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ABSTRACT 

The dynamic S-palmitoylation regulates many intracellular events, including 

protein trafficking, anchoring, targeting, and protein-protein interactions. Direct detection 

of S-palmitoylation by conventional liquid chromatography-mass spectrometry (LC-MS) 

methods is challenging because of the tendency of palmitoyl loss during sample 

preparation and gas phase fragmentation. Additionally, the high hydrophobicity of the 

palmitoyl group can prevent proper elution of palmitoyl peptides from the commonly 

used C18 column. Here, we developed a comprehensive strategy tailored for S-palmitoyl 

detection using three palmitoyl peptide standards. We found that S-palmitoylation was 

largely preserved in neutral Tris buffer with tris(2-carboxyethyl)phosphine as the 

reducing agent and that various fragmentation methods provided complementary 

information for palmitoyl localization. Moreover, S-palmitoyl peptides were efficiently 

analyzed using a C4 column and the derivatization of free cysteine with a hydrophobic 

tag allowed relative quantification of palmitoyl peptides and their unmodified 

counterparts. We further discovered potential complications to S-palmitoylation analysis 

caused by the use of ProteaseMAX
TM

, an MS-compatible detergent. The hydrophobic 



 

 vii 

degradation products of ProteaseMAX
TM

 reacted with the free cysteine thiols, generating 

artifacts that mimic S-acylation and hydroxyfarnesylation. Another MS-compatible 

detergent, RapiGest
TM

, did not produce such artifacts, and showed the ability to stabilize 

S-palmitoylation by preventing thioester hydrolysis and dithiothreitol-induced thioester 

cleavage. Moreover, we found that the palmitoyl peptide GCpalmLGNAK could undergo 

intermolecular palmitoyl migration from the cysteine to the peptide N-terminus or the 

lysine side chain during sample preparation, and this could lead to false discovery of N-

palmitoylation. RapiGest
TM

 inhibited such migration, and is thus recommended for S-

palmitoyl sample preparation. We then applied the established method to analyze the 

regulator of G-protein signaling 4 (RGS4) which had been reported to undergo S-

palmitoylation by radioactive labeling. It had also been reported that the S-palmitoylation 

state of RGS4 affects its GTPase activity. With LC-MS/MS analysis, we found that the 

addition of palmitate to the cell culture medium in metabolic labeling experiments could 

boost the level of S-palmitoylation, leading to false discovery of new S-palmitoylation 

site(s). We also noted discrepancies between the S-palmitoylation sites identified by 

radioactive labeling and by LC-MS/MS analysis. Further studies are needed to evaluate 

the reliability of S-palmitoyl detection by these two methods. 
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Chapter 1: Introduction to Protein Palmitoylation 

 
S-palmitoylation is a type of protein post-translational modification (PTM) 

resulting from the covalent attachment of a saturated sixteen-carbon acyl chain to a 

cysteine residue through a thioester linkage. It was first discovered on the virus 

glycoprotein E1/E2 in 1979 [1]. Later it was shown that S-palmitoylation is post-

translational [2], dynamic [3], sensitive to hydroxylamine (HA) treatment [4], and is an 

ubiquitous modification occurring in viruses [5], plants [6], yeast [7, 8], and animal cells 

[9]. In the following decades, many proteins, including ion channels [10], receptors [11], 

small G proteins [12], secreted proteins [13], have been found to undergo palmitoylation 

in vivo. Unlike other lipid modifications (e.g. N-terminal myristoylation, prenylation, and 

glycophosphatidyl inositol (GPI)-linking), S-palmitoylation is readily reversible, owing to 

the labile nature of the thioester bond. Thus, S-palmitoylation, similar to phosphorylation, 

may vary in different intracellular environments and is subject to change upon regulation. 

Cycling between the palmitoylation and depalmitoylation states regulates several 

important intracellular events such as protein sorting, trafficking, anchoring, stability, and 

protein-protein interactions [14, 15]. This chapter reviews the mechanisms of S-

palmitoylation and the methods for its characterization. 

1.1  Mechanisms of Protein Palmitoylation 

1.1.1 Non-Enzymatic and Enzymatic Palmitoylation 

Investigation of the molecular mechanism of protein palmitoylation began with 

the identification of the palmitoyl donor. In 1984, by using pulse-chase radioactive 

http://linkinghub.elsevier.com/retrieve/pii/0166685188900692
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labeling followed by the analysis of the labeled lipids extracted from baby hamster 

kidney cells, Berger and Schmidt identified palmitoyl-CoA as the only potential acyl 

donor in vivo [16]. Later, a series of studies was performed, in which purified proteins 

that are known to undergo in vivo palmitoylation, such as rhodopsin, Gα, myelin P0, Yes, 

SNAP-25, were incubated in vitro with palmitoyl-CoA, under physiological conditions 

andthe results showed that palmitate could be incorporated into these proteins 

spontaneously [17-22]. Moreover, this in vitro palmitoylation appeared to target the same 

sites as those found in vivo [17, 21, 23]. It came as no surprise that in vitro palmitoylation 

could occur non-enzymatically, because the thioester bond in palmitoyl-CoA is highly 

activated and this makes the transfer an energetically favored process. By studying the 

reaction kinetics, Bharadwaj and Bizzozero showed that in vitro palmitoylation is a 

second-order reaction and proposed that it is the nucleophilic attack of the protein/peptide 

thiolates to the thioester bond in palmitoyl-CoA that initiates the transfer process (Figure 

1.1a) [21, 24]. The pKa of the thiol group in a free cysteine is ~8.4. Thus, under 

physiological conditions (pH 7.4), the cysteine thiol group should exist primarily in the 

protonated form (R–SH), instead of in the reactive ionized thiolate form (R–S
-
), and thus 

palmitoyl transfer should not be favored. However, the local environment surrounding 

each cysteine thiol group could significantly change its pKa. For example, the presence 

of positively charged amino acid residues such as histidine around the cysteine residue 

could stabilize the thiolate anion, thus making it more reactive [25]. Such a difference in 

the local environment may account for the selectivity of auto-palmitoylation to certain 

cysteine residues. Bharadwaj and Bizzozero also stated that the calculated activation 
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energy for the auto-acylation process could be significantly lower than that for enzymatic 

transacylation, and suggested that enzymatic palmitoylation may not play an important 

role in vivo. This hypothesis was supported by the lack of defined consensus sequences 

for palmitoylation and failure to identify a palmitoyl transferase in early days. However, 

the theory of non-enzymatic palmitoylation has also drawn sharp criticisms. The 

palmitoyl reaction performed in a test tube with buffers, proteins, and palmitoyl-CoA is a 

far too simple model to mimic the in vivo palmitoylation process. Since the spontaneous 

palmitoylation rate depends on the concentration of palmitoyl-CoA, one should take into 

consideration the various players affecting the level of in vivo palmitoyl-CoA. Indeed, the 

concentration of free palmitoyl-CoA in the cytoplasm is reported to be in the nanomolar 

range, much lower than expected, because most palmitoyl-CoA is bound to the acyl-CoA 

binding protein (ACBP) which is considered as the palmitoyl-CoA “buffer,” thus 

sequestering its reactivity with thiolates [26, 27]. The importance of ACBP is further 

exemplified by the fact that the rate of in vitro auto-palmitoylation is attenuated by the 

addition of ACBP in a concentration-dependent manner [28, 29]. The addition of ACBP 

at the physiological concentration almost suppressed auto-palmitoylation to basal level 

(>95% inhibition). Finally, the rate of in vitro spontaneous palmitoylation, even in 

absence of ACBP, is much slower than the reported in vivo palmitoylation rate. Therefore, 

it is unlikely that spontaneous palmitoylation is the major mechanism for in vivo 

palmitoylation with fast turnover rate [28]. 

Historically, research on enzymatic palmitoylation began with the attempt to 

characterize “acyl transfer activity” by Berger and Schmidt in 1984 [30]. Based on the 



 

4 

results from a previous study, they postulated that the acylation reaction might occur in 

the endoplasmic reticulum (ER). Therefore, microsomes (mainly small ER particles 

reformed in vitro) were purified from various cell lines and incubated together with viral 

protein E1 and [
14

C]palmitoyl-CoA. This incubation led to the addition of [
14

C]palmitate 

to E1. However, the investigators reported that palmitoyl transfer was abolished if the 

microsomes were absent or had been pre-boiled (deactivated), and this suggested that 

something residing within the microsomes has the ability to acylate proteins, using 

palmitoyl-CoA as the palmitoyl donor. For nearly a decade, researchers were unable to 

purify an enzyme bearing such activity from the microsomes. Meanwhile, the discovery 

of auto-palmitoylation in several other proteins put the existence of palmitoyl transferases 

into question. Bartels and co-workers finally broke the dam by developing a yeast strain 

whose viability  is dependent upon the palmitoylation of Ras2 [31]. Any gene mutation 

resulting in the failure of Ras2 palmitoylation will lead to the death of these yeast cells. 

