution data. A new method for charge state determination using a matched filter

has been developed and compared with the established techniques under a variety of

conditions.(Kaur and O’Connor, 2006b)

4. Developing and integrating algorithms for isotopic cluster identification,

resolving overlapping isotopic distributions, alignment of the experimen-

tal isotopic distribution with the theoretical isotopic distribution, and

reducing the isotopically resolved mass spectrum to a monoisotopic mass

list through MasSPIKE (Mass Spectrum Interpretation and Kernel Ex-

traction): This work develops methods for reducing the dimensionality of a high

resolution mass spectrum (> 105 data points) into a monoisotopic peak list (about

100 masses). The procedures are integrated into a suite of data reduction algo-

rithms called MasSPIKE (Mass Spectrum Interpretation and Kernel Extraction).

MasSPIKE models the noise across the spectrum, identifies isotopic clusters, deter-

mines the charge state of each identified isotopic cluster, resolves the overlapping

isotopic distributions, aligns experimental and theoretical isotopic distributions for

estimating the monoisotopic peak location, and finally, generates the monoisotopic

mass list. The suite has been tested against a dense top-down spectrum of a protein,

bovine carbonic anhydrase. Comparative performance analysis has been carried out

with previously published work.(Kaur and O’Connor, 2004)

5. Application of the above developed methods for characterization of Post

Translational Modifications (PTMs) of biologically interesting proteins

Hemoglobin and H-Ras: Spectra obtained from real biological samples tend to

have a higher degree of complexity. Thus, MasSPIKE has been used and tested

against spectra from such samples. For example, Hemoglobin is the oxygen-carrying

molecule of the red blood cells. This protein transports the oxygen molecules to

the tissues of the body. It consists of four subunits; two are called alpha chains

and the other two are called beta chains. Variants of Hemoglobin exist that result
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in certain diseases. In this project, the goal is to confirm the results of a DNA

sequence analysis of Hemoglobin from a normal person and persons with the variants

of Hemoglobin.(Huang et al., 2005)

Ras proteins are regulatory guanosine triphosphate (GTP) binding proteins that

serve as signal transducers, controlling cell growth and differentiation.(Berg et al.,

2002) Impaired GTPase activity in a regulatory protein can lead to cancer.(Berg

et al., 2002) Indeed, the gene for Ras is one of the genes most commonly mutated in

human tumors.(Campbell et al., 1998; Shields et al., 2000) In a commonly studied

mechanism of cancer, the Ras protein is trapped in the “on” position and continues

to stimulate cell growth. Owing to its high biological significance, we carried out

“top-down” and “bottom-up” (protein identification based on mass spectrometric

analysis of peptides derived from breaking up of the protein into smaller fragments

through an enzyme (like trypsin)) experiments to characterize any post translational

modifications that affect the functionality of the protein.(Zhao et al., 2006)
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Chapter 2

Use of Statistical Methods for Estimation of Total

Number of Charges in a Mass Spectrometry

Experiment

This chapter has been reproduced in part with permission from (Kaur and O’Connor,

2004). Copyright 2004 American Chemical Society.

2.1 Introduction

The field of proteomics (Aebersold, 2003) attempts to catalog all proteins and their post

translational modifications as a function of cell state. This field is possible largely because

of the inventions of electrospray ionization (ESI),(Fenn et al., 1990; Fenn et al., 1989) and

Matrix Assisted Laser Desorption/Ionization (MALDI)(Karas et al., 1985; Karas et al.,

1987). However, cataloging the thousands of cell proteins, in even one cell, is an enormous

undertaking. Two techniques that currently appear very promising in this regard are

high throughput MALDI Fourier Transform Mass Spectrometry (FTMS)(Comisarow and

Marshall, 1974; Marshall, 2000; Amster, 1996) and electrospray FTMS (Beu et al., 1993;

Bakhtiar et al., 1993).

Proteomics experiments, particularly those using high throughput MALDI-FTMS in-

struments and ESI-FTMS, generate thousands of high resolution spectra a day. Such a

high sample throughput generates an overload of data that necessitates the development

of sophisticated data analysis methods. The work presented here proposes one such data

analysis method to estimate the number of ions by examining the isotopic distributions in
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the spectra.

Quantifying the number of trapped ions in a Ion Cyclotron Resonance (ICR) cell has

been attempted previously in the literature.(Limbach et al., 1993) This task was first

approached by comparing the experimentally observed signal voltage to that calculated for

a single ion orbiting at the ICR orbital radius of the ion packet, assuming that all ions orbit

in a tight, coherent packet. This method was able to estimate that, in a 3T cubic cell,

under particular excitation and detection parameters, 177 ions generated a signal/noise

level of 3:1. The disadvantage of this approach is that it needs instrument dependent

parameters like capacitance of the detection circuit, gain of the amplifiers, peak-to-peak

voltage corresponding to a measured FT/ICR mass spectral peak amplitude, ICR orbital

radius, the distance between the centers of two detector electrodes, etc. Also, this method

cannot be evaluated for its performance, i.e., how close is the estimate to the true number

of ions.

An observation was made later that the error between an experimentally observed iso-

topic distribution (EID) and its theoretical isotopic distribution (TID) varies inversely with

the number of contributing molecules.(Senko et al., 1995b) In this work, they used linear

regression (LR) to determine the relationship between average error and number of ions.

This method is preferred to the previous one as it requires no instrumental parameters for

the estimate and can be tested by Monte-Carlo methods. It can be improved further by a

more rigorous analysis using maximum likelihood parameter estimation.

In this project, we compare the TID of the molecule with the EID. The TID may be

obtained knowing the elemental composition and isotopic abundances using the binomial

distribution (Yergey, 1983). Statistical variance in the EID is used to estimate the number

of ions in the cell.
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The Maximum Likelihood (ML)(Poor, 1994) method is one of the most popular methods

used for estimation of an unknown quantity from an observation. The ML estimator

and the non-random parameter estimation (Poor, 1994) method are used to derive the

mathematical relationship between the number of ions and the observed distribution. The

performance of the method is shown to improve with increasing number of observations.

2.2 Theory

A mass spectrum is an experimental measure of the probability distribution of the various

isotopes in a molecule. The probability of any ion having a certain number of heavy

isotopic atoms (e.g.,13C, 2H, 18O etc) can be calculated using the binomial distribution

(Senko, 1998; Yergey, 1983) for that particular elemental composition using the known

natural abundance distribution for each element. For example, for carbon, the binomial

distribution is

pi =
(

Nc

i

)
pc

i(1− pc)
Nc−i (2.1)

where pi represents the area of each individual peak in the isotopic distribution, Nc is the

total number of C atoms in the molecule, pc (∼= 0.011) is the natural abundance of 13C

isotope, and i is the total number of 13C atoms in one molecule. Equation 2.1 accounts

only for the isotopes of C, it may be extended to account for other isotopic elements by

convolution.(Yergey, 1983; Senko, 1998; Rockwood, 1996).

In order to estimate the total number of ions in a given EID, one can compare the EID

to the TID and estimate the number of ions based upon the variance of the EID since

variance depends on the number of ions. Ideally, the EID should look exactly like the TID,

but this happens only in the limit of infinite or very large number (order of 10,000-15,000)

of ions (or in the case of a statistical anomaly). Peak areas are calculated from the EID

(denoted by yi). The EID can be interpreted as the result of a multinomial experiment

(with number of trials equal to the number of ions) having multiple outcomes, each with

the probability pi. The EID is represented by a vector Y , where yi corresponds to pi in
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the TID. Since the components of Y are binomial random variables, the covariance matrix

of Y is given by:

ΣN =
1
N



p1(1− p1) −p1p2 . . . −p1pn

−p2p1 p2(1− p2) . . . −p2pn

· · . . . ·

· · . . . ·

−pnp1 −pnp2 . . . pn(1− pn)


(2.2)

where N is the number of ions in the experiment, and n is the total number of isotopic

peaks of interest. Defining

Σ = NΣN , (2.3)

Σ is independent of N . If we assume that Y is a Gaussian random vector with mean P

and covariance matrix ΣN , where P is composed of pi’s as defined in equation 2.1 and has

length n. The probability of observing Y , given that the number of ions in the cell is N ,

is given by (Poor, 1994):

P (Y |N) =
e−0.5(Y−P )′ΣN

−1(Y−P )√
(2π)ndet(ΣN )

(2.4)

where (Y − P )′ denotes the transpose of the vector (Y − P ), and ΣN
−1 denotes the

inverse of matrix ΣN . (Note: The assumption that Y is a Gaussian random vector is a

reasonable assumption because the abundance of Y will tend to fluctuate evenly around the

mean value. Further, this assumption is supported by the consistent Monte-Carlo results

obtained below. However, there is one problem with this assumption: In mass spectra, Y

cannot have negative values, while a Gaussian random vector as defined by Y would have a

(very small) probability of having negative values. In reality, this problem does not greatly

affect the estimate because low abundance peaks go nearly unused in the estimate.)

Non-Random Parameter Estimation In this case, N is a constant but unknown variable,

and the goal is to determine the best estimate of N based on the variance in the EID. One
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can estimate N using the Maximum Likelihood (ML) Estimator (Poor, 1994):

N(Y ) = arg max
N

P (Y |N) (2.5)

where N(Y ) denotes the number of ions as a function of an observed distribution Y and

arg maxNP (Y |N) is the value of N that is most likely to produce an isotopic distribution

Y . Therefore, the task is to maximize the probability of observing Y as a function of the

number of ions in the cell. Since P (Y |N) is modeled as a Gaussian function, maximizing

the probability implies (please see Appendix (section 2.6)):

∂(ln(P (Y |N)))
∂N

= 0 (2.6)

Solving eqn 2.6 using eqn 2.4, the estimate becomes:

N(Y ) =
n

(Y − P )′Σ−1(Y − P )
(2.7)

This estimate uses one distribution, and the estimator can be improved by observing mul-

tiple isotopic distributions under a similar set of conditions. This improved estimation

requires calculation of the following:

N(Y1, Y2, Y3, . . . , YM ) = arg max
N

P (Y1, Y2, Y3, . . . , YM |N) (2.8)

where M is the total number of observations, and Y1, Y2, Y3, . . . YM are the EID vectors for

each of the observations. Since the observations are independent,

P (Y1, Y2, Y3, . . . , YM |N) =
M
Π

i=1
P (Yi|N) (2.9)

Again, using,
∂(ln(P (Y1, Y2, Y3, . . . , YM |N)))

∂N
= 0 (2.10)

one obtains,

N(Y1, Y2, Y3, . . . , YM ) =
n ·M

M
Σ

i=1
(Yi − P )′Σ−1(Yi − P )

(2.11)



45

Equations 2.7 and 2.11 give the relationship between the number of ions and observed

distribution(s), and, thus, can be used to directly calculate the number of ions from any

given isotopically resolved spectrum.

2.3 Methods

62 Myoglobin spectra were collected using electrospray ionization on a previously described

Fourier-Transform mass spectrometer (O’Connor et al., 2006) and 45 C60 spectra were gen-

erated using laser desorption on another, previously described MALDI Fourier-Transform

mass spectrometer (O’Connor and Costello, 2001). Both of these mass spectrometers used

a 7 T actively shielded magnet, the Ionspec “in-cell” preamplifier, and detection of 1

Megaword (12 bit) at 500 kilo samples-per-second. A Pentium 4 PC and BUDA (Boston

University Data Analysis),(O’Connor, 2004) in the Windows XP environment were used

to view and analyze the spectra. MATLAB 6.5 was used to carry out the comparison of

the EID and TID and to calculate the observed number of ions. Theoretical distributions

were generated using a previously published method (Yergey, 1983), as implemented by

Isopro 3.0 (Senko, 1998). The ML method was tested extensively using Monte-Carlo meth-

ods in which a given number of ions were filled into an isotopic distribution based on the

exact probabilities for each isotopic combination generated by the theoretical distribution

(Yergey, 1983; Senko, 1998). This allows for the performance evaluation of the ML method.

In practice, not all the peaks are observed in the EID. Very low intensity peaks (peaks

with intensity less than the noise baseline) cannot be observed. So while comparing the

experimental distribution to the theoretical distribution, only the significant peaks (peaks

with intensity greater than the noise baseline) of the experimental distribution are used.

These peaks are aligned with the corresponding theoretical distribution peaks (Kaur and

O’Connor, 2006a). Now the ML estimator is used to compare these “significant” experi-

mental distribution peaks to the corresponding theoretical distribution peaks.
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(a) (b)

(c) (d)

(e) (f)

Figure 2·1: Experimental distribution approaches theoretical distribution
as the number of ions increase and variance decreases with increasing ions
(a) 100 ions (b) 1000 ions (c) 10,000 ions (d) infinite number of ions (e)
overplotting 300 spectra with 100 ions (f) overplotting 300 spectra with
5000 ions
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Figure 2·2: True number of myoglobin ions=1000 (a) 1 observation per
simulation (b) 10 observations per simulation (c) 25 observations per simu-
lation (d) 50 observations per simulation (e) 100 observations per simulation

2.4 Results and Discussion

Figure 2·1 shows the Monte-Carlo-generated isotopic distributions of myoglobin. With only

100 ions in the cell (Fig 2·1a), the distribution can look quite “jagged” but as the number

of ions increases (Fig 2·1b-c), the measured distribution approaches the theoretical (Fig

2·1d) distribution. Figure 2·1(e-f) are obtained by overplotting 300 Monte-Carlo-generated

isotopic distributions of C60 with 100 ions (Fig 2·1e) and 5000 ions (Fig 2·1f). With only

100 ions in the cell, the scatter is higher than the case when there are 5000 ions. This

scatter is used to estimate the number of ions.

The estimate is expected to improve with increasing number of observations. Figure 2·2

shows this effect by comparing the results using 1, 10, 25, 50 and 100 observations (each

observation is Monte-Carlo-generated isotopic distribution of myoglobin) per simulation

in Figures 2·2a-e respectively. By using information from 100 observations, the method
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(a) (b)

Figure 2·3: Performance evaluation using 15 observations per simulation
(a) C60 ions estimate (b) myoglobin ions estimate

estimates within 5% of the actual value.

The ML estimator works best in the range of low number of ions. As Figs 2·3(a-b) show,

the ML estimate is particularly accurate when the actual number of ions is small (50-1500),

but error increases when the number of ions rises (though at 5000 ions, the results are still

generally within 20%). This effect is intuitive because it uses variance in the distribution

to calculate N (the actual number of ions) and variance changes as 1
N (Eq 2.2). Thus, the

ML estimator works better in the range of low value of N , though better results can be

obtained for higher values of N by using a greater number of observations (M). In general,

determination of ionization efficiency (Keller and Li, 2001), preamplifier detection limit,

etc require working with a low number of ions so that the improved accuracy of the ML

estimator at low number of ions is advantageous. Fig 2·3 shows that the estimator also

works better for higher mass ions like myoglobin (Fig 2·3b) than for low mass ions like

C60. This improvement is also intuitive since for low mass ions, the EID approaches the

TID more rapidly than for the case of high mass ions. For example, for C60, there are only

about 5 significant peaks in the isotopic distribution while for myoglobin, there are about

26 significant peaks in the isotopic distribution. So it takes a greater number of ions for an

EID of myoglobin to approach the TID than for C60. Also, for myoglobin 16+, for example,
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(a) (b) (c)

Figure 2·4: Effect of observing a limited number of peaks in the dis-
tribution (a) Histogram using all the peaks of myoglobin distribution (b)
Histogram using peaks 7-16 of the myoglobin distribution (c) Histogram
after eliminating outliers using peaks 7-16 of the myoglobin distribution

one ion accounts for 16 charges, but one elemental composition, thus amplifying the signal

by 16 fold, allowing observation of smaller number of ions. Once the EID approaches the

TID, it is hard for the estimator to tell whether it came from, say, 20,000 ions or 25,000

ions, since the variance does not change much, and the distributions are similar. This effect

is also clear from Figure 2·1 in which the distribution containing 10,000 ions is virtually

superimposable on the TID. Figure 2·3 also demonstrates performance evaluation (i.e.,

how close is the estimate to the true number of ions) of the ML and LR methods. The

LR method works well for a limited range of number of ions (100-1000 in case of C60,

2000-3000 in case of myoglobin) and digresses from the true value in other cases, whereas

the ML method works best in the range of low number of ions. In some cases, the ML

method shows an improvement by a factor of 2.

There are two known systematic biases to the ML estimate under these conditions.

The first bias is the result of white noise adding to the randomness of the EID. Due to

increased randomness, variance also increases, which causes the estimate to drop, so that

for low signal/noise (SNR) data, this method will systematically underestimate the total

number of ions. To partially correct for this, one subtracts the mean of the surrounding

noise (noise in a neighboring m/z window having no isotopic distribution in it) from the

EID before estimation. The second bias is caused by a statistical anomaly. There is
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a certain probability that the EID will happen to be very similar to the TID even with

limited number of ions (the “lucky guess” problem). This happens about 8-10% of the time

when using a single observation per estimate. This will cause the estimator to overestimate

highly. The “lucky guess” problem causes the “tail” of the estimate distribution to extend

to the higher side (Fig 2·4a) because of overestimation to higher numbers. This problem

can be reduced by using multiple obervations per estimate. For example, Fig 2·4a shows the

estimate distribution when the true number of ions is 1000. This histogram of estimates

was generated by applying equation 2.7 to 700 Monte-Carlo simulations. Clearly, the

distribution has some outliers which occasionally overestimate the number by a factor of

2.5 or more. The rest of the distribution is centered at the histogram bin 1046±64, correctly

predicting the expected 1000 ions.

These biases are affected by the fact that, in practice, only a limited number of peaks

of the distribution are observed rather than the whole distribution. The observed peaks

are aligned to their appropriate positions in the theoretical distribution using MasSPIKE

(Kaur and O’Connor, 2006a). The observation Y now has a length 10-15 instead of 26 since

we observe only about 10-15 peaks in the center of the distribution. Now Y is normalized to

the sum of corresponding peaks in the theoretical distribution for comparison. Observation

of less than the total number of peaks introduces a subtle effect, extending the tail of the

estimate histogram (Fig 2·4b). Fig 2·4a shows the estimate histogram obtained when all

the peaks (26 in case of myoglobin) in the distribution are observed. Each of the figures

2·4(a-c) is obtained using the Monte-Carlo method using 1000 ions with 1 observation

per estimate, and a total of 700 simulations is used to obtain the histogram. Fig 2·4a

has median estimate at 1046±64, the maximum value of the estimate extends to about

2750. So the estimate based on the maximum histogram frequency in this case will be

1046±64. Fig 2·4b shows the case when only peaks 7-16 are used to arrive at the estimate,

as is the case with experimental data where noise can eliminate peaks on the edges of the

distribution. The median estimate in this case is 822±184, but the maximum value of
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(a) (b)

Figure 2·5: Effect of multiple observations per calculation on (a) Bias (b)
Mean square error(MSE)

estimate extends to about 7600. This is again because of the “lucky guess” problem, but

the effect is more pronounced in the case of a limited number of peaks, because now only 10

peaks (instead of 26) need to approach the theoretical distribution in order to generate the

“lucky guess” problem. This causes the error in the estimate to increase (∼ 22% (Fig 2·4b)

for peaks 7-16 vs.∼ 6% (Fig 2·4a) in case of all 26 peaks), which affects the accuracy of the

estimate. This problem can be largely eliminated by rejecting the outliers (e.g. truncating

the histogram once the frequency values reach less than 5% of the maximum frequency)

and regenerating the histogram. Fig 2·4c is formed by truncating the histogram in Fig

2·4b when the frequency of the histogram falls below 5% of the maximum frequency and

regenerating the new histogram by dividing the remaining data into 20 evenly spaced bins.

Fig 2·4c calculates the median value that corresponds to 915±92, so the accuracy of the

estimate now improves from ∼ 22% to ∼ 10%.

The net bias and mean square error (MSE) of an estimator can be calculated, which

depend heavily upon the number of observations per estimate. In this case, bias and MSE

are defined as follows: bias = Mean[NT − NEst], MSE = Mean[NT −NEst]
2, where

NT =True number of ions, NEst=ML estimate of N . Fig 2·5a shows that the bias falls

rapidly as the number of observations per estimate increases. Similarly, MSE follows the



52

Figure 2·6: Estimation of total number of charges in each peak using equa-
tion 2.7, total number of ions in the whole 17+ isotopic distribution=705

same pattern of abrupt drop with increase in the number of observations per estimate as

shown in Fig 2·5. High values of the bias and MSE with a small number of observations

per estimate are largely due to the presence of outliers due to the “lucky guess” problem.

Thus, the bias and MSE can be improved either by increasing the number of observations

per estimate or by increasing the total number of estimates and then using the median of

the estimate histogram after ignoring the outliers as discussed above.

Figure 2·6 shows the estimated number of charges for each of the peaks in an electrospray

mass spectrum of myoglobin for the 17+ charge state. The central (labeled) 6 peaks

comprise about 63% of the total charges in the distribution. This is an EID with typical

broadband noise characteristics for this FTMS instrument. In order to determine the

number of charges, the number of ions (NEst) was estimated by observing the EID (Y ) of

myoglobin. Knowing the value of P (theoretical distribution for myoglobin), Σ (defined by

equations 2.2 and 2.3) and n (number of expected abundant isotopes), NEst is determined

by equation 2.7. It was found that the whole distribution represents 705 (17+) ions. The

charge in each of the peaks was calculated by dividing the total charge (705×17×0.63)

among the observed peaks proportional to their height.

One of the primary reasons for this study was to develop a test for the amplifier sen-

sitivity on signal/charge basis. Fig 2·7 shows the preamplifier detection limit (number
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Figure 2·7: The number of charges needed for a SNR of 3 as estimated
from a series of myoglobin spectra

of charges needed for SNR ratio of 3) values obtained from about 600 estimates, with 1

observation per estimate. The detection limit is defined as: detection limit = NEst×Z×3
SNR ,

where NEst=Ion number estimate from the EID (calculated as described in above para-

graph), Z=Charge state of the corresponding EID (calculated using BUDA (O’Connor,

2004; Senko et al., 1995a)) and SNR=Signal to noise ratio at the base peak of the EID.

This distribution looks similar to that in Fig 2·4c, indicating that the detection limit value

is 74±7. The distribution can be improved further by using more estimates, or more ob-

servations per estimate to give a better accuracy. For a comparison to the previous work

(Limbach et al., 1993), the value can be adjusted to compensate for difference in magnetic

field strength (3 T vs. 7 T), cell radius (0.5r vs. 0.8r). Thus, the corrected value of de-

tection limit is 272 charges, which compares reasonably with the 177 charges determined

previously.(Limbach et al., 1993)
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2.5 Conclusions

A method has been developed for calculating the total number of trapped ions in an

MS experiment from the statistical variation of EID in the mass spectra. The Maximum

Likelihood estimator together with the Non-Random Parameter estimation method has

been used to derive the mathematical relationship between the number of ions and the

experimentally measured variance in the EID. This theory has been tested using Monte-

Carlo simulations to compare the true ion number with the estimated number. The results

improve rapidly with the increase in the number of observations since the estimator gets

more information. This method is independent of the type of instrument used. In terms of

performance evaluation, the method can show a factor of 2 improvement over a previously

developed method,(Senko et al., 1995b) depending on the number of observations used for

the calculation, and it can be used for any kind of mass spectra provided it can be resolved

isotopically.

2.6 Appendix

Since N is a discrete variable, the behavior of the expression ln(P (Y |N)) is investi-

gated to check the approximation of the derivative with respect to N in expression 2.6.

Simplification of ln(P (Y |N)) yields the following form:

f(N) = ln(P (Y |N)) = −1
2
[Nα− n ln(N) + β] (2.12)

where α, β, and γ are constants with respect to N . Consider the following function:

g(x) = −1
2
[xα +−n ln(x) + β] (2.13)

The function g(x) is the same as f(N), except that it is a function of a continuous variable

x, as opposed to f(N), which is a function of a discrete variable N . Hence, f(N) can be

viewed as a sampling of g(x) at positive, discrete values of x. Maximizing g(x) yields the
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following:

g′(x) = −1
2
(α− n

x
) = 0 (2.14)

which yields the only one solution:

x =
n

α
(2.15)

This value of x can be either a maximum or a minimum. Second derivative g′′(x) yields

the following:

g′′(x) = − n

2x2
(2.16)

Evaluating g′′(x) at the value of x in equation 2.15 results in the following:

g′′(x) = − α2

2 n
(2.17)

which is always negative, since α2 and n (number of isotopes) are always positive. Hence,

the extremum of g(x) is indeed a maximum. Since g(x) has exactly one maximum, its sam-

pled function f(N) also has only one maximum, which lies in the vicinity of the maximum

for g(x). Hence, for the purposes of analysis, the maximum for f(N) can be determined

by locating the maximum for g(x), which has been used to derive the ion number estimate

in section 2.2.

An estimator for a non-random parameter is called efficient if it meets the Cramer-Rao

bound for the associated error covariance.(Poor, 1994) The existence of unbiased efficient

estimator in this case was tested by evaluating the following expression:

exp = N +
1

IY (N)
∂(ln(P (Y1, Y2, Y3, . . . , YM |N)))

∂N
= f(N) (2.18)

The simplified form of the above expression is a function in terms on N , the number of

ions, indicating that unbiased, efficient estimator does not exist for this problem.
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Chapter 3

Quantitative Determination of Isotope Ratios

from Experimental Isotopic Distributions

This chapter has been reproduced in part with permission from (Kaur and O’Connor,

2007). Copyright 2007 American Chemical Society.

3.1 Introduction

Elemental isotopic composition variation in biological products due to natural processes

is known and provides important information for a diverse variety of studies. The isotopic

signatures of biomolecules depend upon the geographical parameters like latitude, distance

from the sea, altitude, and seasonal effects.(Rozanski et al., 1992) For example, Oxygen

isotope ratio (18O/16O) indicates the source along with the authenticity control informa-

tion for products like fruit juices, wine, milk, butter, cheese etc.(Rossmann et al., 2000;

Bricout and Koziet, 1973; Dunbar, 1982) Isotopic analysis of bone and dental remains

of past species are used to determine the dietary patterns of ancient humans.(Stott and

Evershed, 1996) Natural isotope ratio variability also provides information on studies like

gender-specific physiology,(Dawson and Ehleringer, 1993) nitrification and nitrate turnover

rates in forests,(Stark and Hart, 1997) history of earth’s climate,(Schoell et al., 1994) de-

termining origins of a given sample,(Rossmann et al., 2000) and diets of contemporary

animals.(Hobson et al., 1997) In biomedical sciences, isotope ratios based tracer methods

are employed for protein turnover studies, fat metabolism,(Brenna, 1997) and breath tests

for clinical testing purposes,(Hoekstra et al., 1996) not to mention the drug testing of

athletes.
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Conventionally, high-precision carbon isotope ratio measurements are expressed in terms

of the delta notation.(McKinney et al., 1950; Hayes, 1983) The Delta notation is defined

as the relative difference in parts per thousand between the sample isotope ratio and an

isotope ratio of an international standard. For carbon, the accepted international standard

is PeeDee Belemnite (PDB), a belemnite from the Cretaceous Pee Dee formation, South

Carolina USA. It is expressed as following:

δ13CPDB =
RSPL −RPDB

RPDB
× 1000 = (

RSPL

RPDB
− 1)× 1000 (3.1)

where

Rx =
[13Cx]
[12Cx]

(3.2)

where [12Cx] and [13Cx] are the abundances of the respective isotopes in the sam-

ple or PDB, RPDB=0.01123720.0000090.(Craig, 1957) δ13C values are expressed as “per

mil” or �. Using this definition, C3 and C4 plants have a δ13C value of -26.5� and -

12.5�,(Calvin and Benson, 1948; Smith and Epstein, 1971) with the corresponding abun-

dances for 13C being 1.082% and 1.097% of total carbon respectively, indicating the subtle

differences in the isotopic signatures. Examples of C3 plants include trees, shrubs, flower-

ing plants and temperate zone grasses. C4 plants include maize, sugar cane, and tropical

grasses.

Since the isotopic variations in various categories are extremely subtle, measurements

of δ values require very high-precision determination of the isotope ratios of a particu-

lar element involved. Isotope Ratio Mass Spectrometers (IRMS)(Brenna et al., 1997) are

widely employed tools for such high-precision analysis. These instruments typically require

complex compounds to be reduced to simpler molecules before measurement. For example,

organic compounds are combusted to CO2, H2O and N2 which are then separated and de-

tected individually. Current IRMS instruments thus accept the sample analyte in the form

of only a limited number of gases, which, in turn, must represent the isotopic characteristics
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of the original sample. This represents a major limitation for the range of molecules that

can take advantage of isotope ratio mass spectrometry. This work aims at overcoming the

limitations inherent to IRMS by estimating the elemental isotopic abundance directly from

the Experimental Isotopic Distribution (EID). This implies that any mass spectrometer

capable of providing isotopic resolution can be used for isotope ratio analysis. Another

substantial advantage of this method is that the samples do not need to be reduced to

simpler molecules, extending the utility of isotope ratio mass spectrometry to molecules

that are not amenable to the reduction process. This will also provide increased sensitivity

since the sample preparation process will involve fewer steps, and hence, fewer losses.

Computational approaches have been proposed previously for stable isotope enrichment

experiments.(Demirev and Fenselau, 2002; MacCoss et al., 2005) These allow for mea-

suring the isotope enrichment ratios by comparing the predicted, enriched isotopic distri-

butions with the measured isotopic distributions. Progress has also been made for the

measurement of the distribution of isotopomers in a labeled compound by means of linear

algebra.(Jennings and Matthews, 2005) However, the purpose of the current approach is to

determine the natural isotopic abundances of elements from their experimental isotopic dis-

tributions. This work should not be confused with the approaches intended for monitoring

the progress of isotope enrichment ratios used in isotope labeling experiments.

An isotopic distribution (ID)(Yergey, 1983; Rockwood, 1996) is a direct measure of

the isotopic abundances of its constituent elements, convolved by the number of atoms

of each element present in the molecule under consideration. If the isotopic abundance

contributions from all but one element are known, an EID can be analyzed mathematically

to determine the isotopic abundance contribution of the unknown element. Known isotopic

abundance contributions can be deconvolved from the EID, allowing for solution for the

unknown element.
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3.2 Theory

Let the elemental composition of a given molecule be CNcHNh
NNnONoSNs . Let

PC = [1− pc pc]

PH = [1− ph ph]

PN = [1− pn pn]


A+1 Elements (3.3)

PO = [1− (po1 + po2) po1 po2 ]

PS = [1− (ps1 + ps2) ps1 ps2 ]

 A+2 Elements (3.4)

be the isotopic abundances of C, H, N, O and S respectively, where PX(i) represents

the ith isotope of element X. Let T [n] represent the Theoretical Isotopic Distribution

(TID).(Yergey, 1983; Rockwood, 1996) Thus,

T [n] = PC [n]
Nc

~PC [n]∗PH [n]
Nh

~ PH [n]∗PO[n]
No

~ PO[n]∗PN [n]
Nn

~ PN [n]∗PS [n]
Ns

~ PS [n] (3.5)

where ∗ denotes convolution operator (Proakis and Manolakis, 2003) and
N
~ denotes

multiple convolutions defined as follows:

z[n] = x[n] ∗ y[n] =
+∞
Σ

j=1
x[j] y[n + 1− j]

x[n]
N
~ x[n] = x[n] ∗ x[n] ∗ x[n]...N times

Assuming that the isotopic abundances of all the elements except any one element, say

carbon, are known, the goal is to find the unknown isotopic abundance of 13C, denoted

by pc. In order to extract the pc values from the convolved isotopic distributions, it is

convenient to reorder T[n]. The theoretical isotopic distribution T[n] can be represented

as the following:

T [n] = T1[n] ∗ T2[n] (3.6)

where T1[n] represents the isotopic abundance contribution from carbon as follows:

PC [n]
Nc

~ PC [n] (3.7)
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and T2[n] contains known isotopic abundance information about the other elements defined

as the following:

T2[n] = PH [n]
Nh

~ PH [n] ∗ PO[n]
No

~ PO[n] ∗ PN [n]
Nn

~ PN [n] ∗ PS [n]
Ns

~ PS [n] (3.8)

T2[n] is assumed to be completely known since its constituents depend upon the known

isotopic abundance values of all the elements other than carbon. Since Px[n] is non-zero

only for positive values of n, where x denotes a particular element, the same holds true for

T1[n] and T2[n]. Thus,

T [n] =
Nc+1
Σ

j=1
T1[j] T2[n− j + 1] (3.9)

since the length of T1[n] is Nc +1. Let the coefficients of expansion of T1[n] be α1, α2, · · · ,

αNc+1. Thus, T [n] can be expanded as follows:

T [1] =T1[1] T2[1] = α1 T2[1](1− pc)
Nc (3.10)

T [2] =T1[1] T2[2] + T1[2] T2[1] (3.11)

=α1 T2[2](1− pc)
Nc + α2 T2[1] (1− pc)

Nc−1 pc

...

T [k] =T1[1] T2[k] + T1[2] T2[k − 1] + · · ·+ T1[k]T2[1] (3.12)

=α1 T2[k](1− pc)
Nc + α2 T2[k − 1] (1− pc)

Nc−1 pc + · · · (3.13)

+ αk T2[1] (1− pc)
Nc−k+1 pc

k−1

When the number of ions representing an experimental isotopic distribution is extremely

large, the experimental distribution approaches the theoretical isotopic distribution.(Kaur

and O’Connor, 2004) Hence, the terms on the left of each of the above equations can

be substituted by the corresponding values from the EID. Thereafter, each of the above

polynomial equations can be solved for pc, with each equation representing one of the

isotopes observed in the experimental isotopic distribution.
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Using Chebyshev’s inequality, it is possible to determine the number of ions required to

generate an isotopic distribution that is sufficient to determine the δ13C value within a

given accuracy. This is done as follows. Assume that the true value of δ13C is δtrue, and

the estimate is desired within, say, ±∆. Since the δ13C value depends upon [13C] (denoted

by pc) and [12C] (1- pc) as seen in equations 3.1 and 3.2, the corresponding values of pc,

say pctrue ± ∆pc , for δtrue ± ∆ can be determined from equations 3.1 and 3.2. Now the

isotopic abundances in an EID depend upon the value of pc. Let the isotopic abundances

for an ideal EID (which is the same as the TID) be represented by the vector Etrue when

δtrue is the true value of δ13C . Due to the limited number of ions, there is a variation in

the EID.(Kaur and O’Connor, 2004) Let this variation be represented by Etrue±e, and be

such that the variation is the same as that is caused by the variation in pc in the range

of pctrue ± ∆pc . The goal here is to determine the number of ions so that the vector of

observed isotopic abundances, E, lie within Etrue ± e. Each of the isotopic peaks in the

EID is treated individually for the analysis purposes. According to Chebyshev inequality,

P (|E(i)− Etrue(i)| ≥ e(i)) ≤ σ2
i

e(i)2
(3.14)

where i denotes ith isotopic peak, and σ2
i indicates the abundance variance of the ith

isotopic peak, and e(i) denotes the magnitude of deviation of the observed ith isotopic peak

from its true value. It means that the probability that the observed isotopic abundances

in EID, E, differs from the true values, Etrue by more than a certain value e, is bounded

by the expression of the right hand side of the above equation, which depends upon the

variance in the given isotope and its deviation from the true value. The variance σ2
i is

given by (Kaur and O’Connor, 2004):

σ2
i =

Etrue(i)× (1− Etrue(i))
N

(3.15)

where N denotes the number of ions used to generate the EID. Now, assume that it is

desired that the estimated delta value deviates from the true value by no more than ∆
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with a probability P̂ . Then number of ions, N, can be solved for using the above equations

and P̂ as follows:

N(i) =
Etrue(i)× (1− Etrue(i))

P̂ × e(i)2
(3.16)

Note that this number can be calculated for each isotopic peak in the EID. This number

will ensure that if the EID is generated using a certain number of ions satisfying the above

equation, δ13C will be bounded within the limits as described above.

3.3 Methods

Experimental spectra of chlorophyll-b (Molecular formula = C55H70MgN4O6) purchased

from Sigma (St. Louis, MO) were obtained with 1µM concentration using ethanol and

1% formic acid. The spectra were obtained on a previously described custom hybrid elec-

trospray FTICR instrument.(O’Connor et al., 2006; Jebanathirajah et al., 2005) Bovine

ubiquitin sample was prepared with 1µM concentration in a 50:50 mixture of water and

methanol, and the spectra were obtained on the same instrument. Matlab 7.1 (Natick,

MA) was used for the data analysis.