Genetic screening identified two genes, ERF2 and ERF4 (ERF, effect on Ras function), 

as important players for Ras2 palmitoylation [7]. Further studies confirmed that the Erf2-

Erf4 complex is a protein acyl transferase (PAT) and that it specifically palmitoylates 

Ras2 in yeast. Erf2 is a multi-pass membrane protein residing on the ER. It contains a 

motif of Asp-His-His-Cys (DHHC) in a cysteine-rich domain (DHHC-CRD) within the 

cytosolic loop between the transmembrane regions TM2 and TM3. The DHHC-CRD 

motif is critical for the enzyme activity; its mutation led to failure of Ras2 palmitoylation. 

Some researchers further proposed that the DHHC-CRD domain is the catalytic center of 

PAT [32]. Erf4 is a DHHC PAT-associated protein that plays an indispensable role in the 
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enzyme activity, probably because it prevents ubiquitin-mediated degradation of Erf2 and 

stabilizes the palmitoyl-Erf2 intermediate before the palmitoyl transfer [33]. Later, 

another yeast PAT and its corresponding substrate, Akr1p and Yck2p, were discovered 

and characterized [34]. Interestingly, Akr1p and Erf2 shared no homologous region 

except for the DHHC-CRD sequence. This finding conveyed the message that a protein 

containing the DHHC-CRD sequence might be a PAT candidate. A search against the 

GenBank database found 23 genes in mammalian cells that encode DHHC proteins, 

many of which showed authentic PAT activity; their substrate preference was studied by 

overexpressing each individual DHHC protein together with substrates of interest 

followed by the detection of palmitate incorporation [35]. 

With the identification of an increasing number of DHHC PATs, the notion that 

protein palmitoylation occurs enzymatically has been widely accepted. The research is 

now focused on the in-depth study of the mechanism by which PAT catalyzes the 

palmitoyl transfer reaction. No consensus exists to date and two different models have 

been proposed. In the first model (Figure 1.1b) [32, 36], PAT initially undergoes auto-

palmitoylation in the presence of palmitoyl-CoA, forming a palmitoyl-PAT intermediate. 

In the second step, the substrate binds to the palmitoyl-PAT intermediate, leading to the 

transfer of palmitate to the substrate. By monitoring the release of CoA-SH and palmitate, 

Mitchell and co-workers found that the intermediate would undergo very fast palmitoyl 

turnover if it failed to meet its substrate. They also showed that the DHHC region is 

required for the formation of the intermediate, as well as for the palmitoyl transfer [32]. 

However, there was no direct evidence pinpointing the auto-palmitoylation site to the 
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cysteine residue in the DHHC region. The second proposed model (Figure 1.1c) was 

based on experimental results from Dietrich and co-workers [37]. They observed that 

Vac8 needs an equimolar amount of its palmitoyl transferase, Ykt6, to achieve sufficient 

palmitoylation in vitro, yet this observation does not conform to the classic catalytic 

reaction. In addition, Ykt6 binds to both palmitoyl-CoA and CoA-SH. It is possible that 

palmitoyl-CoA binds to Ykt6 through non-covalent interactions, with the CoA fitting into 

the binding pocket. The subsequent association of Ykt6 to its substrate brings the 

palmitoyl-CoA close to the targeted thiolate group, thus facilitating the palmitoyl transfer 

reaction. After the reaction, CoA-SH still binds to Ykt6 and sequesters its activity. The in 

vivo machinery to reactivate Ykt6 by releasing CoA-SH may regulate the palmitoylation 

process. Note that the two models presented here do not necessarily contradict one 

another, since they deal with different PATs. Furthermore, Ykt6 in the second model is 

not a classic protein palmitoyl transferase, as it does not contain the DHHC domain.  

Another family of PATs, known as the MBOATs (membrane-bound-O-

acyltransferase), have the ability to palmitoylate secreted proteins such as Sonic 

hedgehog, Spitz, and Wnt, via the irreversible amide linkage [38]. MBOAT-catalyzed 

palmitoyl transfer proceeds via a different mechanism from that catalyzed by the DHHC 

PATs as discussed above. Since the main focus of this thesis is S-palmitoylation, the 

detailed information on MBOAT PATs will not be reviewed here. 

In summary, the discovery and characterization of various palmitoyl transferases 

and their substrates have undermined the notion of spontaneous in vivo S-palmitoylation. 

PATs are crucial and necessary for S-palmitoylation of many proteins. However, in 



 

7 

certain cellular environments, such as in mitochondria, where the free palmitoyl-CoA is 

present at a very high level, auto-palmitoylation can become the major pathway for in 

vivo palmitoylation. 

 

Figure 1.1 Proposed mechanisms of protein palmitoylation, adapted from reference [26]. 

(a) Spontaneous palmitoylation; (b) Palmitoylation via a palmitoyl-PAT intermediate; (c) 

Palmitoylation with the assistance of a transfer protein. 
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1.1.2 Palmitoyl Dynamics 

Due to the labile nature of the thioester linkage, S-palmitoylation is a reversible 

and dynamic modification. A protein can go through several cycles of 

palmitoylation/depalmitoylation during its lifetime [39]. The regulation of palmitoyl 

turnover by stimulus or environmental change has been implicated in many studies. 

Wedegaertner and co-workers demonstrated that agonist activation of the β2-adrenergic 

receptor induces increased palmitate turnover on Gαs [40]. El-Husseini and co-workers 

showed that PSD-95 undergoes depalmitoylation in response to glutamate activation in 

neurons [41]. Robinson and co-workers found that bradykinin, a G protein-coupled 

receptor ligand, induces depalmitoylation of the endothelial nitric oxide synthase 3 

(eNOS) [42]. Depalmitoylation is believed to be catalyzed by a palmitoyl thioesterase. To 

date, four thioesterases have been discovered: palmitoyl-protein thioesterase-1 (PPT1), 

palmitoyl-protein thioesterase-2 (PPT2), acyl-protein thioesterase-1 (APT1), and acyl-

protein thioesterase-2 (APT2) [43]. PPT1 and PPT2 are lysosomal enzymes responsible 

for removal of S-palmitoylation from proteins which are taken up by the lysosome for 

degradation [44]. They are not involved in the regulation of the palmitoylation/ 

depalmitoylation cycle, because they only depalmitoylate proteins at the end of their 

lifetimes [13]. On the other hand, APT1 and APT2 are located in the cytosol, and they 

catalyze the depalmitoylation of membrane-associated cytosolic proteins, or membrane 

proteins bearing palmitoyl group at the cytoplasmic face. Their activity is subject to 

change in response to extracellular signals or other stimuli, making them important 
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factors in palmitoyl turnover. They have a variety of substrates including H-Ras, Gαs, 

GAP-43, and eNOS [12, 45]. Their biological roles are reviewed in the next section. 

1.1.3 Biological Roles of Protein Palmitoylation/Depalmitoylation 

Palmitoylation is involved in many intracellular events such as protein trafficking, 

anchoring, activity, stability, and protein-protein interaction. In this section, examples are 

given to illustrate the various roles of protein palmitoylation. 

1.1.3.1 Membrane Association and Protein Trafficking 

H-Ras Shuttling 

 H-Ras has been invoked as a classic model for palmitoylation-modulated protein 

anchoring/trafficking. H-Ras is a plasma membrane-associated GTPase that relays 

extracellular signaling to control cell proliferation, differentiation, invasion, and 

apoptosis. H-Ras has three cysteines near its C-terminus: Cys181, Cys184, and Cys186. 

The newly synthesized H-Ras located in the cytosol is first recognized by the protein 

farnesyl transferase through its C-terminal CAAX sequence. A farnesyl group is then 

added to C186 on the CAAX motif, followed by cleavage of AAX and methylation of the 

carboxyl group of C186 [46]. The farnesyl group increases the hydrophobicity of H-Ras 

and allows weak association of H-Ras with the Golgi. Although this association is 

reversible and not sufficient to tether H-Ras permanently to the Golgi, it increases the 

likelihood of H-Ras to present itself to the Golgi resident DHHC9 [47]. Subsequent 

palmitoylation on C181 and C184 by DHHC9 dramatically increases its hydrophobic 

interaction with the lipid bilayer, allowing H-Ras to associate stably with the Golgi 
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membrane. The mature H-Ras is then transported through trafficking vesicles to the 

plasma membrane, where it exerts its function in signal transduction [48]. Cleavage of 

the thioester linkage by APT results in the turnover of palmitoylation, leading to the 

shedding of H-Ras from the plasma membrane into the cytosol [49, 50]. H-Ras can be re-

palmitoylated by interacting with DHHC9 on the Golgi surface. As a result, the 

palmitoylation/depalmitoylation process modulates  the activity of H-Ras via its shuttling 

between different subcelluar compartments. A similar mechanism also applies to other 

membrane-associated signaling proteins including N-Ras [50], Gα [40], Lyn [51], eNOS 

[52], and others [53, 54]. Figure 1.2 shows a typical palmitoylation/depalmitoylation 

cycle that leads to the shuttling of proteins between the Golgi apparatus and the plasma 

membrane. 
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Figure 1.2 Schematic of palmitoylation-regulated cytosolic protein anchoring and 

trafficking, adapted from reference [55]. 