3.4 Results and Discussion

In order to test this theory (per equations 3.10, 3.11, and 3.12), performance analysis was

first carried out on modeled EIDs generated using Monte-Carlo simulations in silico. EIDs

were generated by varying the number of ions to study the effect of error in determining

δ13C as a function of the number of ions used to generate the EID. The number of ions

was varied from 500 to 22000, in the increments of 500, and the true value of delta used to

generate the isotopic distribution was -25.5� (typical value for C3 plants), corresponding

to pc = 1.0832%. A TID was generated for an “average” protein (Senko et al., 1995b)

with a molecular weight of 9000 Da. Each estimate was generated using an average of 10

simulations, with number of ions being the same in each of the 10 simulations. Fig 3·1

illustrates that with the increase in the number of ions used to generate the EID, the error

drops substantially. This is intuitive since the higher the number of ions, the closer the
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Figure 3·1: Estimate improves with the increase in the number of ions used
to generate the simulated isotopic distribution, δtrue=-25.5, MW=9000,
each estimate was generated using 10 simulations of isotopic distributions

EID approaches to the TID.

The higher the molecular weight of the biomolecule, the greater is the number of carbon

atoms and the number of isotopic peaks present in its isotopic distribution, because a

greater number of combinations of isotopes becomes possible with increasing molecular

weight. So, an investigation of the effect of molecular weight on the delta estimate was

carried out. Isotopic distributions were generated using Monte-Carlo simulations, with

molecular weight varying from 1000 Da to 20000 Da, with increments of 500 Da. Each

distribution was generated using 100000 ions, with the true value of delta being again -

25.5�. The results are plotted in Fig 3·2, which indicate that with the increasing molecular

weight, the error in delta drops since more information is available from a higher number

of isotopes present in the isotopic distribution. An important observation is that as the

molecular weight increases, the number of ions required for the EID to approach the TID

also increases (Kaur and O’Connor, 2004) due to the widening isotopic distribution. Thus,
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Figure 3·2: Estimate improves with the increase in molecular weight due to
higher number of isotopes present in the isotopic distribution, δtrue=-25.5,
δEst=-25.68

the improvement in the estimate with the increasing number of observed isotopic peaks may

be somewhat offset by the higher variance in the EID for higher molecular weight for the

same number of ions. Thus, Fig 3·2 shows that, for 100000 ions, error in the observation

of δ13C values is minimized in the mass range of ∼8-15 kDa, which includes the mass

convenient for proteins such as ubiquitin, cytochrome c, and lysozyme, among others. All

the isotopic peaks with peak heights greater than 5% of the highest peak were used to

arrive at the final estimate, because in practice, not all the isotopic peaks are observed in

the EID. The less abundant ones are difficult to observe since their abundance often falls

below the noise baseline, and their abundance is usually highly distorted by noise making

their value in the estimate highly suspect.

Thus, the theory from equations 3.10, 3.11, and 3.12 works well using simulated EIDs.

But what about the performance for real life spectra? Thus, the theory established above
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Figure 3·3: Mass Spectrum of chlorophyll-b (C55H70MgN4O6,
MW=906.83, Mg is replaced by 2 H atoms in acidic medium, leading to
MW=885.55) from spinach, the desired EID consists of multiple overlap-
ping components demonstrating one of the difficulties of this approach.
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was subsequently applied to experimental spectra obtained on a custom hybrid electrospray

FTICR instrument.(O’Connor et al., 2006; Jebanathirajah et al., 2005) A chlorophyll b

sample was prepared using ethanol and 1% formic acid. Chlorophyll b (C3 plant, δ13C

= -26.5�) spectra were acquired and signal averaged over 100 scans. Mg present in

the molecule is removed in the acidic medium and is replaced by 2 H atoms, leading

to a monoisotopic molecular weight of 885.55 Da. Fig 3·3 shows one such spectrum of

chlorophyll-b. The inset in the picture show the expanded m/z region of the EID, along

with the TID. The EID, unfortunately, clearly consists of multiple overlapping components,

and hence, has an isotopic pattern substantially different from the TID as the insets in the

figure illustrate. Since the goal of this study is to differentiate between extremely subtle

variations of the isotopic abundances, the interference in the EID of the desired molecule

from any other components cannot be permitted, since it will distort the EID and lead

to erroneous results. In this case, the overlapping isotopic distributions extend the EID

to high mass, which would greatly overestimate C. This example illustrates one of the

challenges faced by using this method. It is critical that any EID used for quantitative

determination of isotope ratios consist of one and only one component, and that all of the

isotopic variance be due to the variance in the isotope ratios.

Experimental spectra of bovine ubiquitin (8.5 KDa) were obtained in order to further

evaluate the theory against the experimental data. Fig 3·4a shows the mass spectrum

of bovine ubiquitin with isolation of 10+ charge state in the quadrupole, Q1, averaged

over 550 scans. The insets show the expanded view of the EID and the TID. Fig 3·4b

shows the plot of peak areas of the EID and the TID for the same isotopic distribution

in circles and stars respectively. There appears to be a systematic bias in the EID when

compared against the TID, the peak areas of the first few isotopes in the EID are smaller

than their theoretical counterparts, and the difference becomes smaller for higher isotopes.

This bias may be attributed to the ion selection in the front end quadrupole. Some of the

isotopes may be preferentially accumulated over the others due to the m/z window on the



67

(a) (b)

(c)

Figure 3·4: (a) Mass Spectrum of bovine ubiquitin with the front end
isolation of 10+ charge state at m/z =857.5 (b) The EID (circles) differs
from the TID (stars) due to the isolation artifacts, showing that care must
be taken to prevent isotopic distribution distortion during the experiment
(c) δ13C estimate using 19 spectra of bovine ubiquitin, with isolation of 10+
charge state, delta median value=7.62 from the 103 estimated values from
different isotopic peaks
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quadrupole. This phenomenon was observed despite the fact that 10 Da wide window was

used for ion selection. Fig 3·4c shows the histogram of the delta estimates obtained using

19 spectra of bovine ubiquitin. The results were generated from 103 isotopic peaks for the

10+ charge state. Due to the artifacts present in the EID because of isolation, the EID

does not represent the true TID, and hence, the delta estimates obtained are also likely to

be erroneous since the theory established above requires the EID to represent the TID very

closely in order to give good estimates. Fig 3·4c shows that the delta values do not converge

to a median value and represent a very wide range of values. Thus, experimental techniques

which distort the isotopic distributions, such as quadrupole isolation shown here, prevent

calculation of the true δ values. This is true even for extremely subtle distortions like the

one shown.

Due to the problems associated with the EID distortion because of the isolation in the

quadrupole, isolation was disabled, and all the charge states were allowed to pass through

the ion optics and collected in the cell. The resulting spectrum with the averaging of 500

scans is shown in Fig 3·5a, with the inset showing the EID of 10+ charge state within the

spectrum. The peak areas of the EID and the corresponding TID are shown in Fig 3·5b,

with the EID and the TID being represented by circles and stars respectively. This figure

shows that the EID matches very closely to the expected TID once the EID distortion

caused by quadrupole isolation has been eliminated. For a complete evaluation, 24 bovine

ubiquitin spectra were generated, and a total of 392 isotopic peaks from the charge states

9+ and 10+ were used for estimating the delta values. The resultant histogram of delta

estimates is shown in Fig 3·5c. Note that the estimates tend to converge to a central median

value of -27.55±2.89, which compares favorably with the expected δ13C value (-25.5) for

animals whose diet primarily consists of the C3 plants.(DeNiro and Epstein, 1978) It should

be noted that this method may not suited for the analysis of heterogeneous populations of

molecules, since it will increase the possibility of having multiple overlapping components

in the isotopic distributions, and hence, distorting their shape, as was demonstrated with
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(a) (b)

(c)

Figure 3·5: (a) Mass spectrum of bovine ubiquitin (b) The EID (circles)
matches well with the TID (stars) (c) Delta estimate values using 26 spectra
of bovine ubiquitin, median value=-27.55 from 392 estimated values from
different isotopic peaks, indicating that the sample fed primarily on C3
plants
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Figure 3·6: Number of ions required Vs Molecular Weight to measure the
delta 13C value within 1� with a probability of 0.95

the chlorophyll spectrum above.

Figure 3·6 shows the results of a Monte-Carlo simulation to determine the number of ions

required to ensure with a 95% probability that the estimated delta value is within ±1� as

a function of molecular weight. The true value of δ13C , δtrue was taken to be -25.5. The

results were obtained as follows. Natural abundance values of 13C (pc) were calculated

for the δtrue±1�. TIDs were generated for the resulting pc values. The ion number was

estimated using Chebyshev’s bound results in equation 3.16, e(i) was obtained by the

difference between the ideal TID and the TID resulting from the pc values corresponding

to δtrue±1�, and probability P̂ was taken to be 0.95. The results demonstrate that with

the increasing molecular weight, smaller number of ions are required in order to estimate

the δ value with the same accuracy. This is intuitive since the higher molecular weight ions

have greater number of carbon atoms and hence, subtle changes in δ, and thus pc, will result
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in greater changes in the isotopic distribution. This is because, as seen in equation 3.5, the

isotopic distribution involves the term containing convolution of the natural abundances

of carbon Nc times, where Nc is the number of carbon atoms present in the molecule.

Hence, subtle changes in δ13C values will produce a more pronounced effect for higher

molecular weights due to greater number of multiplications of pc involved than with the

smaller molecules.

With FTMS, the space charge limit bounds the total number of charges that can be

detected without peak distortion. Fig 3·6 indicates that, the larger the molecule, the

smaller is the number of ions required to achieve the same level of accuracy in δ13C values.

Thus, for FTMS, increasing the mass of the molecule used for δ13C measurements and

decreasing the charge state increases the accuracy, provided baseline isotopic resolving

power is achieved.

This approach can be used for the determination of isotope ratio for any element. The

equations above can be modified to treat the isotopic abundance of the desired element to be

unknown, and then solve for the unknown value. The discussion here was based primarily

on the isotope ratio of carbon because of its utility in a wide variety of applications.

This approach may be extended to determine the variations in natural abundances of

multiple elements if mass spectra from multiple samples originating from the same source

are available. If there are m unknown abundances, and ≥m different spectra from the

same source are available, m different sets of equations (one from each spectra), similar to

equations 3.9-3.12, can be used to solve for m variables using algebraic methods.

As shown, this method is very sensitive to the distortions introduced in the experimental

isotopic distributions arising due to many factors such as quadrupole voltages, overlapping

isotopic distributions, distortions due to modifications such as deamidation. Hence, this

approach is not suitable for use with ion trap or quadrupole instruments. Time of Flight

instruments may be better suited for this purpose due to minimal isotopic distribution
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distortion, provided that the observed isotopic distribution provides baseline resolved iso-

topes.

It is possible to improve the performance of this method with an FTICR instrument

using SWIFT (Stored Waveform Inverse Fourier Transform).(Wang et al., 1986) SWIFT

excitation will allow equal excitation to all the isotopes within the isotopic distribution,

and hence, minimize the signal artifacts. Also, using SWIFT, it is possible to eject ions

that are not of interest, providing an opportunity to accumulate a greater number of ions

of interest within the cell, which will lead to a smoother experimental isotopic distribution,

and result in a more accurate final estimate, provided the space charge limit of the cell is

not exceeded.

This approach can be useful for many applications that require detection of subtle dis-

tortions. For example, this may be a method of choice to check whether the instrument

response is linear and stable in a given narrow m/z range. A known molecule, whose ele-

mental isotopic abundances are known, can be used to generate the experimental spectrum,

with signal averaging in large numbers. Experimental spectrum may then be compared

against the theoretical spectrum in order to test for any isotopic distortions using this

method. Any distortions observed may be attributed to the non-linear response of the

instrument.

The number of ions sufficient for the experimental isotopic distribution to approach its

theoretical counterpart depends upon the molecular weight of the molecule of interest. For

higher the mass molecules, greater numbers of ions are thus required for the experimental

and theoretical distributions to “match” against each other. There is a tradeoff between

the number of ions and molecular weight for a “smooth” experimental isotopic distribution.

Higher molecular weight molecules are advantageous because of greater number of carbon

atoms and isotopic peaks in the distribution. Lower molecular weight molecules require

fewer ions to provide ideal experimental isotopic distribution, but they contain fewer carbon
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atoms and lead to smaller number isotopes, and hence, less information.

In this study, isotopic peaks were fitted to Lorentzian peak shapes (Marshall and Verdun,

1990), and the areas of the fitted peaks were calculated in order to calculate the peak

intensities. Careful consideration must be given to avoid any peak distortions due to space

charge effects in the ICR cell to avoid erroneous results. And care must be taken to use the

best possible peak shape fitting method in order to calculate the most accurate peak areas

which are true representatives of isotopic intensities. Peak height intensities are generally

unacceptable due to approximation errors.

3.5 Conclusions

A theoretical framework has been developed and tested for estimating the elemental isotopic

abundances from the experimental isotopic distributions. The estimate improves with

increasing number of ions generating the isotopic distribution. Higher molecular weights

are particularly useful for a better estimate because the higher number of carbon atoms

and isotopic peaks observed lead to a greater amount of information. However, higher

molecular weights also require a higher number of ions in order for the EID to converge

to the theoretical isotopic distribution, which is required for reliable results. This method

circumvents some of the limitations experienced by the traditional IRMS by providing

a greater flexibility about the kind of samples that may be used for the analysis. This

approach is applicable for isotopically resolved spectra from any kind of instrument. For

optimal results, experimental isotopic distribution is required to have minimal artifacts

due to the subtle nature of the measurements being made. It is very important to avoid

any perturbations in the experimental isotopic distributions due to noise or other sources

like influences from overlapping isotopic distributions, intensity artifacts due to bias in

quadrupole voltages etc.
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Chapter 4

Charge State Determination Methods for High

Resolution Mass Spectra

4.1 Introduction

Electrospray ionization generates ions with multiple charge states. For proteins, in stan-

dard electrospray solutions, these charges arise by the adduction of available protons from

the acidic solution to the protein. Since charge is quantized, it can take up only integer

values. As both the solution and the protein itself partially shield the protons from each

other, the number of charges can be quite large. A typical example is the charge state dis-

tribution of myoglobin, a ≈ 17 KDa protein, whose charge state envelope generally extends

from 7+ to 23+. Since all mass spectrometers measure mass-to-charge ratio (m/z ), this

corresponds to m/z values of about 2423 at 7+ down to 740 for 23+. In order to measure

the mass, the charge value must be determined.

Currently, spectrum interpretation represents one of the biggest bottlenecks in a mass

spectrometry experiment. Manual analysis of such a complex data is very tedious and time

consuming. Hence, there is a great need for reliable sophisticated data analysis methods

(Mann et al., 1989; Reinhold and Reinhold, 1992; Henry and McLafferty, 1990; Senko

et al., 1995b; Senko et al., 1995a; Zhang and Marshall, 1998; Horn et al., 2000) in order

to achieve high-throughput results. An attempt has been made in this work to partly

solve this problem by proposing a new approach for charge state determination using the

Matched Filter (MF)(Haykin, 1994; Duda et al., 2001) technique. In this chapter, detailed

comparison of the previous methods against the newly established method are done under
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various conditions.

4.2 Previous Work

The first attempt for automatic charge state determination was (somewhat erroneously)

called “deconvolution”(Mann et al., 1989; Reinhold and Reinhold, 1992; Zhang and Mar-

shall, 1998; Henry and McLafferty, 1990). Since charge states can take only integer values,

“deconvolution” methods combined isotopic peaks of the same mass with different charge

states to determine the mass of the ion. For example, a molecule with mass=3000 Da will

exhibit isotopic clusters roughly at m/z values of 1000, 1500 and 3000 corresponding to

z=3, 2, and 1 respectively. The major drawback of “deconvolution” methods is that they

perform poorly if a given mass is represented by only one charge state, as is often the case

in case of multistage mass spectrometry experiments.

When high resolution instruments such as the Fourier Transform Mass Spectrometer

(FTMS)(Marshall and Verdun, 1990; Amster, 1996) are coupled with the multiple charging

effect of modern ionization techniques, determination of the charge state, z, of an ion is

simply a question of measuring the distance between neighboring isotopic peaks, since, for

example, the m/z distance between adjacent isotopic 12C and 13C peaks is ∼1.003355/z.

Due to the above mentioned inherent problems in the “deconvolution” approach, tech-

niques were developed for automated assignment of charge states from the isotopic spacings

(Senko et al., 1995a). These methods are briefly discussed here and compared against the

Matched Filter (MF) method.

Patterson Method The Patterson routine (Senko et al., 1995a) uses a function similar to

Autocorrelation (Oppenheim et al., 2002) function, except that it uses a certain number

of pre-determined lag values in order to calculate the autocorrelation values. An ID has

a periodic structure depending upon the charge state. Generally, there appears a maxima

in the Patterson function plot corresponding to a shift of ∼1.003355/z. Fig 4·1a shows an
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(a)

(b) (c)

Figure 4·1: (a) EID from top-down spectrum of Bovine Carbonic Anhy-
drase (b) Shifted TID (red) (shift corresponding to maximum cross corre-
lation coefficient (r=0.978 for z=3)) plotted on the top of EID (blue) (c)
Charge state maps using different methods

Experimental Isotopic Distribution (EID), taken from a top-down spectrum of carbonic

Anhydrase, that corresponds to z=3. Fig 4·1c shows the “score” (called the Zmap) of

each of the charge states using various methods including Patterson method on the top.

The Patterson Zmap shows the autocorrelation value as a function of the lag value, which

is then mapped to the corresponding z value. For example, a lag of ∼1.003355/2 will

correspond to z=2 on the X-axis of Zmap. Autocorrelation corresponding to 0 lag value

give the maximum value, but that value was ignored and defined to be zero in the Zmap.

The Patterson Zmap shows a strong peak at z=3 and a gradual rise at higher z.

Fourier Transform Method In this case, the Fast Fourier Transform (FFT) of the ID is

taken after zero-filling the input signal to the next power of 2. The FFT of the ID in Fig

4·1a is shown in Fig 4·1c. The Fourier Zmap shows a strong signal at z=0 corresponding

to the dc component of the signal, which is ignored. The next largest peak is at z=3, with

harmonics at z=6, 9, 12, etc.
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Combo Method This method is so called because its a combination of the Patterson and

Fourier Transform method (Senko et al., 1995a). It takes point-by-point multiplication of

the above two methods to arrive at the Combo Zmap shown in Fig 4·1c. It takes advantage

of the fact that there will be a peak in both the Patterson and Fourier Zmaps corresponding

to the true charge state and the peak will be amplified by multiplication as shown in the

Combo Zmap in Fig 4·1c. The Combo routine gives a very good peak in the Zmap at z=3,

but again shows harmonics at z=6, 9, 12, etc.