 

PSD-95-Mediated Protein Internalization in Response to Extracellular Stimuli 

PSD-95 is a major component of the postsynaptic density (PSD) at glutamatergic 

synapses. It associates with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptor through a trafficking protein, stargazin, and has been shown to be an 

important player in the translocation of the AMPA receptor. Stimulation of the AMPA 

receptor by glutamate results in depalmitoylation of PSD-95, in parallel with the 

internalization of the glutamate receptor AMPA. Pharmacological interruption of the 

palmitoylation/depalmitoylation cycle of PSD-95 results in a change in the number of 
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AMPA receptors at synapses, thereby attenuating the synaptic signaling. Therefore, it has 

been suggested that the AMPA stimulation leads to PSD-95 depalmitoylation, which in 

turn results in the internalization of the glutamate receptor AMPA, and serves as a 

feedback to deactivate the signaling pathway. It is not well understood how AMPA 

signaling affects the palmitoyl dynamics of PSD-95, but it has been postulated that 

activation of the glutamate receptor AMPA may lead to sconformational change on PSD-

95, making it more accessible to APT [41].  

1.1.3.2 Protein Activity 

Ion Channels-Cross Talk between Palmitoylation and Other PTMs 

Palmitoylation has been shown to be involved in the modulation of ion channels. 

Palmitoylation of ion channels occurs on intracellular loops or the N-/C- terminal 

cytoplasmic domains. These regions are implicated in protein disorders, suggesting 

possible involvement of palmitoylation in changing the protein conformation [10, 56]. 

Recent studies of big potassium (BK) channels are discussed below, as an example, to 

illustrate the modulation of protein activities by palmitoylation. The cytosolic C-terminus 

of BK channels contains both a palmitoylation site and a phosphorylation site. 

Palmitoylation promotes the association of the C-terminus to the plasma membrane, 

whereas phosphorylation, induced by protein kinase A (PKA), is responsible for 

inhibition of the BK channels’ activity. Tian and co-workers found that phosphorylation 

by PKA leads to the dissociation of its C-terminus from the plasma membrane, 

presumably due to protein depalmitoylation, whereas mutation of the palmitoyl cysteine 

residue abolishes PKA-mediated inhibition of BK channels [57]. Although the details, as 
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to how the crosstalk between these two dynamic modifications occurs, remain unknown, 

it is clear that phosphorylation and palmitoylation together orchestrate the activities of the 

BK channels. It is possible that phosphorylation either blocks palmitoylation in the first 

place or facilitates the depalmitoylation process. Loss of its C-terminus anchor, in turn, 

results in global conformation change that shutx down the BK channels. Such an 

interplay of palmitoylation with other PTMs (phosphorylation, nitrosylation) has also 

been demonstrated to occur on several signaling proteins [58-60] and is reviewed in 

reference [15]. 

Regulator of the G-Protein Signaling (RGS) Family 

Proteins of the RGS family, known as GTPase activating proteins (GAPs), can 

bind a G protein to activate its intrinsic GTPase that is responsible for switching off the G 

protein signaling. All RGS proteins contain a homologous domain named RGS-box, 

which is required for their GAP activity. Palmitoylation can occur on several family 

members, at the conserved cysteine residue located at RGS-box. In vitro studies showed 

that palmitoylation on the conserved cysteine results in decreased GAP activity of RGS4 

and RGS10 [61], as compared to an increase in that of RGS16 [62]. 

1.1.3.3 Protein Targeting 

Protein targeting to lipid rafts is another localization regulation mechanism 

besides protein trafficking. A lipid raft is a specialized functional plasma microdomain, 

known as a center of biological processes such as protein assembly and cell signaling. 

Because lipid rafts are rich in cholesterol as well as sphingolipids with a saturated fatty 

acyl side chain [63], proteins with very hydrophobic modifications tend to have an 
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affinity to lipid rafts that is higher than their attaraction to the surrounding bilayer. 

RGS16 has three potential palmitoylation sites (Cys2/Cys12, and Cys98). Interestingly, 

unlike H-Ras, RGS16 without palmitoylation can still be anchored and transported to the 

plasma membrane. However, mutation of Cys2/12, although not leading to the protein 

shedding from the membrane, makes RGS16 unable to localize to the lipid raft. Failure of 

the RGS16 targeting to lipid rafts prevents its further palmitoylation at Cys98 and leads 

to a decrease in its activity, suggesting the crucial role of palmitoylation in lipid raft 

targeting [62]. The essential role of palmitoylation for protein targeting to lipid rafts is 

also implicated in signaling proteins such as C81, LAT, and α6β4 integrin, and has been 

reviewed in references [12, 64]. 

1.1.3.4 Protein-Protein Interactions 

The involvement of palmitoylation in protein-protein interactions has been 

demonstrated by several studies. Yang and co-workers reported that mutation of cysteine 

residues that may be palmitoylated on CD151 abolished its association with CD9 and 

CD63 [65], leading to failure of the assembly of the signaling network in response to 

integrin stimulation [66]. A recent study by Yu and co-workers showed that the viral 

protein from the Hepatitis C Virus, NS4B, has two potential palmitoylation sites on its C-

terminus, and that absence of palmitoylation on both sites significantly reduced binding 

of NS5A to NS4B [67]. Tu and Ross discovered that Gα undergoes depalmitoylation in 

response to the stimulation of β-adrenoreceptor. The depalmitoylated Gα had a higher 

affinity to RGS proteins and their association resulted in the deactivation of the β-

adrenoreceptor-induced signaling pathway [68, 69]. Kostiuk and co-workers showed that 
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palmitoylation of mitochondrial HMG-CoA synthase (HMGCS2) promoted its 

association with PPARα, leading to the activation of transcription at the Hmgcs2 gene 

[70]. 

1.1.3.5 Protein Stability 

Recent studies on transmembrane protein adenosine receptor A1 [71], HIV 

receptor CCR5 [72], RSV glycoprotein [73], Tlg1 [74], showed that there isare positive 

correlations between palmitoylation and protein stability. Gao and co-workers 

investigated the palmitoyldeficient mutant of adenosine receptor A1, and found that the 

majority of the mutant A1 receptor underwent proteolysis, forming a 25-kDa receptor 

fragment whose turnover rate  was much faster than that of the wild-type. They therefore 

concluded that palmitoylation can prevent protein degradation [71]. A more in-depth 

study by Valdez-Taubas and Pelham, using a different model, provided hints for a 

possible mechanism, although it may not be applicable to all cases. SNARE Tlg1 is a 

palmitoylated transmembrane protein, and its palmitoylation is catalyzed by Swf1, a 

member of the DHHC family in yeast. In the Swf1 mutant yeast, Tlg1 showed an 

abnormal intracellular distribution due to the loss of palmitoylation, and the 

unpalmitoylated Tlg1 could be recognized by Tul1, an E3 ubiquitin ligase, and marked 

for proteasomal degradation [74]. It is possible that palmitoylation on Tlg1 serves as a 

checkpoint in the process of protein quality control. Palmitoylation can modulate the 

protein conformation, and prevent Tul1 from accessing the ubiquitination site [14]. 
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1.1.4 Protein Palmitoylation in Diseases 

1.1.4.1 Palmitoylation and Oxidative Stress 

Oxidative stress contributes to a number of human diseases, including 

neurodegenerative diseases, diabetes, cancers, and cardiovascular dysfunctions. The 

increased presence of reactive oxygen species (ROS), resulting from the incapability of 

the cell defense system against excess oxidants, is a hallmark of oxidative stress [75].  

ROS can affect cell functions through modifications of lipids, proteins, and DNA, 

causing loss of the cell integrity, protein dysfunction, and genomic instability. 

Several studies have demonstrated the regulatory role of oxidative stress in 

palmitoylation turnover and its involvement in pathological damage. Rodriguez-Capote 

and co-workers found that in vitro exposure of the surfactant protein SP-C to oxidants 

caused significant decrease in SP-C palmitoylation. Palmitoylation on SP-C is crucial for 

the formation of the lung surfactant film in vivo, and they suggested that the interplay 

between oxidants and palmitoylation may be one of the mechanisms for air pollution-

induced lung diseases [76]. Parat and co-workers reported that treatment of endothelial 

cells with hydrogen peroxide remarkably decreased the incorporation of [
3
H]]palmitate 

into caveolin-1 in a dose-dependent manner: 500 µM of hydrogen peroxide inhibited 

nearly 90% palmitoylation in caveolin-1 [77]. A similar effect was also observed by 

Clark and co-workers when they studied CD81 protein in the Jurkat cell line. They 

showed that, under oxidative stress, palmitoylation of CD81 was completely blocked, and 

this resulted in enhanced association of CD81 with 14-3-3 [78]. A more recent study by 

Burgoyne and co-workers showed that, under metabolic stress derived from the high 
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fat/high sugar treatment, bovine aortic endothelial cells suffered apoptosis coincident 

with a decrease in H-Ras palmitoylation, abnormal intracellular distribution of H-Ras, 

and reduced survival signaling from H-Ras. They further indicated that it was the 

intracellular oxidants that led to the failure of palmitoylation on H-Ras, rendering it 

incapable of relaying extracellular signals, and triggering apoptosis [79]. 

The mechanism by which oxidative stress inhibits protein palmitoylation is not 

fully understood. One explanation is that oxidants can modify reactive cysteine residues, 

therefore competing with protein palmitoylation [79]. It is also possible that oxidative 

stress-induced modifications on other amino acids may result in local or global changes 

in the protein structure, making them resistant to processing by PATs, or more 

susceptible to thioesterase cleavage by APTs.  

1.1.4.2 Palmitoylation and Dysregulation of DHHC PATs 

The biological importance of DHHC PATs, which have no known activities other 

than protein palmitoylation, has been demonstrated in several studies, illuminating the 

reasons for their significant correlation with neurological disorders (DHHC8, 

DHHC17)[80-82], osteoporosis (DHHC13 )[83], cancers (DHHC2, DHHC9, DHHC11, 

DHHC14) [84-88], and other diseases [83, 89, 90]. For example, Yanai and co-workers 

discovered that, in Huntington disease, HIP14 (Huntington interacting protein 14, 

DHHC17) showed a decrease in interactions with its substrate, the mutant Huntington 

protein (HTT), leading to impaired palmitoylation. The unpalmitoylated HTT mutant can 

mislocalize, aggregate, and form inclusion bodies, which are apparently toxic to neurons 

[82]. Mukai and co-workers showed that the Zdhhc8-knockout mice developed a series of 
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behavioral abnormities which were similar to the symptoms in human schizophrenia [80]. 

A further genetic analysis demonstrated that there is a strong correlation between the risk 

of schizophrenia and the occurrence of different DHHC8 variants in the Han Chinese 

population [81]. Since many proteins are substrates of DHHC8 in neurons, failure of 

protein palmitoylation may lead to the development of mental disorders [80]. Yeste-

Velasco and co-workers reported that DHHC14 is a tumor suppressor gene based on 

several observations: (1) there is a significant decrease in the expression of DHHC14 in 

clinical testicular germ cell tumor samples as well as tumor cell lines; (2) DHHC14 

heterozygous deleted cells showed the ability to form larger colonies, whereas an 

increase in the expression of DHHC14 inhibited the xenograft tumor initiation; and (3) 

overexpression of DHHC14 resulted in apoptosis on tumor cell lines quantitatively [85]. 

Correlation of members of DHHC family to bladder cancer [86], colorectal cancer [87], 

and stomach cancer [88] has also been reported. In the future, it will be necessary to 

identify the downstream S-palmitoylation target of the DHHC family, to promote in-

depth studies on the molecular mechanism of tumor initiation and progression [84]. 

1.1.4.3 Palmitoylation and Dysfunction of Fatty Acid Synthase (FAS) 

FAS is the only enzyme catalyzing the de novo synthesis of palmitate using 

acetyl-CoA and malonyl-CoA as substrates [91]. The involvement of FAS in various 

physiological and pathological conditions (cancers, diabetes, hyperlipidemia, etc.) is very 

complex and has been reviewed [91-93]. However, FAS and protein palmitoylation had 

not been linked until 2008, when Fiorentino and co-workers found that overexpression of 

FASN in human prostate epithelial cells can lead to an increase of palmitoylation on 
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Wnt1. Palmitoylated Wnt1 subsequently activates the Wnt1/β-catenin pathway, which 

takes part in the development of prostate cancer [94]. Later, Wei and co-workers reported 

that specific knockdown of FAS from endothelial and hematopoietic cells in mice led to 

mild increase in blood pressure, consistent with a decrease in membrane-associated 

eNOS. A further in vitro study showed that FAS is physically associated with eNOS, and 

FAS-deficiency results in decreased the eNOS palmitoylation which is necessary for 

eNOS function [95]. Wei and co-workers also showed that FAS-deficiency in the 

intestine led to intestinal inflammation, because FAS is required to palmitoylate Mucin 2, 

an important intestinal barrier protein that has the ability to neutralize rotavirus [96]. 

1.2 Traditional Methods to Investigate Protein Palmitoylation 

1.2.1 Radioactive Labeling 

Detection of protein palmitoylation by radioactive labeling was first introduced by 

Schmidt and co-workers in 1979 [1]. In a typical experiment, the protein of interest is 

overexpressed by either virus infection or plasmid transfection of cultured cells. A 

subsequent incubation of the cells with tritiated palmitic acid, usually 9,10-[
3
H] palmitic 

acid, is then performed. The tritiated palmitic acid can be utilized by the cells in the 

routine metabolic process to form radioactive palmitoyl-CoA, which is the acyl donor for 

protein palmitoylation [16]. Thus, proteins undergoing palmitoylation naturally can also 

incorporate the radioactive labeled palmitate. To achieve optimal labeling, it is important 

to tailor the incubation time specifically for the protein of interest, based on its synthesis 

rate and palmitoylation turnover speed [97]. After incubation, the protein of interest is 

enriched, subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
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PAGE), exposed to X-ray films and detected by fluorography. Because tritium decay is a 

very slow process, the autoradiography exposure usually takes weeks or even months to 

complete, and this long exposure time is a main disadvantage of the radioactive labeling 

method. A few studies utilizing [
125

I-IC16] palmitate (16-iodo-hexadecanoic acid) as an 

alternative label have also been reported [98-100]. The rationale to substitute the methyl 

group with an iodine atom is based on their similar volume. Compared to 
3
H, 

125
I is a 

high energy emitter and γ radiation emitted from 
125

I can be detected by phosphor-

imaging autoradiography with higher sensitivity and reduced exposure time. 

Since S-palmitoylation is not the only fatty acylation that occurs in vivo, further 

linkage analysis is usually performed to distinguish among S-linked, O-linked, and N-

linked fatty acylation. This can be achieved by treatment of the palmitoyl-labeled protein 

with HA [4], which is known to specifically cleave thioester linkages under neutral 

conditions [97]. Moreover, the released fatty acid can be further characterized by thin 

layer chromatography (TLC) or gas chromatography (GC) [1].  

Besides palmitoyl detection, radioactive labeling can also be used to monitor in 

vivo palmitoyl turnover. The half-lives of palmitate modifications on proteins, including 

ankyrin [101], Gαi [102] α2A-adrenergic receptor [103], H-Ras [104], and N-Ras [3], 

have been determined by pulse-chase experiments in which cells are labeled with 9,10-

[
3
H] palmitic acid for a short period of time (the pulse) followed by incubation with 

excess non-radioactive palmitate (the chase). The radioactive palmitate is incorporated 

into the protein during the pulse phase. If palmitoyl turnover occurs, the protein 

undergoes depalmitoylation, losing the radioactive palmitate, followed by re-
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palmitoylation with non-radioactive palmitate during the chase phase. Through this 

process, palmitoyl turnover leads to a gradual decrease in the radioactive signal. Further 

studies showed that the half-life of palmitoylation measured by the pulse-chase assay is 

usually longer than the actual value, due to the complexity of fatty acid metabolism. An 

accurate measurement requires the analyst to account for [
3
H] palmitate recycling during 

the chase phase [105]. 

 As mentioned above, radioactive labeling enabled discovery of protein 

palmitoylation and this approach has been extensively used for the last three decades. It is 

a very sensitive and effective method for the absolute quantitation of protein 

palmitoylation. However, one must exercise particular care in the handling of the 

radioactive materials. The procedure is also tedious and time-consuming. Although the 

use of [
125

I-IC16] palmitate can significantly shorten the exposure time, the method has 

never become popular as it is not commercially available. A serious limitation is that the 

radioactive labeling experiment only examines a single protein which is predicted to be 

palmitoylated. Moreover, the ratio of the palmitoylated protein versus its unpalmitoylated 

counterpart cannot be determined. Furthermore, this method is incapable of determining 

the palmitoylation site(s), unless mutations are made [106, 107], or antibodies that target 

regions of interest are used in conjunction with the enzymatic digestion [108].  

1.2.2 Acyl-Biotinyl Exchange (ABE) Chemistry 

In 2004, a novel method that utilizes a radioactive alkylation reagent to introduce 

the palmitoyl group by in vitro chemical reactions was described by Dridel and Green 

[109]. This method takes advantage of the specific cleavage of the S-palmitoyl group by 
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HA. In their study, free thiol groups generated by HA treatment were irreversibly blocked 

by 
3
H-N-ethylmaleimide and this moiety was detected with autoradiography. The 

palmitoyl group modifications to all three proteins used in their study, the α7/5HT3A 

subunit, SNAP-25, and PSD-95, have been confirmed. These investigators also compared 

the results from their method to those obtained by traditional metabolic labeling with 

tritiated palmitate and claimed that it was much more sensitive. Moreover, they showed 

that tissue samples could also be analyzed by the newly developed method, 

demonstrating another advantage over the radioactive metabolic labeling method, which 

is almost exclusively applied to cultured cells. The authors also discussed the potential 

for thiol labeling by non-radioactive reagents, such as a fluorophore, chemiluminescent 

probe, or biotin. In particular, biotinylation of the HA-released thiol group would allow 

subsequent detection using streptavidin-horseradish peroxidase. This idea was later 

realized by Roth and coworkers, who developed the acyl-biotinyl exchange (ABE) 

chemistry and applied it to the detection of protein palmitoylation on a proteomic scale 

[8, 110]. Their multi-step method involved (Figure 1.3): (1) blocking of all free cysteine 

thiols with N-ethylmaleimide (NEM); (2) removal of the thioester-linked palmitoyl 

groups via hydroxylamine-induced hydrolysis; (3) labeling of the newly freed thiol 

groups with biotin-HPDP; (4) enrichment of biotinylated proteins with streptavidin-

agarose beads. In-solution tryptic digestion was performed, and the resulting peptides 

were analyzed by integrated strong cation exchange/reversed phase high-performance 

liquid chromatography (SCX-RP-HPLC) coupled to a tandem mass spectrometer, a 

method commonly referred to as multi-dimensional protein identification technology 
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(MudPIT). The data were searched against a protein database using SEQUEST. Using 

this method, a total of 12 known and 35 novel palmitoyl proteins were identified in the 

yeast Saccharomyces cerevisiae [8]. This marked the first performance of large-scale 

profiling of protein palmitoylation (palmitoyl proteomics). was As indicated, one 

advantage of the ABE approach is the achievement of palmitoyl peptide/protein 

enrichment from complex samples, owing to the specific binding of biotin-HPDP with 

streptavidin-agarose beads followed by sample release from beads simply by disulfide 

bond reduction. Either a single targeted protein or total protein extracts can be analyzed 

by LC-MS analysis.  