All of these methods work very well when the the signal quality is high, but they all tend

to break down when signal-to-noise ratio (SNR) is low and when the input signal represents

multiple isotopic distributions overlapping with one another. The Matched Filter method

presented here is generally more rugged and reliable as shown below under a wide range

of SNR and interference conditions. So there is a need to have a method that can handle

the limitations discussed.

4.3 Current Approach

The problem of charge state determination can be posed as follows: Given an input signal

called the Experimental Isotopic Distribution (EID), the goal is to design a classifier that

will output the maximum value when the given EID most closely matches the Theoretical

Isotopic Distribution (TID) corresponding to the true charge state. Let

E= normalized vector representing EID

Tz= normalized vector representing the TID corresponding to charge state z when m/z is

given by the location of E in the mass spectrum. This is equivalent to Tz representing the

isotopic distribution corresponding to an approximate Molecular Weight (MW)=m/z×z.

Given the values of m/z and z, the Theoretical Isotopic Distribution (TID) is a well

defined signal for proteins and can be constructed as follows. If m/z and z are known, an

approximate molecular weight of the ion will be m/z×z. Knowing the molecular weight, an

average elemental composition of elements can be estimated using poly-averagine (Senko
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et al., 1995b) as the “average” amino acid model. After determining the elemental com-

position of the molecule, its TID intensities can be calculated using binomial distribution

calculations (Yergey, 1983) or using the Mercury (Rockwood, 1996) algorithm as is being

done in the current work. Peak width at half height for generating the TID is determined

by the EID, the value being the same as that of the highest peak in the EID. With the

knowledge of the peak heights and width, each peak of the TID is generated assuming a

Lorentzian (Marshall and Verdun, 1990) shape, the final TID being the sum of each of the

individual Lorentzian peaks.

In the case of problems where the observed signal is very well defined for each of the

classes, the Matched Filter (Haykin, 1994; Duda et al., 2001) method often proves to be

quite useful for classification. In this case, the Matched Filter output is calculated as

follows for each of the charge states z:

Mz(n) = E(n) ∗ Tz(−n) (4.1)

Equation 4.1 is equivalent to convolving the normalized (to mean zero and variance 1)

observed signal E with the normalized, time-reversed theoretically expected signal, Tz.

The “score” for each of the charge states is determined by the cross-correlation coefficient,

r(z) as follows:

r(z) = maxMz(n) (4.2)

Finally, the charge state is estimated by the following expression:

zMF = arg max
z

r(z) (4.3)

Fig 4·1a shows an EID taken from top-down spectrum of Bovine Carbonic Anhydrase.

Fig 4·1b illustrates detection of z=3 using the MF approach. TIDs corresponding to z=1

to 30 were generated and the cross-correlation coefficients for each of the charge states was

calculated as shown in equation 4.2. The coefficient values are plotted in the MF Zmap



79

(a) (b) (c)

(d) (e)

Figure 4·2: Comparison of various charge state determination methods
using simulated isotopic distributions for (a) z=1 to 30 (b) Low charge
state (z=1 to 3) cases (c) High charge state cases (4 ≤ z ≤ 25) (d) Low
SNR (SNR≤4) cases (e) Experimental isotopic distributions with charge
states ranging from 1-28

in Fig 4·1c as a function of z. Since the highest coefficient value corresponds to z=3, the

assigned charge state is 3. Fig 4·1b shows TID (red) for z=3 plotted on the top of EID

(blue), with the shift in TID corresponding to the maximum cross correlation coefficient

value.

4.4 Results and Discussion

In order to systematically compare the performance of various methods, 2800 isotopic

distributions were generated using computer simulations. The generated data spanned the

m/z range from 771-2100, with the SNR ranging from 2-15, with the number of ions (Kaur

and O’Connor, 2004) per isotopic distribution varying from 100-900, each of the charge

states 1-25 were equally represented by 112 simulations each. An automated analysis for

charge state determination of the simulated data revealed that of the 2800 cases considered,

Patterson classified the charge states correctly 66.5% times, Fourier Transform method -

81.5% of the time, Combo method - 85.6% time, MF approach - 89.9% time. The overall

performance results are shown in figure 4·2a.
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4.4.1 Low Charge States

There are mainly two types of popular ionization mechanisms in mass spectrometry

- MALDI and electrospray ionization. MALDI mechanism usually produces low charge

state (usually 1-3) ions, while electrospray ionization produces highly charged ions and

the charge states can vary between 1 to 30 in most cases depending on the size of the

biomolecule under investigation. So it is important to analyze the performance for low

charge states in order to determine which methods are suitable for MALDI data. Fig 4·2b

depicts a performance plot for various methods when the charge state varies from 1 to 3.

Out of the 336 cases analyzed, the accuracy results were as follows: Patterson 82.44%,

Fourier Transform method 83.63%, Combo 91.67%, Matched Filter 100%.

4.4.2 High Charge States

For electrospray experiments, it is important that the method under consideration gives

good results when the input signal represents a high charge state. To this end, performance

of various methods for charge states 4 to 25 was analyzed. Fig 4·2c shows that out of

the 2464 cases for higher charge states, Patterson performed correctly 64.28%, Fourier

gave 81.21% results, while Combo and MF approaches gave 84.74% and 88.47% results

respectively.

4.4.3 Low SNR Cases

It has been observed that mostly all the methods give great performance when SNR

is high. However, the real test of a method requires it to perform well under low SNR

cases. So the robustness of each of the methods was tested under low SNR conditions. For

this purpose, an analysis of the 1750 cases, with isotopic distributions having SNR range

between 2 to 4 and charge states varying from 1-25, was carried out and final outcome is

as shown in Fig 4·2d: Patterson - 53.71 %, Fourier Transform method - 72.23%, Combo-

77.66%, MF-86.06%. On the other hand, when test data comprised of isotopic distributions

having SNR greater than or equal to 4, the following accuracy was observed: Patterson



81

- 81.93%, Fourier Transform method - 93.57%, Combo - 95.79%, MF - 94.79%. Thus,

while going from high to low SNR cases, the accuracy showed the following absolute drop

- Patterson - 81.93-53.71 =28.22%, Fourier Transform method - 21.34%, Combo - 18.13%,

MF - 8.73%. These tests demonstrate that Patterson method is most sensitive to the SNR

of isotopic distribution, followed by Fourier Transform and Combo methods, while MF

approach is least sensitive, and hence, most robust with respect to SNR value.

4.4.4 Experimental Data

After doing performance analysis of the simulated data, tests were carried out on the

experimentally generated mass spectra from MALDI and electrospray experiments. A

total of 24 different mass spectra of various molecules (ECD spectra of Ubiquitin (charge

states 7 through 11), top down spectra of bovine carbonic anhydrase, myoglobin, C60)

representing 253 EIDs, with charge states ranging from 1 to 28, and SNR varying from

2 to 15, were analyzed. The complete analysis of the experimental data revealed the

performance results as shown in Fig 4·2e, which suggests that the Patterson method gave

49.60% results, Fourier Transform resulted in 51.2% correct answers, while Combo and

MF approach gave 60.72% and 84.92% results respectively. The overall performance for

each of the methods was dropped because in the simulated data, it is difficult to model

completely some of the instrumental artifacts like shift in the spectrum due space charge

(Amster, 1996), effects due to neighboring isotopic distributions, low resolution under high

pressure in the instrument etc. So the performance usually is lower with experimental data

as compared to the simulated data.

Fig 4·3 illustrates the performance characteristics of various methods in a particularly

low SNR case taken from an experimental spectrum of bovine carbonic anhydrase. Fig

4·3a shows an EID that is difficult to be detected by an eye when present as a part of the

spectrum. The true charge state in this case is 4. According to the Zmaps shown in Fig

4·3c, the assignments were as follows: zPatterson=13, zFourier=1, zCombo=2, zMF =4 with
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(a)

(b) (c)

Figure 4·3: (a) An EID from the top-down spectrum of Bovine Carbonic
Anhydrase (b) TID (red) (shifted corresponding to the maximum cross cor-
relation coefficient (r=0.5 for z=4)) plotted on the top of EID (blue) (c)
Zmaps using different methods

cross-correlation coefficient, r=0.5. Despite the fact that the cross-correlation coefficient

is low, the Matched Filter is able to make the correct assignment since the value is higher

than the corresponding value for any other charge state. Fig 4·3b shows the plot of EID

(blue) and TID (red) corresponding to z=4 that gives the best cross-correlation value.

4.4.5 Overlapping Distributions

Due to the abundance of information present in complex mass spectra, multiple isotopic

distributions are commonly observed so that they are present at the same m/z location

within the mass spectrum. A good charge state determination method is expected to

handle these complicated cases. All the methods discussed so far result in a single output

for the estimated charge state in the input signal even if it represents multiple charge

states. Thus, an important feature in the automated analysis of spectra is to locate the

position of the isotopic distribution so that it can be removed from the input signal, and

then followed by further analysis of the residual signal in order to look for any more isotopic
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4·4: (a) Input signal containing multiple EIDs (b) z=3 detected,
cross correlation coefficient, r=0.82 (c) residual after subtracting TID for
z=3 from (a) (d) z=2 detected, r=0.591 (e) residual signal (f) z=2 detected,
r=0.46 (g) Final residual signal
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distributions. None of the methods discussed above except the Matched Filter gives such

an information about the location of isotopic distribution. The Matched Filter method

works by shifting the the TID through the EID and the best “alignment” between the

two distributions results in the maximum value of the cross correlation coefficient. This

best “alignment” position indicates the position of the EID so that it can be subsequently

subtracted from the input signal and the residual signal can undergo further analysis to

detect further charge states in the spectrum.

Fig 4·4 gives an example of the case when the input signal EID (Fig 4·4a) represents

3 isotopic distributions in close proximity to each other so that it is difficult to separate

them individually even by the eye of the observer. When the Matched Filter was used to

determine that charge state, it first detected the presence of z=3 at m/z 1183.3-1185.2

(Fig 4·4b showing TID (red) plotted on EID (blue)). The detected signal was subtracted

from the input signal and the residual is shown in Fig 4·4c. When the residual (Fig 4·4c)

was subjected to the MF method again, z=2 was detected at m/z 1181.8-1184 (Fig 4·4d),

leaving behind the residual as shown in Fig 4·4e. The residual thus obtained represented

one more isotopic distribution corresponding to z=2 (Fig 4·4f), which was subtracted to

give the final residual as shown in Fig 4·4g. When Fig 4·4g was further subjected to

determination of any more charge states, none of the charge states gave the value of cross-

correlation coefficient greater than 0.4, which was assigned to be the threshold for a positive

identification for a charge state. Thus, a total of three isotopic distributions were detected

in the input signal.

4.5 Conclusions

A detailed comparison of the various methods for charge state determination has been car-

ried out. An automatic comparison of the different methods was done using 2800 simulated

isotopic distributions, with each of the charge states 1 to 30 being represented equally by

112 isotopic distributions, and SNR was varied from 2 to 15. The results indicated the fol-

lowing performance for the simulated data: Patterson - 66.5 %, Fourier Transform method
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- 81.5%, Combo method - 85.6%, Matched Filter - 89.9%. Performance comparison was

made under low and high charge state conditions separately, and the results indicated that

Patterson and Fourier Transform methods give comparable performance under low charge

states (82.4% and 83.6% respectively), while Combo (91.7%) and Matched Filter performed

much better (100%). All the methods gave relatively lower performance under high charge

state conditions since its harder to distinguish between consecutive charge states when their

values become high because the isotopic peaks become really close to each other. Patterson

method was shown to be the most sensitive to SNR value, followed by Fourier Transform,

Combo and Matched Filter method in that order. Analysis of the experimentally gener-

ated isotopic distributions revealed the following performance: Patterson - 49.6%, Fourier

Transform -51.2%, Combo - 60.7%, Matched Filter - 86.0%. Results for experimental iso-

topic distributions were also relatively lower because of instrumental artifacts which cannot

be appropriately modeled in the simulated data, making the handling of the experimental

data analysis more difficult. The information about the location of the EID is inherently

present in the intermediate results produced using Matched Filter approach. This gives

Matched Filter method an additional advantage over the previous methods which fail to

give such an information. This is especially useful when overlapping isotopic distributions

are present. Matched Filter allows for subtraction of the detected EID signals which can

be subsequently removed and the residual signal can undergo further analysis.
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Chapter 5

Algorithms for Automatic Interpretation of High

Resolution Mass Spectra

This chapter has been reproduced in part from (Kaur and O’Connor, 2006a). Copyright

2006 American Society of Mass Spectrometry.

5.1 Introduction

The wide employment of Fourier Transform Mass Spectrometry (FTMS)(Marshall and

Verdun, 1990; Amster, 1996) instruments for Matrix Assisted Laser Desorption/Ionization

(MALDI)(Karas et al., 1987) and Electrospray Ionization (ESI)(Fenn et al., 1989) ex-

periments results in thousands of high resolution mass spectra every day, creating an

information overload. Due to the high mass accuracy and resolving power of an FTMS,

MALDI-FTMS (O’Connor and Costello, 2001) and ESI-FTMS (Henry et al., 1991; Shen

et al., 2001) are becoming the instruments of choice for proteomics (Aebersold, 2003)

experiments on proteins and large fragments of proteins, so called “top-down”(Kelleher

et al., 1999; Reid and McLuckey, 2002; Zubarev et al., 1998) mass spectrometry. These

experiments tend to slow down due to the lack of sophisticated methods for automatic

spectrum analysis. Currently, spectrum interpretation is one of the biggest bottlenecks in

a proteomics experiment. Manual interpretation of such complex data is very tedious and

time consuming. While some instrument manufacturers have developed reasonably effec-

tive programs for this problem, they rarely publish that algorithm, and thus the strengths

and limitations of these methods are difficult or impossible to assess. Hence, there is need

for the development of advanced data analysis algorithms (Mann et al., 1989; Reinhold
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and Reinhold, 1992; Henry and McLafferty, 1990; Senko et al., 1995b; Senko et al., 1995a;

Zhang and Marshall, 1998; Horn et al., 2000). In this work, several new algorithms are

discussed that allow for the improved automated reduction of a high resolution mass spec-

tra into a monoisotopic peak list. The proposed name for the unified suite of methods is

Mass Spectrum Interpretation and Kernel Extraction (MasSPIKE).

The m/z ratio of most ESI product ions lies in the range of 500-5000 Daltons. Since

the same mass can have multiple charge states and there can be multiple isotopic peaks

at each nominal m/z value, a very dense, complicated spectrum can be generated. The

first attempt for automated spectrum interpretation was (somewhat erroneously) called

“deconvolution”(Mann et al., 1989; Reinhold and Reinhold, 1992; Zhang and Marshall,

1998; Henry and McLafferty, 1990). “Deconvolution” was based upon the principle that

charge states can take only integer values. It combined peaks of the same mass but dif-

ferent charge states to determine the mass of the ion. Currently, most of the published

“deconvolution” algorithms result in spurious peaks due to mis-assignment of charge states.

Furthermore, these methods generally perform poorly with low signal-to-noise ratio and

complex spectra resulting in missed peaks (false negatives). Also, most “deconvolution”

methods bias against peaks represented by only one charge state. Such cases will be poorly

represented in these deconvolution approaches, though the Z score (Zhang and Marshall,

1998) algorithm does not suffer from this drawback.

To overcome these limitations, a computer algorithm called THRASH (Thorough High

Resolution Analysis of Spectra by Horn) was developed.(Horn et al., 2000) THRASH was

the first comprehensive “non-deconvolution” algorithm that addressed the problem of re-

ducing a complex mass spectrum into a mass list with minimal human intervention. It

combines various modules of SNR (Signal to Noise) calculation, charge state determina-

tion using the Fourier/Patterson (Senko et al., 1995a) method, and least squares fitting for

determination of monoisotopic mass. It was a remarkable step towards automated spec-

trum interpretation and represents the current benchmark in the field. However, THRASH



88

is based upon certain modules that can be approached differently in order to achieve signif-

icantly better results. The work presented here aims to develop better individual modules,

and then combine them together for improved data reduction. The comparative results

are presented in each section.

5.2 Experimental

The methods are presented here, but their performance characteristics are discussed

later. All the methods are being integrated as part of the open source software package

BUDA (O’Connor, 2004) and will be available at www.bumc.bu.edu/ftms. MasSPIKE

starts with modeling the mean of the noise across the selected m/z range of the spectrum. It

then identifies isotopic distributions, marks their location, and determines the charge state

for each of the identified isotopic distributions in order to map m/z values to corresponding

mass values. Overlapping isotopic distributions are then separated, and the charge state is

assigned to each of the resolved overlapping distributions. Then each Experimental Isotopic

Distribution (EID) is aligned with its Theoretical Isotopic Distribution (TID) to arrive at

the best alignment index for the two distributions. Finally, the monoisotopic mass for each

of the resolved isotopic clusters is calculated using results from the previous steps, and

the final, minimal, monoisotopic peak list is generated. The mathematical basis of each of

these methods is discussed, and the critical equations are“boxed” for the convenience of

the reader.

5.2.1 Modeling noise

Baseline noise in a Fourier transform mass spectrum typically has white noise character-

istics. Other sources of noise include random electronic RF (Radio Frequency) interference

peaks and chemical noise due to unevaporated solvent clusters, which may make the noise

non-white. In order to detect peaks, it is critical to know noise levels in a particular region

of spectra in the m/z domain. This module aims at modeling the mean of the noise. In

order to calculate the SNR across the spectrum, noise mean is characterized as follows.
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1. Find the mean of the signal every 1 Da, with 0.5 Da overlap between consecutive

m/z windows to assure completeness

2. Every 10 Da (value can be changed by user), the window with the minimum mean is

assumed to be the noise window

3. A histogram of the intensity values in the noise window is plotted. The histogram is

then truncated to eliminate high intensity values caused by signal or RF interference

noise peaks, i.e., the histogram is truncated once the intensity occurrence values reach

less than 5% of the maximum occurrence value. Then the mean of the intensity values

corresponding to the truncated histogram is calculated and this value is defined as

the local noise value. This process is done iteratively until the mean converges. A

typical example of this procedure is shown in Fig 5·1(a) and (b). Note that this

procedure does not take into account RF interference peaks, but is designed to find

the baseline noise level. RF interference peaks will be filtered out in the subsequent

modules in order to eliminate false positives.