The lack of palmitoyl-specific antibodies has greatly impeded the study of protein 

palmitoylation in the past. The substitution of a palmitoyl group with a biotin tag, 

together with the availability of commercial anti-biotin antibodies, enables targeted 

palmitoyl detection by Western blotting. However, the ABE method involves multiple 

reactions and sample cleanup by triple precipitations in between each of the reaction 

steps and this may cause severe sample losses. As the authors themselves mentioned, 

false positives could arise due to incomplete blockage of free cysteines, and false 

negatives could occur due to inadequate thioester hydrolysis by hydroxylamine, or 

inefficient biotin-labeling. Further, palmitoylation is not the only form of thioester 

linkage, and the ABE method could lead to false assignments of palmitoylation when the 

cysteine is occupied by other types of acyl modification. 
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Figure 1.3 Schematic of the ABE chemistry, adapted from reference [110]. 

 

1.2.3 Non-Radioactive Metabolic Labeling 

In 2009, Martin and Cravatt introduced an alternative approach for palmitoyl 

detection which utilizes endogenous labeling with the palmitic acid analogue, 17-

octadecynoic acid (17-ODYA), and click chemistry [111]. Their method has shown great 

promise in palmitoyl proteomics using mammalian cell lines [112]. In that study, 17-

ODYA was first incorporated into proteins undergoing in vivo palmitoylation in cultured 

cells. With Cu(I) catalysis, the alkyne group on 17-ODYA “clicked” with an azide which 

had been pre-linked to a reporter molecule. The reporter molecule, either biotin or 
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rhodamine, allowed the enrichment and detection of palmitoyl proteins, using either MS 

or non-MS methods (Figure 1.4). In conjunction with mass spectrometry, this approach 

was used for global profiling of palmitoyl proteins and more than one hundred palmitoyl 

proteins were identified from Jurkat T-cells [112]. Since it is a metabolic labeling 

method, a pulse-chase assay can be performed to examine palmitoyl turnover. When 

combined with the stable isotope labeling by amino acids in cell culture (SILAC) 

technique [113], differences in globe palmitoyl dynamics under various conditions can be 

monitored [114]. This approach involves fewer reaction steps compared to the ABE 

chemistry, resulting in a simpler sample preparation procedure and a significant reduction 

in sample losses. However, , it is difficult and costly to extend the use of such a metabolic 

labeling method to study palmitoylation in large organisms. Moreover, 17-ODYA is a 

potent inhibitor of cytochrome P450 ω-hydroxylase [115], which plays an important role 

in fatty acid metabolism [116]. The effect of 17-ODYA upon the palmitoyl machinery in 

living systems is still unclear. In addition, 17-ODYA undergoes degradation by the β-

oxidation pathway [117], forming shorter acyl chain analogs which may target N-

myristoylation sites leading to false discovery of “S-palmitoyl” proteins. Relative 

quantification of protein palmitoylation remains challenging, as the unpalmitoylated 

proteins are not retained. As discussed below, care must also be taken to minimize loss of 

palmitoyl groups during each reaction and sample cleanup step. 
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Figure 1.4 (a) Schematic of the detection of protein palmitoylation by metabolic labeling 

with 17-ODYA followed by click chemistry, adapted from reference [118]; (b) Click 

chemistry with copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC). 
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Chapter 2: Introduction to Mass Spectrometry 

MS is an analytical chemistry technique that provides valuable structural 

information on analytes by measuring their mass-to-charge ratios (m/z). Because of its 

ability to analyze various types of molecules, ranging from biomolecules such as 

DNA/RNA, proteins, lipids, carbohydrates, and metabolites, to synthetic 

compounds/polymers, MS is playing an increasingly significant role in numerous fields 

such as molecular biology, materials science, environmental science, archaeology, drug 

discovery, and clinical diagnosis. 

Modern MS instruments can be coupled to various separation devices, such as a 

GC, LC, or electrophoresis equipment, allowing the analysis of a complex mixture in a 

single run that yields rich information. A typical mass spectrometer consists of three main 

parts: an ion source, a mass analyzer, and a detector. Because MS measures the m/z value 

of analyte ions, a molecule of interest must first be ionized. The molecular ions are then 

separated based on their mass-to-charge ratios, and their signals are recorded as a 

function of scan time. Because of its high sensitivity, accuracy, and efficiency, MS is 

becoming an indispensable and reliable tool for proteomic studies [119]. In this chapter, 

the most commonly used MS instruments for analysis of proteins/peptides will be 

reviewed. 

2.1 Ion sources 

In early days, the application of MS to analyze proteins/peptides was a 

challenging and not completely achievable goal because there was no fully satisfactory 

ionization method. Proteins/peptides are large, nonvolatile, and thermally unstable 
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molecules, and it is difficult to volatilize them in order to utilize long-established 

ionization methods such as electron ionization (EI) and chemical ionization (CI) without 

extensive thermal degradation. For a long time, MS techniques were limited to the 

analysis of small molecules. Tthe emergence of soft ionization methods finally led to the 

wide-spread application of MS to analyze complex biomolecules and this laid the 

foundation for modern proteomic studies. Today, the two by far most important soft 

ionization methods are matrix-assisted laser desorption/ionization (MALDI) and 

electrospray ionization (ESI). 

2.1.1 Matrix-Assisted Laser Desorption/Ionization (MALDI) 

 MALDI was first reported by Michael Karas and Franz Hillenkamp in 1987 

[120]. Before positive-ion MALDI-MS analysis (Figure 2.1), the analyte is usually 

dissolved in an acidic solution and spotted together with excess matrix molecules on a 

steel plate. Solvent evaporation leads to the co-crystallization of the analyte with matrix 

molecules. The steel plate is then placed in vacuum and a pulsed laser,usually a nitrogen 

laser (337 nm) or the tripled frequency (355 nm) from a Nd:YAG laser for UV-MALDI, 

is used to irradiate the crystals, leading to the ablation of clusters of matrices with the 

analyte entrained within. Matrices are usually small molecules with a chromophore that 

can absorb at the laser wavelength (UV or IR), to assist the evaporation of analytes. The 

matrix can also serve as the proton donor to facilitate ionization of analytes [121]. The 

use of a high molar excess of matrix prevents analyte degradation caused by direct laser 

irradiation. Sinapinic acid (SA), 2,5-dihydroxy benzoic acid (DHB), and α-cyano-4-
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hydroxycinnamic acid (CHCA) are the most commonly used matrices for UV-MALDI-

MS analysis of proteins and peptides. 

 

 

Figure 2.1 Schematic of the MALDI process, adapted from reference [122]. 

 

 Besides its reputation as a soft ionization technique, the reasons for the wide use 

of MALDI-MS for protein/peptide analysis include several other advantages. As 

described above, sample preparation is simple. MALDI has a fairly high salt/contaminant 

tolerance, and thus, in most cases, good results can be obtained with minimal 

purification,. For high-throughput analysis, thousands of laser shots can be applied during 

a burst in a very short time. The peptides in a tryptic digest are predominantly detected as 

singly charged ions in MALDI mass spectrometry, and this simplifies the spectral 

interpretation. As a pulsed ionization source, MALDI can be easily coupled to fast Time-

of-Flight (TOF) mass spectrometers. MALDI-TOF MS analysis has been extensively 

used in peptide mass fingerprinting [123] due to its high throughput and easily 

interpretable spectra. However, the MALDI-MS technique may suffer from poor 
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reproducibility due to shot-to-shot signal variation, and this can undermine its potential 

use in quantitative studies, unless internal standards are included. It is difficult to couple 

online separation to a MALDI source, but offline deposition of chromatographic fractions 

onto a MALDI plate is straightforward. 

2.1.2 Electrospray Ionization (ESI) 

 Like MALDI, ESI is a widely-used soft ionization technique for modern mass 

spectrometry analysis, first introduced into the worldwide community by the Nobel Prize 

winner John Fenn [124, 125]; a parallel development took place in Russia [126]. ESI 

allows the direct transfer of analytes from solution into the gas phase under atmospheric 

pressure. Figure 2.2 illustrates the most widely accepted ESI mechanism. The sample 

solution is loaded to a syringe or capillary, to which a high voltage is applied. The 

electric field pushes the solution forward, forming a Taylor cone at the end of the tip. 