5.2.2 Isotopic Distribution Identification

The goal here is to identify the locations of isotopic distributions (IDs) based upon the

SNR in the spectrum. Here, an ID is identified based upon the fact that SNR for an

ID is higher than a particular user defined threshold. This principle is similar to that

used in THRASH (Horn et al., 2000), but this module defines the isotopic distribution

boundaries before assigning the charge state, instead of taking a ±0.5 Da window around

the highest intensity peak. This step is very important for good performance of charge

state determination. It is carried out by the following steps:

1. Scan the spectrum every 1 m/z unit from low m/z to high m/z

2. Check S
N in every 1 m/z window

3. S
N = max(signal)

mean(noise) , with noise value defined as above
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4. If S
N is greater than the user-defined threshold (default value=3), mark the window

as potentially containing an ID

5. Combine together consecutive potential ID windows and output: C1 (Start ID m/z

value), C2 (End ID m/z value)

6. If there is only one peak within {C1,C2} with S
N greater than the threshold, it

typically indicates an RF interference noise peak and is discarded because real mass

spectral peaks almost always have an isotopic signature.

Note that C1 and C2 are those values of m/z where the S
N hits the threshold value in the

window first and last respectively. A table of {C1,C2} values is constructed and used as

input to the charge state determination routine. A bovine carbonic anhydrase “top-down”

spectrum (Fig 5·1a) was used to test MasSPIKE and is discussed below. {C1,C2} values

for the 1103-1133 m/z region of this spectrum are plotted in Fig 5·1c as arrows below the

spectrum with the “up” arrows indicating the start, C1, and “down” arrows indicating the

end, C2, of individual IDs. If the threshold value is kept too low, some random noise spikes

may be picked, while a value too high value will miss the low SNR isotopic distributions.

So a value of threshold=3 was found empirically to be an optimal balance between the two

cases, but it can be adjusted by the user.

5.2.3 Charge State Determination

Each entry in the {C1,C2} table constructed above is subjected to the process of charge

state determination. Previously this problem has been approached by taking the Fourier

Transform, Patterson, and combination (Senko et al., 1995a) charge state maps (Z-maps)

of the isotopic distribution. These methods generally work well with good signals, but

all charge state determination methods fail under conditions of low SNR or overlapping

IDs so that these methods should be compared against each other under those conditions.

In addition, a new method using the Matched Filter (Haykin, 1994; Duda et al., 2001)
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approach has been developed and compared to the previous methods in the discussion

section.

The Matched Filter (MF) Method for Charge State Determination In charge

state determination, the goal is to design a detector for a specific known pattern (in this

case, the theoretical isotopic distribution for a particular molecular weight while varying

charge state). In pattern recognition literature, a standard method for approaching this

problem is the use of a matched filter (Duda et al., 2001). Let

E= vector representing Experimental Isotopic Distribution (EID),

T= matrix with Nz (number of possible charge states) rows, such that: Zth row of T , T (Z)

is a vector representing the Theoretical Isotopic Distribution (TID) for a given charge state

Z. T (Z) is constructed as follows. An approximate average molecular weight (MWapprox.)

can be calculated from the location of EID and the charge state, Z, under consideration

(MWapprox.=m/z×Z, where m/z is the location of the center of the EID under investi-

gation). For a given MWapprox., elemental composition is determined using the average

composition of a model amino acid, averagine (Senko et al., 1995b). Based on the elemen-

tal composition, the Mercury (Rockwood, 1996) algorithm is used to generate the peak

intensities of the TID. Peak width at half height for generating the TID is determined

from EID, the value being the same as that of the highest peak of the EID. Knowing the

peak heights and the width, each peak is generated assuming a Lorentzian (Marshall and

Verdun, 1990) peak shape. The TID is finally generated as the sum of individual Lorentzian

peaks.

Given an observation E, T (Z) vectors for all the different possible Z values are generated

as discussed above. For each charge state Z, the matched filter output is then calculated

as follows:

M(Z, n) =
L
Σ

k=−L
E(k)T (Z, k − n) (5.1)
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where L is the maximum of the lengths of E and T . This is equivalent to

M(Z, n) = E(n) ∗ T (Z,−n) (5.2)

where ∗ denotes the convolution operator. Note that this is also equivalent to taking a

cross-correlation of the EID and TID. Define

Mmax(Z) = max
n

M(Z, n) (5.3)

N(Z) = arg max
n

M(Z, n) (5.4)

where arg maxn(M(Z, n)) indicates the value of n that corresponds to the maximum value

of M(Z, n). Since the signal intensities and length of E may vary highly in a given experi-

ment, it is important to normalize both E and T while calculating the “score” of closeness

of E and T (Z). This “score” is given by the value of cross-correlation coefficient r(Z),

which is given by the following expression:

r(Z) =
Σ
i
(E(i)−ME)(T (Z, i−N(Z))−MT (Z))√

Σ
i
(E(i)−ME)2

√
Σ
i
(T (Z, i−N(Z))−MT (Z))

2
(5.5)

where ME and MT (Z) are the means of E and T (Z) respectively.

The theory of matched filters (Duda et al., 2001) tells us that the value of r(Z) will be

maximum when E and T (Z) belong to the same class, which in this case means that they

represent the same Z. So the charge state is estimated as follows:

Zest = arg max
Z

r(Z) (5.6)

This means that the charge state that corresponds to the maximum value of r(Z) can be

assigned as the estimated true charge state. This works satisfactorily provided the given

input signal E is composed of only one charge state. In practice, a given input signal
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may represent multiple isotopic distributions of different charge states. Thus, the Z values

corresponding to r(Z) greater than a certain user-defined threshold are assigned to be the

true charge states. Isotopic cluster(s) corresponding to above determined charge state(s)

are then subtracted from the observed distribution, and the residual signal undergoes the

same procedure to look for any more charge states represented by the residual data similar

to the procedure used by THRASH. The process continues till the final residual cannot be

assigned any charge state since r(Z) value is below the threshold for all values of Z. The

procedure for determining useful threshold values is discussed below.

5.2.4 Alignment between Theoretical and Experimental Isotopic Distribution

A mass spectrum does not generate a unique mass value for large molecules due to the

presence of multiple isotopes of the constituent elements. So the question arises as to what

mass value should be reported. One way is to report the chemical average mass using

average of isotopic peaks, but this suffers from the problem that carbon isotope variability

across different organisms limits the mass accuracy (Beavis, 1993; Zubarev et al., 1996)

to about 10 ppm. The most significant and accurate mass that can be reported is the

monoisotopic mass because its value is unaltered by isotopic variability. The monoisotopic

mass (M) of a molecule is the sum of the masses of the lowest mass isotope for each of

the elements present in the molecule. The relative abundance of the monoisotopic peak

decreases with increase in the molecular weight because of the increased probability for

the presence of heavier isotopes with increasing molecular mass. The monoisotopic peak is

typically not visible experimentally when molecular weight is higher than 5 kDa because

the tiny peak is buried in the noise. Thus, there is need for the development of a method

that can estimate the monoisotopic mass based upon the experimentally observed isotopic

profile. Previously, this problem was approached by Senko et al. (Senko et al., 1995b)

and Horn et al. (Horn et al., 2000) using a least squares fit between the theoretical and

experimental isotopic distribution. This method generally works well, but breaks down in

the limit of low number of ions or low SNR. This module targets at solving this problem
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rigorously by analyzing the isotopic distributions.

As discussed previously (Kaur and O’Connor, 2004), the EID can be interpreted as a

result of a multinomial experiment (with number of trials equal to the number of ions)

having multiple outcomes, each with the probability ti, where ti represents the area of each

individual peak in the TID (i.e., t0 fraction of the total ions in the cell contains no higher

isotopes, t1 fraction of the total ions contain exactly one +1 Dalton higher isotope (e.g.,

13C), etc.). Let vector E represent EID peaks areas, where ei corresponds to ti in the TID.

E is a Gaussian random vector with mean T and covariance matrix ΣN (Eq 5.8), where

T is composed of tis (0 ≤ i ≤ n), and is obtained using the poly-averagine (Senko et al.,

1995b) model and the Mercury (Rockwood, 1996) algorithm.

The probability of observing E, given that the number of ions in the cell is N, is the

given by (Poor, 1994):

P (E|N) =
e−0.5(E−T )′ΣN

−1(E−T )√
(2π)ndet(ΣN )

(5.7)

where ΣN is given by the following expression:

ΣN =
1
N



t1(1− t1) −t1t2 . . . −t1tn

−t2t1 t2(1− t2) . . . −t2tn

· · . . . ·

· · . . . ·

−tnt1 −tnt2 . . . tn(1− tn)


(5.8)

where tis are the components of T, defined by the theoretical isotopic abundances. For

big molecules, only a part of E is observed. The goal, therefore, is to align it with the
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appropriate indices of T to determine the monoisotopic mass. Thus:

P (E|N, i) =
e−0.5(E−Ti)

′ΣNi
−1(E−Ti)√

(2π)ndet(ΣNi)
(5.9)

which means that E is a Normal (Gaussian) random vector with mean Ti and covariance

matrix Σi (both mean and covariance matrix vary with the index). The index of T corre-

sponding to first “visible” value of E is estimated using a Maximum Likelihood estimator

as follows:

index = arg max
i

P (E|Ti,ΣNi) (5.10)

where

Ti = T (i, ..., i + LE − 1) (5.11)

where LE=Length of E.

This means that the first LE values of T are aligned with E, calculate the probability of

its occurrence from expression 5.9, and then T is shifted by 1, until all the possibilities have

been considered. The shift of T that corresponds to the highest value of the probability is

assigned to be the true index of the first observed value of E. This procedure is illustrated

in detail in the Results and Discussion section.

Finally, the monoisotopic mass (M) is calculated as following:

M =
m1

z
× Zest − (index− 1)× 1.00235− Zest ×M+ (5.12)

where m1
z is the location of the first “visible” isotopic peak in the EID (i.e., peak loca-

tion corresponding to YT (1)), Zest is the estimated charge state (equation 5.6), 1.00235 is

the average mass difference between the centroid of each adjacent isotopic peak for poly-

averagine (Horn et al., 2000), and M+ is the mass of the charge carrier (e.g., 1.0073 for

a proton). Assuming the experiment was run in a positive ion mode, a charge state of Z
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usually means the ion carries Z protons, so the corresponding mass of Z protons (default)

is subtracted to get M .

5.3 Results and Discussion

Fig 5·1a shows a top down spectrum of carbonic anhydrase against which MasSPIKE

has been tested. Fig 5·1b shows zoomed-in view of the baseline of Fig 5·1a and noise

mean variation as a function of m/z (white line passing through the baseline). The plot

is consistent with the variation of baseline noise in the spectrum. Noise modeling serves

to provide a noise mean value to be used in SNR calculation for the identification of ID

locations. Note that noise is not truly white (flat across m/z range), which is due to the

“chemical noise” effect caused by unevaporated solvent clusters formed by the electrospray

source.

Fig 5·1c shows the result of the ID identification module applied to one low SNR region

of the spectrum. Fig 5·1c shows the ID boundaries for the m/z range of 1103-1132 with up

and down arrows indicating the start and end of an ID respectively. Very closely spaced

IDs (e.g., between m/z 1114 and 1117) are not separated as seen in the figure. Such

cases and overlapping distributions are separated later in the charge state determination

routine. ID determination allows MasSPIKE to identify the IDs representing both low

and high charge states without bias. This method was found to correct a limitation of

THRASH, which uses ±0.5 m/z window around the maximum intensity peak for the charge

state determination, restricting the analysis to charge states greater than 2. MasSPIKE,

therefore, can be used for both MALDI (typically representing 1+ or perhaps 2+ charge

states) and electrospray (typically representing high charge states) spectra. Also, THRASH

assumes that the isotopic distribution has a symmetrical Gaussian shape around the highest

peak, which holds true for molecular weights greater than ≈5 kDa, while MasSPIKE makes

no such assumption, so is suited for any kind of ID shape.
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(a)

(b)

(c)

Figure 5·1: (a) Top down spectrum of bovine carbonic anhydrase (b)
Zoomed in view of the baseline (black), modeled noise baseline (white) (c)
Zoomed-in view of the spectrum,“up” and “down” arrows denote the start
and end of an ID respectively
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(a) Raw Spectrum

(b) Z=3 detection

(c)
smz emz Z Res Ion MIO MIT MIO-MIT

1049.136 1051.012 3 233G27 y 3144.696 3144.713 -0.018

(d) Raw Spectrum

(e) Z=3, r=0.74

(f) Z=4, r=0.64

(g) Residual

(h) Output Listing
smz emz Z Res Ion MIO MIT MIO-MIT

911.57 913.02 4 V209:L240 IFy 3642.65 3642.93 -0.27
911.76 913.29 3 237L23 y 2732.56 2732.55 0.002

Figure 5·2: (a) Experimental data from Fig 5·1 showing an ID of a bovine
carbonic anhydrase fragment (b) TID with Z=3 (top) and EID (bottom).
(c) Output listing corresponding to above fragment, y27 (d) EID from Fig
5·1 showing two overlapping distributions (e) Z=3, r= 0.74 (f) Z=4, r=0.64
(g) Residual after subtracting TIDs of (e) and (f) (h) Final output listing.
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One of the major challenges encountered in the interpretation of dense, complex spectra

is that there is a high chance that the peak of interest is affected by interfering noise peaks

or peaks from other signal components (e.g., other isotopic distributions). Fig 5·2 shows

a simple case when input signal EID (Fig 5·2a) represents only Z=3. Fig 5·2b shows the

plot of T (3) (shifted up) and EID, with shift in T (3) corresponding to maximum value of

cross-correlation coefficient (0.954) between the two. Note that r(Z) varies from 0 to 1,

so r(3)=0.954 indicates a very good match between EID and T (3). The output list from

MasSPIKE, Fig 5·2c, shows the starting and ending values of the distribution (smz,emz),

the charge state (Z), the assigned amino acid residue region (Res, given the sequence) and

ion type (Ion), as well as the observed monoisotopic ion mass (MIO), theoretical ion mass

(MIT), and the mass error in Daltons. However, this is an easy case with good SNR, and

no overlapping distributions. The real test of automated analysis methods comes at low

SNR with distorted peak shapes. Figures 5·2, 5·3, and 5·4 show a couple of such cases

extracted from Fig 5·1a. It is important to note that Figs 5·2-5·3 are drawn on the same

vertical scale as Fig 5·1a (which is normalized to 100). Thus, Figs 5·2-5·3, with highest

intensity values in the 3-15 range, represent parts of the spectrum where the SNR is the

lowest, and in particular, Fig 5·3 depicts a case where input signal came from one of the

noisiest portions of the spectrum.

Fig 5·2d shows the case when input signal represents two charge states (Z=3 and Z=4),

which share a central peak at m/z=912.3. The two charge states are successfully identified

and subtracted from the input signal as shown, with TID shifted and plotted on the top

of the EID. Note that here MasSPIKE is simultaneously detecting Z=3 and 4 (Figs 5·2e

and 5·2f) and the residual after subtraction is free of peaks (Fig 5·2g). By comparison,

THRASH proceeds by identifying the charge state represented by the combo (Senko et al.,

1995a) routine, and then subtracts the TID from the experimental data. With such an

approach, if any of the Z=3 or Z=4 is detected by the combo routine (which is likely),

the peak at m/z=912.3 (common peak to both Z=3 and Z=4) will be removed and the
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(a) Raw Spectrum

(b) Z=20

(c) Residual

(d) Z=10

(e) Z=11

(f) Z=20

(g) Residual

(h) Z=20

(i) Final Residual

Figure 5·3: Experimental data from Fig 5·1 showing an very low SNR
region of spectrum containing 4 overlapping IDs (a) Raw data (b) Z=20,
r=0.68 (c) Residual after subtraction of (b) (d) Z=10,r=0.576 (e) Z=11,
r=0.56 and (f) Z=20, r=0.65 detected simultaneously (g) Residual after
subtraction of (d), (e) and (f); (h) Z=20 (r=0.496); (i) Residual of experi-
mental signal after subtraction of (h)
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next charge state will not be assigned because the isotopic pattern is perturbed due to

subtraction. MasSPIKE attempts to find all the charge states that give cross-correlation

coefficient,r(Z), value greater than a certain threshold (default=0.45) before carrying out

the subtraction. This allows for assignment of a greater number of charge states. Note that

assignment of this threshold represents a balance between missing peaks and generation

of false positives. The default threshold value of 0.45 was empirically determined to be a

moderate value, but this value can also be altered by the user.

Fig 5·3a shows an input signal from region m/z=1380.7-1385.5 of the Bovine Carbonic

Anhydrase spectrum. MasSPIKE was used for determination of various charge states

present in the signal. In this case, four isotopic distributions are identified with multiple

distributions sharing isotopic peaks and the Z=20 distribution at m/z is identified (Fig

5·3b) and removed (Fig 5·3c). For higher charge states, especially when the sampling rate

of the spectrum is low (which is the case at higher m/z since sampling rate in m/z domain

drops as m/z increases in FTMS instruments), it is sometimes difficult to distinguish be-

tween the consecutive charge state values. For example, for the m/z region between 1381.6

and 1383.2 (Figs 5·3d and 5·3e), the method identifies the charge state values to be either

10 or 11 (though 10 is slightly more likely to be true, r=0.576, than the case of Z=11

where r=0.566). In ambiguous cases like this, a flag is marked and it is left for the user to

decide about the true charge state based on the knowledge from the protein sequence, or

supplementary information from other portions of the spectrum. Furthermore, MasSPIKE

identified two more EIDs with Z=20 in this region of mass spectrum. These masses could

not be assigned to a particular fragment ion from the given sequence. However, the ap-

proximate difference between the two higher Z=20 ion masses corresponds to the loss of

a water molecule, which commonly appears at high molecular weight. For example, the

approximate molecular weight for the EID represented by the m/z region 1383.9-1384.9

is 1384.4×20=27688, while that for the m/z region 1383-1384 is 1383.5×20=27670. The

difference of the two species (27688-27670=18) corresponds to the loss of a water molecule,
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(a) Raw Spectrum

(b) Z=4, r=0.731

(c) Residual

(d) Z=1, r=0.54

(e) Z=3, r=0.495

(f) Final Residual

Figure 5·4: (a) EID of a Bovine Carbonic Anhydrase fragment (b) Z=4,
r=0.731 (c) Residual after subtraction (d) Z=1, r=0.54 (e) Z=3 sharing 2
peaks with (d), r=0.495 (f) Residual after subtraction of assigned charge
states
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which suggests the assignment of Z=20 is correct. Also, the final residual from this region,

Fig 5·3i seems to contain one or two remaining isotopic distributions. This is an artifact

that arises due to the imperfect subtraction of TID from EID, and often happens because

of the non-ideal peak shapes of the EID in low SNR conditions as seen in Fig 5·3d and

e. Since the residual in Fig 5·3i contains an artifact and not real signal, no further charge

state assignments are generated because MasSPIKE does not yield high enough quality

assignment (cross-correlation coefficient, r>0.45) for any further charge states. Note that

EID and TID take on negative values in some cases (Fig 5·3b-i) because both the EID

and TID are normalized, which involves subtraction of the mean, while computing their

cross-correlation coefficient as shown in equation 5.5. Fig 5·4 shows the case when the

input signal represents 3 isotopic distributions (Z=1, 3 and 4), sharing multiple peaks in

the region of m/z 1221-1227.

It is important to test the matched filter method of charge state determination against

established methods in an unbiased manner. To this end, 26 electrospray spectra of myo-

globin, representing 775 isotopic distributions (resulting from charge states for the whole

molecule, water losses and phosphate adducts for the whole protein, and one contaminant

species with Z=1) with SNR of 1-100, were acquired and each m/z region corresponding

to Z=1-22 in each spectrum (regardless of the presence/absence of signal) was analyzed

by five different methods. The percentage correct answers for each method are plotted in

Fig 5·5. BUDA (Boston University Data Analysis) (O’Connor, 2004) was used to deter-

mine the charge states using the Fourier, Patterson, and combo charge state determination

methods (Senko et al., 1995a). In this analysis, the MF method gave correct answers 91%

of the time. Of the missed 77 assignments, manual post analysis showed no apparent signal

in 50 of them, and the remaining 27 misassigned the charge state by ±1.

There are certain points that need to be addressed while generating the TID. Generating

good model distributions is the key to good results. Although the sampling rate is constant

in the frequency domain, due to the inverse proportionality relation between frequency
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Figure 5·5: Comparison of different charge state determination methods
on 775 isotopic distributions from 26 electrospray spectra of myoglobin

and m/z, the sampling rate of an FT mass spectrum is not the same over the whole m/z

range, it decreases with an increase in m/z. Thus, parameters for generating good model

distributions (peak width, sampling rate, maximum and minimum possible Z (MAXZ

and MINZ)), must vary with the mass spectral region of interest, and in MasSPIKE they

are based upon the observed data and shift through the m/z range. Furthermore, it is

important to use unapodized spectra, zero filled once for the experimental data and true

line shapes for the TIDs to generate the best matches. For the TID model, the peak width

for generating the Lorentzian peaks in the TID is defined by the width of the highest

peak in the EID. MINZ is defined by the observed isotopic distribution width. e.g., If

the EID spans 1.1 Dalton, MINZ=1 but if the EID is only 0.9 Dalton wide, MINZ=2,

so that it contains at least 2 peaks. This helps eliminate most of the RF interference

noise peaks which usually consist of a single high spike. Also, special consideration is

given to the number of TID peaks involved in the resulting cross-correlation coefficient.

For example, if there is only one peak of the TID matching with the EID that results in

the maximum cross-correlation value, it is discarded as a false positive, since it is highly
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unlikely for biomolecules to have an isotopic distribution with only one peak. MAXZ is

defined by the peak width of highest peak, e.g., Peak Width at Half Height< ( 1
MAXZ ).

Sometimes, when there are many noise peaks around the main peak, a false identification

for a high charge state is generated. Filters have been added to remove these false positives

by comparing the peaks of Fourier charge state maps of the theoretical and experimental

data. Also, it is required that for a particular molecular weight, the observed isotopic

distribution should be wide enough to represent the peaks that are of intensity at least

60% or greater than the maximum intensity. For example, for an observed distribution of

molecular weight 10000, the distribution should be wide enough to encompass at least 5

peaks (> 60% of max intensity). Otherwise, it most likely arises as a false positive. These

considerations lead to reduced number of false positives and overall better performance.

Fig 5·6 demonstrates the alignment of a typical experimental isotopic distribution (Fig

5·6a) with the theoretical isotopic distribution (Fig 5·6b). The EID and TID are rep-

resented by grey and black stick plots respectively in Fig 5·6c-e. Fig 5·6c-e shows the

alignment of the EID with the TID, with the TID being shifted by 5, 6, and 7 in Fig 5·6c,

d, and e respectively. Fig 5·6f shows the probability of alignment of the EID against the

TID with varying shift of TID. A shift of 6 in TID gives the best alignment as depicted

in Fig 5·6d and 5h. The normalized probability plot (Fig 5·6h) shows that the probability

EID and the TID are aligned properly when the shift is 6 is much higher than its nearest

neighbor (index=5). These results are typical with such high SNR (≈20) clean isotopic

distributions. However, all alignment methods will work well under these conditions. It is

important to test these methods under low SNR and low ion count conditions where large

statistical variance occurs in isotopic abundance (Kaur and O’Connor, 2004).

When only 100 ions are present in an isotopic distribution, large statistical variation

in isotopic abundance occurs; A typical 100 ion isotopic distribution for myoglobin (16.7

kDa, 16+) is shown in Fig 5·6g. In order to test the ML method versus the least squares

method, 3150 Monte Carlo simulated distributions were generated with only 100 ions per
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5·6: (a) EID of myoglobin when Z=16 (b) TID of myoglobin,
Alignment of the EID with (c) TID shifted by 5 (d) TID shifted by 6 (e) TID
shifted by 7 (f) Normalized probability of alignment as a function of varying
TID indices (g) Alignment of myoglobin IDs using 3150 simulations (100
ions in each simulation) (h) A typical Monte-Carlo generated myoglobin
isotopic distribution with only 100 ions
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Figure 5·7: Final monoisotopic mass plot of Bovine Carbonic Anhydrase
(The full table of masses is included in Table 5.1)

simulation, and the two alignment methods were tested against these distributions. The

tests revealed that ML method works correctly 85% of the time, as compared to the least

squares error method which gave 76% correct results (Fig 5·6h). Note that it is more

difficult to estimate the true index when the distribution is generated by a fewer number

of ions since the EID deviates from the TID due to high variance among the isotopic peaks

as discussed in our previous work (Kaur and O’Connor, 2004).

After the determination of monoisotopic masses (as discussed above), it is desirable to

automatically assign the protein fragments that generated those masses. This requires

the knowledge of how a protein or peptide fragments in an experiment (Roepstorff and

Fohlman, 1984). MasSPIKE was used to generate theoretical masses of the b and y ions.

Internal fragment masses and masses with common losses (e.g. water loss from a molecule)
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were calculated knowing the sequence of the protein. The observed masses that match

with the theoretical masses of the whole protein and its fragments are then evaluated.

A complete analysis of the Bovine Carbonic Anhydrase spectrum revealed the presence

of 165 isotopic clusters after eliminating all false positives, which were matched to the

closest masses of b or y ions, the corresponding internal fragment ions, and some common

losses like water loss, or ammonia loss from a y-ion. The complete de-convolved spectrum

representing monoisotopic masses is shown in Fig 5·7. Only abundant peaks are labeled,

but the complete monoisotopic mass list is included in Table 5.1. Due to the high energy

used for fragmentation, the precursor ion is not observed.

One important limitation of MasSPIKE at this time is the assumption implicit in the

poly-averagine model, specifically that the molecule of interest is an “average” protein.

Clearly, this assumption fails routinely. A future modification to MasSPIKE will include

a DNA and Glycan model as well as the ability to adjust the model manually.

Conclusions MasSPIKE (Mass Spectrum Interpretation and Kernel Extraction), a suite

of data analysis algorithms, has been developed. The goal is to reduce a high resolution

mass spectrum into a monoisotopic peak list. MasSPIKE identifies isotopic peak cluster

locations, determines the charge state for each of the isotopic clusters, resolves overlapping

isotopic distributions, aligns the experimental and theoretical distributions, and gener-

ates a monoisotopic mass list. If the protein sequence is available, the calculated masses

are matched for possible assignments. The method has been applied and tested against

complex top-down spectra of Bovine Carbonic Anhydrase. The isotopic distribution identi-

fication method is able to identify and mark locations corresponding to both low and high

charge states. The Matched Filter charge state determination routine worked correctly

91% of the time for unbiased test data as compared to the standard routines (Senko et al.,

1995a), which vary from 48%-64% accuracy. MasSPIKE is capable of identifying multiple

charge states in the input signal sharing multiple peaks. Alignment of the theoretical and

experimental isotopic distributions with only 100 ions (and hence, high statistical variance)
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in the distribution gave 85% correct results as compared to 76% given by the least-squares

fitting method.
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start end Z Residues Ion type Obs. M Theo. M Error
m/z m/z (ppm)
1136.46 1137.66 1 P199:I208 IFy 1135.6250 1135.6380 11.44
803.36 805.07 2 P200:P213 IFy 1604.9200 1604.9280 5.60
755.00 756.53 3 241A19 y 2262.2720 2262.2610 4.86
792.68 794.22 3 240L20 y 2375.3560 2375.3450 4.63
1239.06 1240.44 2 Q220:L240 IFy 2475.3140 2475.2760 15.35
836.37 837.91 3 239M21 y 2506.3840 2506.3860 0.39
874.06 875.60 3 238L22 y 2619.4700 2619.4700 0.38
911.75 913.29 3 237L23 y 2732.5560 2732.5540 0.73
954.76 956.04 3 236E24 y 2861.5810 2861.5960 5.59
981.22 982.50 3 235P25 y-H2O 2940.6390 2940.6490 3.40
987.12 988.99 3 235P25 y 2958.6480 2958.6490 0.33
1049.13 1051.01 3 233G27 y 3144.6960 3144.7130 5.72
1115.82 1117.70 3 231A29 y 3344.7430 3344.7930 14.94
1299.94 1300.96 3 L210:W243 IFy-H2O 3896.9580 3897.0170 15.13
1311.61 1312.56 3 F129:T167 IFIF2-H2O 3930.1050 3930.1470 10.68
1354.52 1355.70 3 35K225 b 4057.9540 4057.9210 8.13
1092.72 1093.45 4 223K37 y 4365.3330 4365.3430 2.51
1121.24 1122.70 4 T191:N230 IFy-2H2O 4480.3850 4480.4190 7.36
1185.50 1186.77 4 220Q40 y 4737.5450 4737.5260 3.79
1209.34 1209.99 4 P213:V254 IFy 4832.5070 4832.5480 8.48
1238.81 1239.76 4 H121:T167 IFIF2 4949.6150 4949.5820 6.66
1307.33 1309.28 4 215S45 y 5225.7100 5225.7500 7.65
1322.77 1324.00 4 T86:F129 IFIF1 5286.5570 5286.5340 4.35
1355.79 1357.36 4 E212:P258 IFy 5418.8170 5418.8340 3.13
1359.86 1361.82 4 213P47 y 5435.8380 5435.8860 9.01
1088.07 1089.67 5 213P47 y 5435.8480 5435.8860 6.99
1114.01 1115.30 5 212E48 y 5564.9130 5564.9290 2.87
1392.37 1394.52 4 P200:P248 IFy-2H2O 5565.9080 5565.9630 9.88
1136.70 1137.11 5 211K49 y-NH3 5676.0320 5676.0240 1.40
1424.15 1426.35 4 G127:L182 IFIF2-H2O 5692.9450 5692.9630 3.16
1139.53 1141.30 5 211K49 y 5693.0400 5693.0240 2.81
1162.35 1163.76 5 210L50 y 5806.0910 5806.1080 2.92
1182.14 1183.38 5 209V51 y 5905.1450 5905.1760 5.24
1192.59 1194.40 5 P200:N251 IFy 5957.2000 5957.1850 2.51
1299.64 1300.46 5 204S56 y 6491.4930 6491.4880 0.77
1104.42 1105.49 6 F92:A151 IFIF2 6620.2470 6620.2220 3.77
1389.85 1391.38 5 200P60 y 6943.6910 6943.7510 8.64
1158.59 1159.32 6 200P60 y 6943.7980 6943.7510 6.76
1405.85 1407.44 5 199P61 y-H2O 7022.6830 7022.8040 17.22
1171.90 1172.91 6 199P61 y-NH3 7023.7700 7023.8040 4.98
1174.52 1176.05 6 199P61 y 7040.7520 7040.8040 7.38
1006.88 1008.22 7 199P61 y 7040.7850 7040.8040 2.69
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1409.25 1411.06 5 199P61 y 7040.7850 7040.8040 2.69
1191.40 1192.23 6 T191:Q253 IFy-H2O 7140.8530 7140.7940 8.40
1191.37 1192.72 6 198T62 y 7141.8570 7141.8520 0.70
1449.85 1451.20 5 W15:K79 IFIF1-H2O 7242.7300 7242.6590 9.80
1208.40 1209.39 6 197T63 y 7242.8390 7242.9000 8.42
1081.50 1082.24 7 193P67 y-2H2O 7560.9790 7561.0900 14.68
1261.57 1262.27 6 193P67 y-2H2O 7561.0210 7561.0900 8.99
1264.43 1265.12 6 Y192:P258 IFy-2H2O 7578.0460 7578.0580 1.58
1083.77 1085.07 7 193P67 y-H2O 7579.0580 7579.0900 4.22
1267.24 1268.94 6 193P67 y 7597.0220 7597.0900 8.95
1086.34 1087.82 7 193P67 y 7597.0700 7597.0900 2.63
1109.63 1111.12 7 192Y68 y 7760.0840 7760.1530 8.89
1294.43 1296.13 6 192Y68 y 7760.1700 7760.1530 2.19
1311.41 1312.94 6 191T69 y 7861.0540 7861.2010 18.69
1417.64 1419.34 6 S104:L182 IFIF2-H2O 8499.3290 8499.3930 7.52
1251.15 1252.00 7 184P76 y 8748.5160 8748.6190 11.77
1133.37 1133.93 8 Y50:D128 IFIF1-2H2O 9055.3460 9055.3110 3.97
1320.97 1321.88 7 T86:G169 IFIF1-2H2O 9236.6730 9236.7180 4.98
1392.70 1394.48 7 W15:D101 IFIF1-2H2O 9740.8360 9740.8090 2.66
1306.72 1307.22 8 T86:G180 IFIF1-2H2O 10442.2970 10442.2540 4.11
1075.46 1075.74 14 Y50:V186 IFIF1-H2O 15035.4400 15035.4630 1.52
1255.88 1256.65 12 Y50:V186 IFIF1 15053.2460 15053.4630 14.34
1159.35 1160.11 13 Y50:V186 IFIF1 15053.2960 15053.4630 11.02
1076.60 1077.25 14 Y50:V186 IFIF1 15053.2970 15053.4630 11.02
1369.88 1370.68 11 Y50:V186 IFIF1 15053.4140 15053.4630 3.18
1169.14 1169.84 13 W15:A151 IFIF1 15181.2470 15181.5480 19.82
1013.40 1014.04 15 W15:A151 IFIF1 15181.4750 15181.5480 4.80
804.80 805.26 19 135Q125 b 15267.6210 15267.4050 14.14

Table 5.1: Final output mass table: the output list generated by
MasSPIKE resulting from the interpretation of Bovine Carbonic Anhydrase
spectrum of Fig 5·1. All the assignments that match the given sequence
fragments within an error of 20 ppm are listed. The columns indicate the
start m/z and end m/z locations of isotopic distributions within the spec-
trum, charge state (Z), amino acid residues corresponding to the cleavage
site, ion type, observed/estimated monoisotopic mass from the spectrum,
theoretical monoisotopic mass for the fragment, and the error in ppm.
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Chapter 6

Application of MasSPIKE in the Real World

The analysis of large, biologically derived molecules, such as proteins, oligosachcharides,

DNA (Deoxyribonucleic Acid), and RNA (Ribonucleic Acid) poses significant analytical

challenges for mass spectral interpretation. This chapter is aimed at demonstrating the ca-

pabilities of MasSPIKE for assisting in interpretation of complex, information rich spectra

obtained from biologically interesting proteins such as Hemoglobin, Ras, and Transthyretin

(TTR). MasSPIKE has also been utilized to characterize a home built qQq-FTMS instru-

ment (O’Connor et al., 2006) by analyzing the experimental data originating from a variety

of proteins.

6.1 Characterization of Hemoglobin variants by Mass Spectrometry

The term Hemoglobin (Hb) is formed by the combination of heme and globin, meaning

that each subunit of hemoglobin is a globular protein (globelike proteins that are soluble

in aqueous solutions) with an embedded heme group.(Campbell, 1999; Reece, 2005) Each

heme group contains an iron atom, responsible for the binding of oxygen. Hemoglobin is

present in the red blood cells in humans and other animals, primarily for the transportation

of oxygen from the lungs to the rest of the body. The most common types of hemoglobin

contains four such subunits, each with one heme group as shown in Fig 6·1.

A commonly prevalent genetic disorder in humans is the mutation of the genes re-

sponsible for coding for hemoglobin, resulting in a group of hereditary diseases called

hemoglobinopathies. The dysfunction mechanism for hemaglobinopathies was one of the

first human diseases to be understood down to the molecular level. However, not all
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Figure 6·1: 3-D structure of human hemoglobin. The four subunits are
shown in red and yellow, and the heme groups in green

such mutations manifest themselves as a disease, and are formally termed as hemoglobin

variants.(Campbell, 1999; Reece, 2005) DNA analysis is commonly employed for clinical

disease diagnosis. However, such an analysis alone may not be able to detect important

Post-Translational Modifications (PTMs) at the molecular level, necessitating the use of

protein sequence analysis using mass spectrometry.(McComb et al., 1998; Caruso et al.,

2004)

As part of a Cardiovascular Proteomics Center collaboration, several hemoglobin variants

were tested by mass spectrometry. Genetic analysis of a blood sample from a patient had

previously found the alpha chain to be normal, without any mutations. Analysis of the

same blood sample revealed heterozygotic mutation of hemoglobin beta chain codon 6 into

GTG, indicating a mutation, commonly associated with sickle cell anemia, which means

glutamic acid had been replaced by valine (Glu6→Val). Isoelectric focusing (IEF) gel

electrophoresis analysis resulted in a band pattern abnormally shifted to a lower pI range
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Figure 6·2: ESI spectrum of intact hemoglobin chains from a non diseased
sample. Different charge states of alpha chains are marked as blue, while
those for beta chains are shown in red.

compared to that of Hb S (2βs+2α) and Hb A (2β+2α). The pI shifts were not explainable

by the sickle mutation alone, indicating the possibility of additional modifications which

went undetected by DNA analysis. This led to the current study of systematic investigation

to explore the variations using mass spectrometry.(Huang et al., 2007; Huang et al., 2005)

The custom ESI qQq-FTICR-MS instrument with a nanoelectrospray ion source was

used for all the experiments presented here.(O’Connor et al., 2006) First, the blood sam-

ple containing normal hemoglobin chains was analyzed using MasSPIKE, and the intact

masses of alpha and beta chains were determined within 4 ppm as shown in Fig 6·2. An

18+ charge state of alpha chain at an m/z value of 841 was subjected to top-down analy-

sis using collisionaly-activated-dissociation (CAD), and the resulting spectrum is shown

in Fig 6·3. Automated analysis of the spectrum using MasSPIKE yielded an assign-

ment of the monoisotopic mass list to C-terminal ions (called b ions), N-terminal ions
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Figure 6·3: Q2 CAD spectrum of the Q1 isolated alpha chain 18+ at m/z
841

Figure 6·4: SORI-CAD spectrum of the Q1 isolated beta chain 16+ at
m/z 992
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Figure 6·5: NanoESI-FT-MS of the patient Hb sample with labeled charge
states. The inset, an expansion of the range m/z 820 to 845, shows the six
species present in this sample all at a charge state of 18+. The monoisotopic
mass value of the 18+ charge state of the major species (labeled II, at m/z
832.594) was evaluated to be 14960.7143, which matches that of the alpha
chain minus the mass of an arginine residue (14960.7839).