Charged droplets continuously bud from the Taylor cone when the electrostatic force 

overcomes the surface tension. Utilization of a nebulizer gas in this step can facilitate the 

formation of a fine mist of charged droplets. Charged droplets then undergo evaporation, 

usually with the assistance of a flow of bath gas as well as a heated transfer capillary, 

during their travel to the analyzer inlet, leading to shrinkage of droplets and increase in 

their surface charge density. The larger droplets break apart to form smaller droplets in a 

process termed Coulomb fission, when the surface tension of the shrinking droplets can 

no longer withstand the increased charge repulsion at the Rayleigh limit. This solvent 

evaporation/Coulomb fission cycle repeats until each droplet carries a single analyte 
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molecule within, from which the naked, charged analyte is produced by further 

evaporation of solvent molecules [127, 128].  

 

Figure 2.2 Schematic of the proposed ESI mechanism, adapted from reference [128]. 

 

 ESI offers several advantages over other ionization techniques. First and 

foremost, since analytes are ionized and transferred to the gas phase from a continuously 

flowing solution, ESI can be coupled to online HPLC or capillary electrophoresis (CE), 

allowing the qualitative and quantitative analysis of complex samples with high 

sensitivity and reproducibility. Second, ESI often produces ions with multiple charges, 

and this significantly extends the upper mass detection limit of mass spectrometers, a 

property which is particularly useful for mass analyzers with limited m/z ranges. Third, 

because the desolvation process during ESI consumes energy, analytes can be efficiently 

cooled and only a small amount of energy is deposited to the analyte ions before mass 

analysis. Thus, ESI is an even softer ionization technique than MALDI, and more easily 

capable of preserving non-covalent interactions. However, ESI often requires extra 
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sample cleanup steps, because ESI does not work well with samples containing salts, 

detergents or other contaminants, and even a small amount of impurity may lead to 

significant reduction (or complete suppression) of the analyte signal. 

2.2 Mass Analyzers and Detectors 

A mass analyzer measures the mass-to-charge ratios of ions and is the central part 

of the mass spectrometer. Transmission efficiency, mass resolution, and mass accuracy 

are the key parameters for the performance of a mass analyzer. Transmission efficiency 

corresponds to the percentage of ions that actually reach the detector from the ion source. 

Transmission efficiency affects the instrument sensitivity, a parameter referring to the 

minimum sample amount required to produce detectable MS signals; high sensitivity is 

especially important for analyzing low-abundance samples. Mass resolution or mass 

resolving power describes the ability of a mass analyzer to distinguish ions with closely 

separated m/z values and can be calculated as the ratio of the m/z of a peak divided by its 

width, usually determined at the half maximum height. The absolute mass accuracy is the 

difference between the experimental and theoretical m/z values, and it is often expressed 

in a relative term as the ratio of the mass measurement error to the theoretical mass in 

parts-per-million (ppm). High mass accuracy (low mass measurement error) is crucial for 

confident identification. 

2.2.1 Time-of-Flight (TOF) 

As its name indicates, a time-of-flight mass analyzer determines the m/z value of 

an ion by measuring its transit time from the ion source to the detector. A TOF analyzer 
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requires a pulsed ion beam, and thus it is usually coupled with a MALDI ion source, but 

it can also be coupled with an ESI source via orthogonal ion injection, as implemented in 

Q-o-TOF and FT MS instruments. The MALDI-TOF MS is one of the most commonly 

used MS instruments, due to its low cost, ease of sample preparation, user friendly 

operation, and relatively high sensitivity and mass resolution. In a MALDI-TOF MS 

measurement, a burst of ions extracted from the MALDI plate are accelerated by a static 

electric field and all ions carrying the same charge (z) will gain the same kinetic energy 

(Ek), which is expressed as: 

 
   

 

 
        Eqn. 2.1 

where m and z are the mass and charge of the ion, respectively, v is the velocity of 

the ion as it exits the ion source, e is the elemental charge, and V is the accelerating 

potential. After acceleration, all ions traverse a field-free flight tube in vacuum to reach 

the detector. Assuming the length of the tube is L, the flight time of an ion can be 

calculated as: 

 
    

 

 
 Eqn. 2.2 

Combining the Equations 2.1 and 2.2 yields: 

 
   

  

   
 

 

 
 Eqn. 2.3 

The equations above outline the principle of operation for a TOF mass analyzer: 

ions with a higher m/z travel with a lower velocity and thus more slowly than ions with a 

lower m/z, so they take a longer time to reach the detector. For a given accelerating 
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potential (V) and distance of flight (L), the m/z value of an ion scales quadratically with 

its time of flight [122]. 

The linear MALDI-TOF MS design, as described above, suffers from its poor 

mass resolution because ions produced from a MALDI source have different initial 

velocities as well as a certain degree of temporal and spatial distributions, and therefore 

ions with same m/z do not all arrive at the detector simultaneously; this leads to peak 

broadening. Two techniques have been widely implemented in modern MALDI-TOF 

instruments to improve the mass resolution: pulsed-delayed extraction and the reflectron 

geometry. Figure 2.3 illustrates the schematic of a MALDI-TOF/TOF instrument with 

pulsed-delayed extraction and a reflectron. The pulsed-delayed extraction is 

accomplished by two-stage ion acceleration. The extraction voltage (Ue) is applied to the 

sample plate following a short time delay (usually several hundred nanoseconds) after 

ions are produced by the pulsed laser desorption/ionization. The underlying principle is 

that slower ions will not travel as far from the sample plate during the delay, and, when 

the extraction voltage is applied, they will stay in the extraction electric field longer and 

obtain more kinetic energy. When the delay time and accelerating voltage are properly 

chosen, ions with a lower initial velocity will emerge from the extraction field with a 

slightly higher final velocity, allowing them to catch up, at the detector, with ions with a 

higher initial velocity. The optimal extraction voltage is mass-dependent and linear to the 

m/z of ions being focused [129];  the user has to adjust the voltage and delay time in order 

to optimize the results. Use of a reflectron, rather than a simple linear flight tube, is 

another strategy to compensate for the initial kinetic energy spread of ions. A reflectron is 
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an electrostatic device that sits between two stages of the flight tube that can be 

physically the same but traversed in opposite directions. It acts as an ion mirror that 

creates a retarding electric field where ions can be deflected and sent into the second 

stage of the flight tube. Ions that enter the reflectron are subjected to deceleration by the 

electric field. Their velocities will eventually reach zero, at which point ions begin to 

move in the opposite direction and regain the lost kinetic energy before they are expelled 

from the reflectron. Ions with higher kinetic energies penetrate more deeply into the 

retarding field and spend more time in the reflectron than ions with lower kinetic energy, 

thus compensating for a shorter flight time outside of the reflectron, and leading to 

improved mass resolution. 

 

Figure 2.3 Schematic of a MALDI-TOF/TOF instrument, adapted from reference [130]. 

 

2.2.2 Quadrupole Mass Analyzer 

A quadrupole mass analyzer consists of four parallel metal rods that are 

symmetrically assembled around the z axis (Figure 2.4). In order for ions to reach the 

detector, they must have stable trajectories inside the quadrupole. A quadrupole is 
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operated in such a way that opposite potentials (∅0 and -∅0) are applied to the two pairs of 

opposing rods to create a quadrupolar electric field:  

 ∅                      ∅               Eqn. 2.4 

where U is direct current (DC) voltage, V is radio frequency (RF) voltage 

oscillating at a frequency of ω, and t is the time. Whereas the quadrupolar field contains 

no z-component, allowing ions to traverse the quadrupole unhindered, ion motion in the x 

and y directions is very complex and governed by the oscillating electric field. The ion 

trajectory must remain bound in both the x and y directions in order for ions to travel 

through the quadrupole without striking the rods. Figure 2.5 shows the stability diagram 

for an ion  and depicts the first stability region in the U/V space where ion motion is 

confined in both x and y directions. The stability regions of ions with different m/z values 

have the same shape, but their dimensions scale linearly with the ion m/z value. During a 

scanning event, U and V are successively increased, at a fixed ratio along the operating 

line, allowing the sequential transfer and detection of ions with increasingly higher m/z 

values. The U/V ratio is a user-defined value that controls the resolving power of the 

quadrupole mass analyzer: a higher U/V ratio leads to a higher resolving power. 

However, achieving the highest resolving power also comes at the price of reduced ion 

transmission efficiency (sensitivity) and scan speed (throughput), and one must make a 

compromise to obtain the best result, based on the objectives of the experiment. 

A quadrupole can function not only as a mass filter but also as an ion guide. By 

setting the proper U and V values, only ions with the selected m/z value can be 

transmitted through the quadrupole, while ions with other m/z values will have unstable 
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trajectories and strike the rods. When operated in the RF-only mode (U = 0), a 

quadrupole allows all ions above a certain m/z cutoff to pass though, turning it into an ion 

guide or an ion focusing device. A triple quadrupole mass spectrometer (QqQ), consisting 

of three quadrupoles (Q1, q2, and Q3), as its name suggests, is a good example to 

illustrate the versatility of quadrupole instruments. While Q1 and Q3 are mass analyzers, 

q2 operates exclusively in the RF-only mode, serving as an ion transfer device and 

collision cell. A triple quadrupole instrument may be operated under several modes, 

depending on whether Q1 and Q3 operate in the scanning mode or as mass filters. In the 

MS/MS mode, also known as the product ion scanning mode, Q1 works as a mass filter, 

transmitting ions of interest to q2, where they are subjected to dissociation, usually 

collision-induced dissociation (CID). All fragment ions and the remaining precursor ions 

are subsequently focused and guided into Q3, where they are mass analyzed, thus 

providing detailed structural information on the precursor ion. Another common 

operating mode for a triple quadrupole instrument is the selective reaction monitoring 

(SRM) or multiple reaction monitoring (MRM) mode, where Q1 is tuned to transmit a 

selected precursor ion of interest and Q3 is tuned to transmit a specific fragment ion from 

that precursor ion. The SRM mode monitors a specific “transition” of a compound rather 

than its mass alone, which leads to improved confidence and S/N ratio in the monitoring 

of a preselected component, especially in complex samples. 

Quadrupole mass analyzers are widely used because they are inexpensive, easy to 

build and operate. They are characterized by their high transmission efficiency and fast 

scan rate. A quadrupole mass analyzer has a mass range up to around m/z 4000 (though 
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often lower), and can be used to analyze large highly charged biomolecules when coupled 

to an ESI source. However, the mass resolution of quadrupole mass analyzers is typically 

low, up to a few thousand at best. 

 

Figure 2.4 Schematic of a quadrupole mass spectrometer, adapted from reference [131]. 
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Figure 2.5 The stability diagrams of ions with different m/z values in the U/V space. 

 

2.2.3 Linear Quadrupole Ion Trap (LIT/LTQ) 

A linear ion trap (LIT) is a mass analyzer built with three sets of RF-only 

quadrupoles arranged in a linear configuration (Figure 2.6). A differential RF potential is 

applied to all three sets of quadrupoles to trap the ions along the x and y directions (or 

radially), whereas a DC potential is superimposed on the two end quadrupoles to confine 

ion motion along the z direction (or axially). During an MS scan cycle, a packet of ions is 

first injected into the LIT and trapped there. A gas such as helium is commonly used to 

cool down the ions without introducing fragmentation, and focus them to the center of the 

LIT. The amplitude of the main RF potential, V, is then ramped up, which moves the ions 

out of their stability regions, and ejects the ions radially, from low m/z ions to high m/z 
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ions. An auxiliary alternate current (AC) voltage at a fixed frequency is often applied to 

the x-rods during the main RF ramp to facilitate rapid resonant ejection of the ions, which 

not only improves the scanning speed and mass resolution, but also increases the upper 

mass detection limit. Besides functioning as a mass analyzer, an LIT can also be used to 

perform CID experiments. During an MS/MS event, ions with a specific m/z value are 

isolated by applying resonance ejection voltage to x-rods at the secular frequencies of all 

ions except for the ion of interest, and this leads to the ejection of all unwanted ions from 

the trap. The ions selected as precursors are then excited by collision with the neutral gas 

molecules inside the trap to produce fragment ions. Note that there is a trade-off between 

the extent of fragmentation and the observation of low mass product ions, as a higher 

energy deposition in the precursor ions requires the main RF to operate at a higher 

amplitude, and this unfortunately leads to an increase in the low-mass cutoff of the LIT 

and the loss of low mass fragment ions from the trap. 

As described above, LIT is an ion trapping device. Precursor ion isolation, 

fragmentation, and analysis of product ions can be conducted sequentially in one place in 

the LIT, whereas precursor and product ion analyses are performed in two physically 

separated mass analyzers in other tandem instruments, e.g., triple quadrupole instruments. 

Consequently, it is possible to perform multi-stage tandem MS analysis (known as an 

MS
n
 experiment) in an LIT. An LIT also has a large ion trapping capacity and space 

charge effect that is reduced compared to a 3D ion trap [132]. An LIT can either serve as 

a stand-alone mass spectrometer, or be combined with another mass analyzer to form a 

hybrid MS instrument such as the LTQ-Orbitrap.  
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Figure 2.6 Schematic of a linear ion trap, adapted from reference [133]. 

 

2.2.4 Fourier Transform Ion Cyclotron Resonance (FTICR) 

The major components of an FTICR mass analyzer are a magnet and three pairs 

of electrodes which form an ICR cell. An ICR cell uses the combination of a 

homogeneous magnetic field and an inhomogeneous electric field to trap the ions. For a 

cubic ICR cell (Figure 2.7), two pairs of electrode plates, placed in parallel with the 

magnetic field and oriented along the z axis, are used for ion excitation and detection, 

respectively, and a third pair of plates (trapping plates), positioned perpendicular to the z 

axis, are responsible for the axial ion confinement. An ion in a homogenous magnetic 

field experiences a Lorentz force (      ) which is perpendicular to its velocity, v, 

and the direction of the magnetic field, B. The Lorentz force is always normal to the 

direction of the ion motion, leading to the cyclotron motion of an ion about the z axis. 
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The cyclotron frequency of an ion in a constant magnetic field is inversely proportional to 

its mass-to-charge ratio, as described by the equation below: 

 
   

  

   
 Eqn. 2.5 

where fc is the cyclotron frequency, q is the ion charge, B is the strength of 

magnetic field, and m is ion mass. Therefore the mass-to-charge ratio of an ion can be 

determined by measuring its cyclotron frequency [122].  

 

Figure 2.7 Schematic of a cubic ICR cell and the ion cyclotron motion. 

 

In a typical FTICR MS experiment, ions are injected into the ICR cell with low 

kinetic energy, so that they can be trapped with a low electric potential applied to the 

trapping plates. Trapped ions undergo cyclotron motion in the center of the ICR cell, but 

their signals cannot be detected because the thermal cyclotron radii are too small for the 

ions to produce a measurable signal, and, more importantly, the initial cyclotron motions 

of ions are out of phase and thus the small signals produced by their incoherent ion 
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motions would cancel out. A frequency-sweeping RF voltage which contains the 

cyclotron frequencies of ions with a wide range of m/z values, is applied to the excitation 

plates, bringing all ions to larger orbits in coherent motion. The cyclotron motions of the 

excited ions induce alternating currents at the detector plate (known as image currents) 

which are subsequently amplified and recorded as a time domain transient [134]. Fast 

Fourier Transform (FFT) of the transient is then performed to generate a frequency 

domain spectrum that can be subsequently converted into a mass spectrum via mass 

calibration.  

Although the ICR mass analyzer is operated in a pulsed mode, it can be easily 

coupled to a continuous ion source by gated ion trapping. Commercial FTICR 

instruments are often coupled to an external ion isolation and storage device. Figure 2.8 

illustrates the schematic of the solariX Qh-FTICR, a hybrid MS instrument built by 

Bruker Daltonics. It contains a dual MALDI/ESI source, two ion funnels, a negative 

chemical ionization (nCI) source, a split octopole, a mass selecting quadrupole, a 

collision cell, an ion transfer guide, and an ICR cell. Briefly, ions are focused and 

transferred to the first quadrupole (Q) where ions of interest can be isolated and guided to 

the collision cell. The ions of interest can be accumulated in the collision cell, and they 

may undergo CID or electron transfer dissociation (ETD) in this cell. From there, ions are 

transferred into the ICR cell for mass analysis or tandem MS analysis. Unlike the RF-

only ion trap, an ICR cell offers a unique capability in that the magnetic field can 

efficiently confine the radial electron motion, allowing the performance of electron 

capture dissociation (ECD), a soft fragmentation method that can retain labile PTMs. In 
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addition, an FTICR mass analyzer offers superior mass resolving power and mass 

accuracy, making it well suited for de novo sequencing and top-down analysis. 

 

Figure 2.8 Schematic of a solariX
TM

 Fourier transform ion cyclotron resonance mass 

spectrometer, adapted from the user manual (Bruker Daltonics). 

 

2.2.5 Orbitrap 

An Orbitrap is an electrostatic ion trap with a spindle-like inner electrode and a barrel-

like outer electrode which is split in the middle (Figure 2.9). Ion trajectories inside an 

Orbitrap consist of three periodic motions: rotation around the z axis, radial oscillation, 

and axial oscillation along the z axis. Whereas the rotational frequency (ωφ) and the 

radial oscillation frequency (ωr) are affected by the initial ion velocity and position, the 
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axial oscillation frequency (ωz) only depends on the m/z values of the ions and the 

instrument parameters as shown in the equation below: 

 

ω   
  

   
   Eqn. 2.6 

where k is the field curvature. Thus, ions with the same m/z form a packet and oscillate 

harmonically along the z direction in the shape of a thin ring around the inner electrode, 

and this motion produces a small alternating image current between the two halves of the 

outer electrode, the frequency of which can be obtained by performing FFT on the 

recorded transient, and thereafter used to generate the mass spectrum.  

 

Figure 2.9 The cutaway view of an Orbitrap mass spectrometer, adapted from reference 

[134]. 