(y ions),(Roepstorff and Fohlman, 1984) and the internal fragments, showing an extensive

sequence coverage. C-terminal ions are marked in red, N-terminal ions are marked in blue,

and the internal fragments are represented in green in Fig 6·3. A similar automated analy-

sis of a top-down spectrum of normal beta chain of charge state 16+ at m/z location of 992

(15857.2496 Da) yielded results shown in Fig 6·4, with the monoisotopic masses assigned

to the appropriate fragment ions.

MasSPIKE was used to determine the position of isotopic clusters, to assign the charge

states to each isotopic distribution, and align the experimental isotopic distribution against
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Table 6.1: Mass determination of hemoglobin and variants/modifications

the theoretical isotopic distribution of an “average protein”(Senko et al., 1995b). The

intact masses identified six different species present in the sample, as shown in Fig 6·5

and Table 6.1, which includes beta sickle mutation with an error of 1.2 ppm, confirming

earlier results from genetic analysis. An experimental mass of 14960.7143 was detected

for the most abundant species in the spectrum, as compared to the theoretical mass of

15116.8204 for the normal alpha chain, indicating a mass shift of -156.106. One of the

possible explanations for this shift in observed mass is the loss of an ariginine residue from

the alpha chain, with an error of 4.6 ppm. The top-down MS/MS analysis of the isolated

ion with the 18+ charge state at m/z 832 (14960.7839 Da) indeed confirmed it to be an

alpha chain derivative.

The hemoglobin sample was subsequently digested with Endoproteinase AspN, and the

resulting digests were subjected to nano-ESI-FTMS (Fig 6·6) to confirm and localize the

arginine deletion on the alpha chain. The AspN hemoglobin peptide mass mapping yielded

full sequence coverage of the alpha chain, including the detection of the sickle mutated

peptide βs-D1, as well as two peptides (αˆD9 and αˆD7-9) that were consistent with an

Arg truncation at the extreme C-terminus of the alpha chain (Fig 6·6). Because αˆD7-9 is

a large peptide with two missed cleavages, multiple charge states (6+, 7+, and 8+) were

observed for this peptide. The doubly charged ion at m/z 830 was isolated for MS/MS
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Figure 6·6: Accurate AspN peptide mass mapping by ESI-FT-MS. Peptide
ions are labeled with their globin chain of origin (blue, alpha; red, beta;
green, gamma), amino acid interval, charge state, and water adducts. Ions
of the peptide βs-D1 containing the beta sickle mutation were detected
(labeled [βs D1]2+ and [βs D1]3+). High coverage of truncated alpha chain
(96%), beta chain (97%), and beta sickle chain (97%) was obtained. Ions
of the truncated alpha peptides D9 and D7-9 were detected in multiple
charge states (boxed labels [αˆ D9]2+, [αˆD7-9]5+, [αˆ D7-9]6+, [αˆ D7-
9]7+). αˆdesignates Arg-141 truncated alpha chain.

sequencing, and SORI-CAD (Sustained Off Resonance Irradiation Collisionally Activated

Dissociation)(Gauthier et al., 1991) was applied to fragment it generating tandem mass

spectrum shown in Fig 6·7. A series of b and y ions were detected that matched those of

the truncated alpha peptide D9 as shown in Fig 6·7. Moreover, LC-MS and MS/MS of this

sample also detected and sequenced the same truncated alpha D9 peptide, which further

confirmed the loss of the arginine from the alpha chain C-terminus.(Huang et al., 2005;

Huang et al., 2007)

C-terminal Arginine has been found to play an important role for salt bridge formation

in hemoglobin, and its removal can have important medical implications. Higher oxygen

affinities have been reported for hemoglobin molecules missing the C-terminal arginine

residue in the alpha chain, or the beta chain with C-terminal histidine deletions.(Kavanaugh

et al., 1995; Bettati et al., 1997) Thus, in the sample under investigation, the removal of
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Figure 6·7: Tandem mass spectrum over the range m/z 700 to 1450 of the
fragment ions after the αˆ-D9 peptide ion was subjected to SORI-CAD.
Fragment ions are labeled with their b and y ion assignment . The recon-
structed sequence of the truncated alpha chain D9 peptide containing the
truncation of Arg-141 is shown inset above the spectrum and includes flags
that designate the detected b and y ions.

C-terminal arginine would be expected to increase the molecule’s oxygen affinity, and

may have significant clinical implications for the patient. However, the possibility of this

truncation having occurred ex-vivo due to proteolysis cannot be excluded.

Overall, MasSPIKE has been utilized for the identification of a sickle mutation of

hemoglobin beta chain (Glu6 replaced by Val), successfully confirming the genetic analysis

results. Automated interpretation results revealed six different variants of alpha and beta

chain, and indicated an important molecular structural change resulting from the trunca-

tion of C-terminal arginine residue from alpha chain. The results have been verified using

different approaches. The methodology can serve as a useful diagnostic tool for clinical

applications.
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6.2 Mapping Oxidative Post-Translational Modifications (PTMs) of hu-

man P21Ras using FTMS

The Ras proteins are small guanine nucleotide exchange proteins that play an important

function of signal transduction for the regulation of a number of cellular processes such

as cell growth, differentiation, and apoptosis.(Shields et al., 2000; Campbell et al., 1998;

van der Schroeff et al., 1990) They cycle between the inactive GDP-bound state and the

active GTP-bound state regulated by guanine nucleotide exchange factors and GTPase-

activating proteins.(Boriack-Sjodin et al., 1998; Vetter and Wittinghofer, 2001; Scheffzek

et al., 1997) These regulatory proteins bind to ras and regulate the exchange of GDP with

GTP. The gene coding for Ras is one of the genes most commonly mutated in human

tumors.(Shields et al., 2000; Campbell et al., 1998) In cancerous cells, the Ras protein

has been found to be trapped in the “on” position and continues to stimulate cell growth.

Thus, it is an important potential target for pharmaceutical therapeutic intervention in

cancer.

Ras can be modified and activated by reactive nitrogen species (RNS), including ni-

tric oxide (·NO), nitrogen dioxide (·NO2), dinitrogen trioxide (N2O3), and peroxynitrite

(ONOO−·), as well as reactive oxygen species (ROS), such as superoxide anion radical

(O−·

2 ) and hydrogen peroxide (H2O2).(Stamler et al., 2001; Jaffrey et al., 2001; Eu et al.,

2000; Sun et al., 2001; Klatt and Lamas, 2000; Adachi et al., 2004; Heo and Campbell,

2004; Mallis et al., 2001)

Peroxynitrite anion (ONOO−·), the product of the reaction between superoxide anion

(O−·

2 ) and nitric oxide (·NO),(Radi et al., 1991; Koppenol et al., 1992) is a potent oxidant

formed in endothelial cells which oxidizes a wide range of biological targets.(Radi et al.,

1991; Beckman et al., 1990; Moreno and Pryor, 1992) Ras activity is potentially modulated

by reversible as well as irreversible oxidative post-translational modifications. In particular,

four surface cysteines (C118, C181, C184 and C186) with reactive thiol groups can regulate
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H-ras activity in response to oxidative modifications.

Glutathione (GSH), a tripeptide γ-glutamyl cysteinyl glycine, is oxidized by ROS/RNS to

glutathione disulfide, GSSG. In mammalian cells, GSH is the most abundant low molecular

weight thiol, and thus it frequently binds to protein thiols to form mixed disulfides, a process

termed S-glutathiolation. S-glutathiolated Ras (GSS-Ras) has been suggested to take part

in cellular regulation.(Klatt and Lamas, 2000; Adachi et al., 2004) It has been generally

accepted that S-oxidation, S-nitrosation, and S-glutathiolation of Ras is involved in cell

signaling,(Kuster et al., 2005; Teng et al., 1999) but the relative importance by which these

modifications directly regulate activity is not well understood. Moreover, there have been

limited studies of structural characterization of post-translational modifications on full-

length Ras protein. In general, PTM mapping for large proteins is challenging biologically,

chemically, and technically due to the sub-stoichiometric level of modifications and their

labile nature. This study was focused on structural characterization of oxidant-induced

PTMs on p21ras in order to generate a complete PTM map of p21ras. The number of

glutathiolated cysteines in p21ras treated with oxidized glutathione disulfide (GSSG) was

determined by the intact mass difference between glutathiolated p21ras and the control

sample, and the major site of S-glutathiolation was identified by top-down analysis.(Zhao

et al., 2006) This structural information will aid in understanding the function of p21ras.

Unmodified Ras Fig 6·8A (left) shows the ESI spectrum of a sample of intact puri-

fied p21ras prepared in the presence of DTT (dithiothreitol). The resolved experimental

isotopic distributions of several high abundance peaks were aligned against the model iso-

topic distribution (dots) using MasSPIKE for the evaluation of the monoisotopic molecular

weight (MI), which was determined to be 21284.4032 Da, consistent with the theoretical

mass of intact p21ras, 21284.5511 Da. This 7 ppm difference is within the expected error

range of ≈5-10 ppm for externally calibrated FTMS data. When comparing the mass of

intact p21ras protein prepared in the absence (Figure 6·8B), or in the presence of DTT

(Figure 6·8A (left)), a 2 Da mass difference was detected, suggesting the presence of a
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Figure 6·8: A. (left) ESI spectrum of purified unmodified p21ras treated
with DTT. (right) ESI spectrum of purified p21ras treated with peroxyni-
trite. Inset shows m/z 1185 - 1230. B. ESI spectrum of purified unmodified
p21ras that is not treated with DTT.

disulfide bond. Because the p21ras sample was purchased in buffer containing DTT, this

disulfide bond probably re-formed after removal of the DTT by dialysis.

In order to localize this disulfide bond, these two samples were digested using trypsin. A

peptide spanning amino acids 170-185 including Cys 181 and Cys 184 was identified in both

samples which was 2 Da lighter in the sample without DTT than in the sample treated

with DTT. Q2 CAD MS allowed localization of a disulfide bond to the two cysteines of the

peptide.(Zhao et al., 2006)

Peroxynitrite (PN) treated p21ras The Ras sequence suggests that oxidative modifi-

cations could happen on many different sites such as methionines, cysteines, and tyrosines.

The ESI spectrum of the intact purified p21ras treated with a 10-fold excess peroxynitrite

is shown in Figure 6·8A (right). Due to the complex and heterogeneous oxidative modifi-

cations on p21ras, the spectrum yielded a signal to noise ratio <5 despite several steps of
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Figure 6·9: Top down spectra of p21ras. A. ESI spectrum of purified
glutathiolated p21ras. B. CAD MS/MS spectrum and C. ECD MS/MS
spectrum on isolated +19 singly glutathiolated p21ras. The peak labeled
with ∗ indicates electronic noise.

sample cleaning. The isotopic distribution of individual charge states cannot be resolved.

Top-down analysis is very difficult under such conditions. Thus, the bottom-up approach

was employed for further analysis of this sample.(Zhao et al., 2006) Figure 6·10A plots the

modifications detected in peroxynitrite-treated p21ras including irreversible methionine,

tyrosine, and cysteine oxidations. Five methionines (M1, M67, M72, M111, M182) were

oxidized and five tyrosines (Y4, Y40, Y96, Y137, Y157) were nitrated. Cys118, which re-

sides in the “NKCD” loop, the GTP binding site, was oxidized. Cys118 sulfenic acid (SOH),

sulfinic acid (SO2H), sulfonic acid (SO3H), and S-nitrosothiol (SNO) were all observed.
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S-Glutathiolated p21ras Figure 6·9A shows the ESI spectrum of intact glutathiolated

p21ras which shows at least three groups of charge state distributions. Compared to

the ESI spectrum of unmodified p21ras in Figure 6·8B, the most intense charge state

distribution, whose monoisotopic molecular weight (MI) was 21257.4387 Da (+18 charge

state), indicated one glutathione addition to the p21ras and the other two indicated two and

three glutathione additions, respectively. For the triply glutathiolated p21ras, the disulfide

bond at Cys 181- Cys-184 was cleaved. For the bottom-up experiments on tryptic peptides,

all the cysteines, including the terminal three cysteines were glutathiolated (Figure 6·10B),

although it is possible that some of them were formed by exchange of disulfide bonds

between GSSG and p21ras protein/tryptic peptides during sample digestion. Although

with bottom-up data, it is impossible to determine which cysteine is the major site of

glutathiolation on p21ras, this difficulty is solved with top-down analysis, in which the

specific intact modified protein ions can be selectively isolated and fragmented. The major

glutathiolated p21ras ion (Figure 6·9A) was isolated by Q1 and then directly fragmented

in Q2 by CAD and in the ICR cell by Electron Capture Dissociation (ECD) and the

resulting spectra are shown in Figure 6·9B and Figure 6·9C. Although only 64 of 188 inter-

residue bonds were cleaved, the fragment ions provided enough information to localize the

modification. The CAD spectrum in Figure 6·9B did not show any glutathiolation on

the b112 fragment ion but b131 did include one glutathiolation indicating that a cysteine

between amino acid 112 and 131 from the N-terminus was involved. Similarly, the ECD

spectrum in Figure 6·9C, showed no glutathiolation at z38 but showed one at z79, indicating

that the glutathiolation was on a cysteine between amino acid 38 and 76 from the C-

terminus, thus identifying the site as C118. Therefore, these data identify C118 as the

site of most abundant glutathiolation in GSSG-treated p21ras. Thirty-two cleavages (b6-9,

b18-20, b29-31, b47, b51-55, b109, b112, b131, b137, b177, y31, y123, y126, y129, y131-

133, y135-136, y179, y187) were obtained in CAD top-down analysis, 46 cleavages (c4-9,

c11-27, c29-35, c37-38, c41, c46, c57, c68-69, c83-84, c87, z5-6, z11-12, z38, z76) were

obtained in ECD top-down analysis, and 4 complementary pairs (b53 and y136, b54 and
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Figure 6·10: A. Map of oxidative post-translational modifications de-
tected on peroxynitrite-treated p21ras. B: Detected modifications on
glutathiolated- p21ras. The most abundant glutathiolation on C118 con-
firmed by top-down analysis is labeled with ∗. C: Top down map of the
major singly glutathiolated p21ras. The cleavages labeled with & include
C118 glutathiolation.

y135, c57 and y132, b177 and z12) were obtained, resulting in 100% sequence coverage on

the singly glutathiolated p21ras. Also, the consecutive sequence tags such as c11-27 and

c29-35 with ≈2 ppm mass accuracy is more than sufficient to unambiguously assign the

protein identity.

In order to further analyze Cys118-SSG, the 103-123 peptide with glutathiolated C118

was isolated by Q1 from the digestion mixture and fragmented using low energy (15-25

eV) CAD and a ECD MS/MS experiments. The fragment map confirmed the Cys118-SSG

modification.(Zhao et al., 2006) The detailed results of these studies are plotted in Figure

6·10.

In conclusion, MasSPIKE has been employed for the automated interpretation of spec-

tra indicating complex modifications in peroxynitrite-treated p21ras. Interpretation re-

sults revealed many oxidative modifications and some low abundance modifications such
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as Cys118-SNO, Cys118-SOH and Cys118-SO2H. In addition, five oxidized methionines,

five nitrated tyrosines, and at least two oxidized cysteines, including Cys-118 and one of the

terminal cysteines, were identified. MasSPIKE confirmed the structure of the most abun-

dant oxidative modification on Cys-118, Cys118-SO3H, using experimental data from low

energy CAD and ECD MS/MS experiments. From top-down analysis, Cys-118 is identified

as the major glutathiolated cysteine on p21ras. Mass accuracy of the final monoisotopic

mass list for peptides or fragment ions was ≈2 ppm with internal calibration, except for

some very weak peaks (signal/noise < 5) for which accuracy suffers due to noise distor-

tion of the peak shapes. This high mass accuracy helps for both protein and peptide

identification.

6.3 Top-down analysis of Transthyretin using ESI FTMS

Transthyretin (TTR) is a 55 kDa homotetramer with a dimer of dimers configuration

that is synthesized in the liver. Each monomer is a polypeptide chain consisting of 127

amino acid residues. Amino acid substitutions resulting from gene mutations in monomeric

TTR are hypothesized to destabilize the tetramer and cause the TTR to form interme-

diates that self-associate into amyloid fibrils. A substitution of valine by methionine at

position 30 (TTR Val30Met) is the mutation most commonly found in Familial Amyloid

Polyneuropathy (FAP). A position 122 substitution of valine by isoleucine (TTR Val122Ile)

is carried by 3.9% of the African-American population, and is the most common cause of

Familial Amyloid Cardiomyopathy (FAC). Familial transthyretin amyloidosis (ATTR) is

associated with the deposition of TTR variants as amyloid fibrils in various organs and

tissues,(Lim et al., 2002) causing neurodegeneration and organ failure. Since TTR is pri-

marily produced in the liver, current treatment of ATTR involves the replacement of a

liver containing a mutant TTR gene with a normal gene in order to replace the mutant

TTR in the body. Correct diagnosis is critical in early stages of the disease to avoid the

complicated liver transplantation procedure.
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Figure 6·11: Fragment ion mass spectrum obtained from the Q2 CAD of
the 15+ charge state of wild type TTR

The clinical significance of TTR inspired the current investigation of the protein se-

quencing using mass spectrometry.(Theberge et al., 2005) A custom hybrid ESI qQq-FTMS

(O’Connor et al., 2006) was used to sequence the wild type TTR by pre-selecting the 15+

charge state of the intact protein and subjecting the accumulated ions to fragmentation

using CAD in the quadrupole generating the spectrum (Fig 6·11). The spectrum was

dominated by two complementary fragment ions, b42 and y85, providing the complete se-

quence coverage. The high abundance of these species was expected since it results from

the cleavage of the relatively weak glutamic acid-proline bond between positions 42 and

43. The complete automated interpretation of the spectrum yielded the mass assignments

to the fragments as shown in Fig 6·11.

Tandem mass spectrometry approach was also used to characterize a Val30Met mutation

responsible for Familial Amyloid Polyneuropathy, a form of Paramyloidosis. The variant

and wild type protein were pre-selected for Q2 CAD. The CAD spectrum thus obtained

(Fig 6·12) exhibited the peaks corresponding to b42 fragment and b42+32 Da peaks not

present in the wild type TTR CAD spectrum, which is consistent with Val30Met muta-
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Figure 6·12: Q2 CAD spectrum of m/z 924 (charge state 15+) from both
Val30Met variant and wild type TTR

tion. The isolation and SORI CAD fragmentation of the b42 fragment bearing the variant

localized the variant position to 19-32 but did not yield data that specified the mutation

site. Efforts are ongoing to explore further the mutation site of the b42 fragment using

other complementary fragmentation mechanisms such as ECD.

A similar approach was successfully used to analyze a TTR sample containing Val122Ile

mutation by isolating y85 produced from Q2 CAD of m/z 924 to undergo SORI CAD to

yield sequence information localizing the mutation site to 122 (Fig 6·13). An immunoglob-

ulin light chain involved in primary amyloidosis (AL) was also investigated. The protein

isolated from the urine of a patient was analyzed using the same method that was applied

to TTR variants. Q2 CAD followed by SORI CAD was necessary to generate fragmenta-

tion of this 23 kDa protein, probably due to the presence of intermolecular disulfide bonds

(Cys23 to Cys88 and Cys134 to Cys194). Fragmentation was observed to occur almost

exclusively the middle of the molecule.



129

(a)

(b)

Figure 6·13: (a) Fragment ion mass spectrum obtained from the SORI
CAD of the Y85 fragment generated by Q2 CAD of the 15+ charge state
of Val122Ile TTR immunoprecipitated from patient serum. (b) Expanded
mass scale of (a) to show C-terminal fragmentation. ∗ indicates electronic
noise.
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Wild type TTR, Val30Met, and Val122Ile variants have been investigated using top-

down spectrometry and the resulting spectra were subjected to MasSPIKE for interpre-

tation.(Theberge et al., 2005) MasSPIKE was able to localize the Val30Met mutation to

positions 19-32, and identified the correct mutation site for Val122Ile variant. Automated

analysis of immunoglobulin light chain again revealed the fragmentation pattern to dom-

inate at the middle of the molecule. This is an ongoing project, with the efforts directed

towards obtaining more sequence information for immunoglobulin light chain, and localiz-

ing the mutation site for Val30Met mutation. This constitutes a useful clinical application

of top down mass spectrometric analysis.

6.4 Testing new mass spectrometry instrumentation

MasSPIKE has also been used for the analysis of a number of proteins that were used to

characterize custom qQq-FTICR mass spectrometer (O’Connor et al., 2006), designed for

the study of post-translationally modified proteins and for top-down analysis of biologically

interesting protein samples.(Jebanathirajah et al., 2005) The performance of the instrument

was evaluated for the analysis of a commonly occurring, but challenging post-translational

modification, phosphorylation.

Top-down sequencing was performed on various proteins, including commercially avail-

able ones and biologically derived samples such as the human E2 ubiquitin conjugating

enzyme, Ubch10.(Jebanathirajah et al., 2005) Sometimes, a cloning site can shift the open

reading frame (ORF), resulting in changes in protein size/sequence. In the case of Ubch10,

the 5’ cloning site was not well characterized by nucleotide sequencing methods and re-

striction enzyme mapping. However, with the availability of the translated product, the

protein Ubch10, it was possible to obtain information about the 5’ cloning site. The ac-

curate assignment of masses for MS and MS/MS spectra enabled verification of the sites

used for the cloning and identified the 5’ linker region N-terminal to the C-terminal His-

tag that had been introduced to facilitate purification. A good sequence tag was obtained
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for the human recombinant protein Ubch10, allowing the unambiguous identification of

the protein. A total of 40 fragment ions were identified from the spectrum, covering the

complete sequence of the protein. Twenty one unique ions (17 y-ions and 4 b-ions) were

identified after taking into account the multiple charge states for the same fragment ion.

Unfortunately, a number of ions could not be identified in this spectrum. Some of these

ions could be a result of incomplete desolvation in the source or secondary fragmentation

in Q2.

6.5 Conclusions

The use of MasSPIKE has been demonstrated under a variety of practical applications.

Results from hemoglobin spectra included two major modifications on the protein. The

beta chain was found to be modified as beta sickle, confirming the earlier genetic analysis

results. Investigation of alpha chain led to the conclusion that the last residue arginine was

missing from the sequence, resulting in truncated chain. This can have important clinical

implications, participating in the pathophysiology of an individual.

Ras proteins have been found to be commonly responsible for human tumors. The func-

tionality of Ras proteins is strongly influenced by their oxidation state. With the assistance

of MasSPIKE, a map of oxidative post translational modifications of Ras proteins has been

drawn, using a combination of bottom-up and top-down protein sequencing approaches.

Many oxidative modifications including some low abundance modifications were identi-

fied. Five oxidized methionines, five nitrated tyrosines, and at least two oxidized cysteines,

including Cys-118 and one of the terminal cysteines, were identified. Most abundant ox-

idative modification was found to be on Cys-118, as Cys118-SO3H, which was confirmed

by low energy CAD and ECD MS/MS experiments. Top-down analysis confirmed that

Cys-118 is the major glutathiolated cysteine on p21ras.

Mutations in transthyretin (TTR) protein have been hypothesized to destabilize the

structure of the protein and causing the TTR to form intermediates that self-associate into
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amyloid fibrils, resulting in a disease called familial transthyretin amyloidosis. Interpre-

tation of the top down mass spectrum of wild type TTR revealed major fragmentation

species of b42 and y85 resulting from the cleavage of the bond between glutamic acid and

proline at positions 42 and 43 respectively. TTR samples of patients with Val30Met and

Val122Ile variants were analyzed to characterize the mutations. MS/MS analysis of y85

ion of Val122Ile mutant was able to identify and localize the site of mutation.

The characteristics of a home built qQq-FTICR instrument have been studied by means

of analyzing a number of proteins, including commercially available and biologically rele-

vant proteins such as human E2 ubiquitin conjugating enzyme, Ubch10. Interpretation of

Ubch10 spectra was able to identify the cloning site, and a good sequence tag was obtained.

A total of 40 fragment ions were identified, enabling the complete sequence coverage.

All the results were obtained using MasSPIKE in an automated manner, illustrating its

utility for real world proteomics applications.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

A mass spectrum presents an information rich volume of data useful to researchers in

multiple disciplines. In order to be meaningful and usable, this data needs to be “mined”

or transformed into an appropriate form, often by reducing the dimensionality of data

by several orders of magnitude. The type of transformation is highly dependent upon

the application of interest, and the complexity of data in a mass spectrum makes the

transformation process highly challenging. This dissertation has been directed towards

designing reliable methods to automate these transformations, with the goal of eliminating

the time consuming, inefficient, somewhat unreliable, tedious, and sometimes impossible

task of manual interpretation.

A number of problems have been addressed that require sophisticated spectral analysis

techniques. These include estimation of the number of ions generating an isotopic distri-

bution in a mass spectrometry experiment, determination of high-precision isotope ratios

from experimental isotopic distributions, development and comparison of charge state de-

termination methods for high resolution mass spectra, and development and integration

of algorithms for mass spectral interpretation into a suite of algorithms called MasSPIKE

(Mass Spectrum Interpretation and Kernel Extraction). MasSPIKE has been applied to a

variety of biologically interesting and challenging proteins.

Estimation of the number of ions generated in a mass spectrometry experiment is re-

quired to determine instrumentation parameters such as ionization efficiency, ion transfer
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efficiency, collision induced dissociation efficiency, ion trapping efficiency, preamplifier de-

tection limit, etc. An approach has been developed for estimating the total number of ions

in a mass spectrometry experiment by observing the statistical variation of the resulting

experimental isotopic distributions in the mass spectra. The maximum likelihood estima-

tor in conjunction with the non-random parameter estimation method has been used to

establish the mathematical relationship between the number of ions and the experimen-

tally measured variation in the resulting EID. The theory has been first tested in silico for

performance evaluation. Increasing the number of observations has been shown to greatly

improve the estimate since the estimator gets more information. The estimator shows a

positive bias and mean square error which depend upon the quantity being estimated, i.e.,

number of ions. The bias and mean square error drop substantially with increase in the

number of observations. The estimator gives best performance in the limit of low num-

ber of ions. In general, determination of ionization efficiency, preamplifier detection limit,

etc. requires working with a low number of ions so that the improved accuracy of the ML

estimator under those conditions is advantageous. Experimental spectra were subjected

to ion estimation analysis to characterize the sensitivity of the preamplifier used in the

mass spectrometer. This approach is independent of the type of instrument used, and can

be used for any kind of isotopically resolved mass spectrum. It is capable of showing a

factor of 2 improvement over a previously developed method, depending on the number of

observations used for the calculation.

Isotope variability due to natural processes provides important insights into a variety of

complex natural phenomena ranging from the origins of a particular sample to the traces

of biochemical reaction mechanisms. These measurements require very high-precision de-

termination of isotope ratios of the particular element involved. A computational method

has been developed and tested for estimating the elemental isotopic abundances from the

observed isotopic distributions. Increasing the number of ions generating the isotopic dis-

tribution results in a much improved estimate. Higher molecular weights are particularly
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advantageous for an accurate estimate since the higher number of carbon atoms and iso-

topic peaks observed provide a greater amount of information. However, higher molecular

weights also need a higher number of ions in order for the experimental isotopic distribution

to converge to its theoretical counterpart, which is a must for reliable results. This method

is applicable for isotopically resolved spectra from any kind of instrument. It eliminates

some of the limitations experienced by the conventional isotope ratio mass spectrometry

by providing a greater flexibility about the kind of samples that may be utilized for the

analysis, and makes the high resolution instruments such as Fourier transform mass spec-

trometer available for isotope ratio analysis. Any perturbations in the experimental isotopic

distributions must be avoided. Such perturbations may arise due to various sources such as

electronic noise, chemical noise, influences from overlapping isotopic distributions, intensity

artifacts due to bias in quadrupole voltages, etc. For optimal results, experimental isotopic

distribution must have minimal artifacts due to the subtle nature of the measurements.

Since mass spectrometers measure mass/charge ratio rather than mass, determination of

charge state is crucial for the determination of mass. Charge state determination requires

accurate estimation of the m/z difference between adjacent isotopic peaks. This poses

a difficult problem under conditions of low signal-to-noise and when isotopic clusters are

poorly resolved. A new method for charge-state determination using the Matched Filter

approach has been developed and compared in detail with the established methods under

various conditions. An automated comparison of the different methods was done under

various conditions using 2800 simulated IDs. Overall, the following performance results

were obtained: Patterson - 66.46 %, Fourier Transform method - 81.5%, Combo method -

85.57%, MF - 89.96%. Comparison was made under low and high charge state conditions

separately, and the results indicated that Patterson and Fourier Transform methods give

comparable performance under low charge states while Combo and MF performed much

better. The Patterson method was observed to degrade in performance most rapidly as

signal-to-noise decreased, followed by Fourier Transform, Combo and MF method in that
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order. Analysis of the experimentally generated IDs revealed the following performance:

Patterson - 49.6%, Fourier Transform - 51.2%, Combo - 60.72%, MF - 86.06%. Matched

filter is capable of providing the information about the locations of experimental isotopic

distributions, which is particularly useful for resolving overlapping isotopic distributions.

This gives MF an additional advantage over the previous methods.

Automatic spectral interpretation has been one of the biggest bottlenecks in a mass spec-

trometry experiment, and, hence, limits the potential of mass spectrometry. This is because

reliable and efficient automated analysis of spectra is a highly challenging computational

problem. Algorithms have been developed to approach this problem, and integrated into

a suite called MasSPIKE (Mass Spectrum Interpretation and Kernel Extraction). The al-

gorithms are aimed towards reducing a high resolution mass spectrum into a monoisotopic

peak list. MasSPIKE proceeds by modeling the noise across the mass spectrum, identifies

the locations of isotopic distributions, determines the charge state for each of the isotopic

clusters, resolves overlapping isotopic distributions, and aligns the experimental and the-

oretical distributions, and the final result is a monoisotopic mass list. Modeling of noise

is done by analyzing the baseline of the spectrum across the whole m/z range. Isotopic

distributions are located based upon the signal-to-noise ratio within the spectrum. The lo-

cated isotopic distributions are subjected to charge state determination using the matched

filter approach, and overlapping isotopic distributions are resolved from each other. The

Matched Filter charge state determination routine worked correctly 91% of the time for

test data as compared to 64% for standard combo routine. The observed and theoretical

isotopic distributions are subsequently aligned against each other for the determination of

monoisotopic mass, generating the final mass list. Alignment of the theoretical and exper-

imental isotopic distributions with only 100 ions (and hence, high statistical variance) in

the distribution gave 85% correct results as compared to 76% for the least-squares fitting

method. If the protein/peptide sequence representing the spectrum is known, the calcu-

lated masses are matched for possible assignments. The suite has been applied and tested
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against complex top-down spectra of Bovine Carbonic Anhydrase.

The utilization of MasSPIKE for the analysis of large, biologically derived molecules has

been demonstrated under a variety of real world applications. Investigation of hemoglobin

variants suggested two major modifications on the protein. The beta chain was found to

be mutated as beta sickle, which was consistent with the earlier DNA analysis results.

Analysis of the alpha chain revealed that the last residue arginine was missing from the

sequence, resulting in a truncated chain. These modifications are likely to participate in

the pathophysiology of an individual, suggesting important clinical implications.

Another important family of proteins, called Ras proteins, has been suggested to be

responsible for human tumors. Oxidant-induced post-translational modifications of p21ras

have been demonstrated to modulate its activity. MasSPIKE has been used to assist in

drawing the map of oxidative post-translational modifications of Ras proteins, using a

combination of bottom-up and top-down protein sequencing. Several oxidative modifica-

tions which included some low abundance modifications were identified. Analysis using

MasSPIKE revealed major oxidative modification of C118, Cys118-SO3H, which was con-

firmed by several tandem mass spectrometry experiments. Top-down analysis confirmed

that Cys-118 is the major glutathiolated cysteine on p21ras.

Amino acid substitutions in Transthyretin (TTR), a 55 kDa homotetramer protein, are

known to cause the deposition of the protein as amyloid fibrils, causing neurodegeneration

and organ failure. TTR is also known to be associated with the amyloid diseases. Investi-

gation of the top-down mass spectrum of wild type TTR using MasSPIKE revealed high

abundance fragmentation species of b42 and y85 resulting from the cleavage of the bond

between glutamic acid and proline at positions 42 and 43 respectively. MasSPIKE was

also used to characterize the Val30Met and Val122Ile substitutions contained in patient

TTR samples. MS/MS analysis of the y85 ion of Val122Ile mutant was able to identify

and localize the site of mutation.
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The characteristics of a custom qQq-FTICR instrument have been studied by the anal-

ysis of a number of proteins. Such proteins included both commercially available and

biologically derived proteins such as human E2 ubiquitin conjugating enzyme, Ubch10.

Interpretation of Ubch10 spectra using MasSPIKE was able to identify the cloning site,

and a good sequence tag was obtained. A total of 40 fragment ions were identified, with

complete sequence coverage.

7.2 Future Work

Although significant advances have been made recently in the spectral analysis aspects

for mass spectrometry data, there are many more open problems waiting to be solved,

providing ample opportunity for future research in this direction. Some ideas for further

progress are listed below.

� Integrating MasSPIKE with database searching

The monoisotopic mass list generated as output from MasSPIKE can be used as an in-

put for database searching in order to reveal the identity of unknown proteins. This is

especially useful for spectra resulting from peptide analysis, when the database search

engines use the peptide mass information to assign the protein identity by means of

a process known as peptide mass fingerprinting. If the spectrum has been internally

calibrated, the error tolerance input given to the search engine should be very low.

This will help eliminate false positive results. Robust denovo sequencing methods

can be employed to construct the protein sequence from the masses generated from

top-down sequencing analysis.

� Optimizing MasSPIKE for use with online Liquid Chromatography/Mass

Spectrometry (LC/MS) experiments

MasSPIKE has been used extensively for offline data analysis for top-down protein

sequencing experiments. Analysis of peptide data is much simpler due to their low

molecular weight. Hence, certain modules of MasSPIKE can be simplified for suit-
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ability towards peptide data, and can be optimized for speed so that it can be used

online in conjunction with LC/MS experiments.

� Determination of elemental compositions using experimental isotopic dis-

tributions

An experimental isotopic distribution is a function of the elemental isotopic abun-

dances and number of atoms of each type present in the molecule. Assuming that

elemental isotopic abundances for each element are known, an observed isotopic dis-

tribution can be used to estimate the elemental composition of the molecule under

consideration. This can serve as particularly useful information to filter the possi-

ble candidates in order to assign the identity of the protein. Experimental isotopic

distributions should be free of any sort of distortions for the optimal performance of

such experiments.

� Analysis of Cramer-Rao bound for biased estimator

The estimator developed for ion number estimation as a part of this dissertation has

been found to be biased, and the bias depends upon the quantity being estimated,

i.e., the number of ions. However, the bias and mean square error in the estimator

drop substantially with the increase in the number of observations. It has also been

established that an unbiased, efficient estimator does not exist for this problem. It

would be of analytical interest to evaluate the Cramer-Rao bound for the biased

estimator. If an estimator exists that meets the Cramer-Rao bound, a comparison

of that estimator against the one established in this work would be useful and may

provide insights into achieving improved estimates.

� Establishing the elemental composition of a model glycan

The field of glycomics has been mostly unexplored in terms of data processing meth-

ods. One such useful method would be to develop an average glycan model in order

to do in silico studies for sugars, i.e., given the molecular weight for a glycan, re-

searchers are interested to know the “average” composition of a glycan. This will
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provide groundwork for a number of sugar-related data analysis studies. For exam-

ple, it can be used to construct the theoretical isotopic distribution for a glycan,

which can be compared against the experimentally observed distribution for analyt-

ical purposes.
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