 

The Orbitrap has become the mass analyzer  most frequently employed in proteomic 

studies, owing to its high sensitivity, very high mass resolving power and accuracy, and 

wide mass range. Figure 2.10 illustrates the schematic of a commercially available 
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Orbitrap instrument, known as the LTQ-Orbitrap Velos™ hybrid mass spectrometer. It is 

made up of an ESI source, a series of ion transfer optics, a dual pressure LTQ/LIT, a C-

trap, an Orbitrap, and a higher-energy collisional dissociation (HCD) collision cell. Ions 

pass through a series of ion lenses and multipoles, that are operated with stepwise 

decreasing pressures, to the LTQ where they can be stored, isolated, and fragmented. The 

resulting ions can either be ejected radially for LTQ detection, or injected axially into the 

C trap. The C trap is a curved linear quadrupole ion trap which cools the ions and focuses 

them within a small volume, then injects them tangentially ,, into the Orbitrap, as a tight 

packet.  The inner electrode potential is then increased, and the ion packets are squeezed 

to the center of the electrode and begin coherent axial oscillations at various frequencies 

according to their m/z values. The Orbitrap can also receive ions produced in the HCD 

collision cell, an octopole device where precursor ions can undergo higher energy 

fragmentation. The Orbitrap does not suffer from the low mass cutoff issue that is 

encountered in an LTQ and is thus suitable for detection of low molecular weight reporter 

ions and immonium ions. 

 

Figure 2.10 Schematic of an LTQ-Orbitrap Velos mass spectrometer, adapted from 

reference [135]. 
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2.3 Application of Mass Spectrometry to Proteomic Studies 

MS is the enabling technique for modern proteomic studies, due to its high 

efficiency, sensitivity, and accuracy. It is widely used for protein sequence determination, 

quantification, characterization of PTMs, study of protein-protein interactions, among 

other tasks. The success of MS-based proteomics stems from the in-depth development of 

protein/peptide preparation/separation techniques, ionization methods, gas-phase 

fragmentation methods, spectral interpretation and bioinformatics software and relevant 

databases. Bottom-up proteomics, which involves proteolytic digestion, is by far the most 

widely-used approach for MS-based proteomics. In a bottom-up proteomics experiment, 

the total complement of proteins from the biological samples, either tissues or cell pellets, 

are first extracted with a lysis buffer, usually in combination with sonication and/or 

homogenization. Proteolytic digestion of proteins of interest (or total proteins) is then 

performed either in-gel or in-solution, usually by trypsin, leading to the conversion of 

proteins into peptide fragments that are subsequently analyzed by mass spectrometry. In 

an approach commonly referred to as the peptide mass fingerprinting (PMF), the set of 

peptide masses obtained from the MS measurement can be compared to predicted sets 

generated by in silico digestion of proteins in a database, to deduce the presence of 

certain proteins. However, it is very likely that one peptide mass can be assigned to 

multiple sequences in the database, potentially leading to erroneous identifications even 

when multiple highly accurate peptide masses are used. In order to improve the 

confidence of peptide assignments, peptides of interest can be isolated and subjected to 
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tandem MS (MS/MS) analysis, whereby each selected peptide is fragmented to produce 

pieces that can be used to deduce the peptide sequence. In contrast to the bottom-up 

analysis, top-down proteomics is a method used to analyze proteins without enzymatic 

digestion or chemical cleavage. Intact proteins are sent directly into the mass 

spectrometer where their masses can be determined and their fragments can be generated 

in the gas phase to deduce the protein sequence and to identify PTMs. These two 

approaches can be used independently, or in parallel. Regardless of the method of choice, 

tandem MS analysis has become an integral part of confident protein sequencing. 

Moreover, tandem MS analysis also plays an important role in isotope-coded affinity tag 

(ICAT)- and tandem mass tag (TMT)-based protein quantification. The next section 

reviews the tandem MS methods that are widely used in protein analysis.  

2.3.1 Tandem Mass Spectrometry  

Proteins and peptides are linear biopolymers made up from the 20 naturally 

occurring amino acids as the building blocks which are linked by amide bonds, as 

illustrated in Figure 2.11. There are three types of chemical bonds along the backbone of 

proteins/peptides: the Cα-C(carbonyl) bond, the amide bond, and the N-Cα bond. 

Cleavage of these bonds gives rise to three pairs of fragment ions which are classified 

into two categories [136]: N-terminal fragments which are defined as a-, b-, and c-type 

ions, and C-terminal fragments which are labeled as x-, y-, and z-type ions (Figure 2.11). 

Only those fragments that retain at least one charge can be detected. Backbone fragments 

are essential for determining the protein/peptide sequence. The mass difference between 

two adjacent fragment ions of the same type can be used to assign the amino acid 
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increment that differentiates these two fragments. In principle, the full sequence can be 

deduced de novo if all inter-residue cleavages are observed. In practice, even the 

reconstruction of a partial sequence (or a sequence tag) can significantly improve the 

confidence of assignment. Besides the backbone fragment ions, tandem MS analysis may 

also produce other types of ions, such as satellite (backbone plus side chain cleavage) 

ions (d-, v-, and w- ions), immonium ions, and internal fragment ions; these ions, 

although adding complexity to the tandem mass spectra, may also provide valuable 

information for sequencing. 

 

 

Figure 2.11 Nomenclature of peptide backbone fragmentation, adapted from reference 

[137]. 
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2.3.1.1 Collision-Induced Dissociation (CID), including Higher Energy 

Dissociation (HCD) 

CID, also known as collisionally activated dissociation (CAD), is a widely used 

tandem MS technique to dissociate protein/peptide ions in the gas phase. During the CID 

process, ions collide with neutral gas molecules (e.g. He, N2, or Ar) and a portion of the 

translational energy is converted to internal energy, leading to the decomposition of the 

activated ions, producing mainly b- and y- ions. CID can be further classified into three 

categories based on the magnitude of the collisional energy, which influences the rate and 

extent of energy deposit [138]: 

     High-Energy CID (Fast Activation) 

High-energy CID is usually performed on a magnetic/electric sector or TOF/TOF 

instrument. Ions are accelerated to gain several kilo-electron volts (keV) of kinetic energy 

as they enter the collision cell. In addition, the gas (usually He) pressure in the collision 

cell is adjusted to a level at which only a single or a few (< five) collision(s) take place 

during the ion’s residence time there. The collision event (or the ion activation event) 

occurs within a very short time frame (several microseconds), due to the high kinetic 

energy of the ions and the low gas density. It is believed that protonated proteins/peptides 

are activated by high-energy CID mainly fragment via charge-remote pathways, because 

the energy deposition to the ions is sufficiently high. Besides producing b- and y- type 

ions as seen in other types of CID experiments, high-energy CID can also generate 

fragment ions that exhibit side chain losses, which are especially useful for differentiation 

of isomeric residues, e.g., leucine and isoleucine [139]. 
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    Low-Energy CID (Slow Activation) 

CID experiments performed in RF-only quadrupole or other multipole devices are 

characterized by a collision energy of less than 100 eV, and are commonly referred to as 

low-energy CID. The gas pressure is optimized to allow precursor ions to collide with the 

gas molecules multiple times (up to a few hundred times), with a small amount of energy 

being deposited into the ions during each collision event. The longer activation time in 

low-energy CID (usually varying from hundreds of microseconds to a few milliseconds) 

significantly improves the fragmentation efficiency. The other advantage of using a 

multipole device as the collision cell is that fragment ions can be focused after collision. 

Instead of direct amide bond cleavage, which requires a high energy input, the backbone 

cleavage of protonated proteins/peptides in low-energy CID is believed to be triggered by 

mobile protons and to follow a charge-directed fragmentation pathway [140]. In the 

mobile proton model, the energy deposited in the ions facilitates the transfer of a proton 

from basic residues such as the guanidine group on arginine, or the amino group on lysine 

or the peptide N-terminus, to the backbone amide nitrogen or carbonyl oxygen. The 

protonation of the amide nitrogen or carbonyl oxygen not only weakens the amide bond, 

but also increases the electrophilicity of the corresponding amide carbon. Backbone 

cleavage is subsequently initiated by the nucleophilic attack of the oxygen from the N-

terminal neighboring amide bond to the amide carbon atom, forming an oxazolone b ion 

and a y-ion (Figure 2.12) [140, 141]. Commercial instruments utilizing low-energy CID 

include triple-quadrupole (QqQ), quadrupole time-of-flight (Q-TOF), and hybrid FTICR 

mass spectrometers. It needs to be pointed out that the HCD that takes place in the 
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octopole collision cell, at the far end of the C-trap in the LTQ-Orbitrap and Q-Exactive 

instruments, falls into upper energy range of this category and may produce side-chain as 

well as backbone cleavages. 

 

Figure 2.12 The oxazolone pathway in the low energy CID process, adapted from 

reference [141]. 
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    Ion-Trap CID (Very Slow Activation, Slow Heating) 

CID performed in ion trap instruments such as LIT, QIT, and the ICR cell takes 

advantage of the ion residence time inside the trap that is longer than in collision cells. 

Ions are resonantly excited to gain only a few eV of kinetic energy, and this allows 

multiple collisions to take place during a very long time window (tens to hundreds of 

milliseconds). Ion activation is also accompanied by deactivation processes such as 

collisional cooling and/or IR emission [132]. Consequently, the ion internal energy is 

built up slowly and can achieve extremely high dissociation efficiency. Such a slow 

heating method is known to be able to efficiently dissociate high mass ions [142]. 

However, because ion-trap CID is a slow heating method, it preferentially breaks the 

weakest bond in a molecule, and is not well-suited for characterization of labile 

modifications. Further, as mentioned before, detection of the products from low-energy 

CID performed in a quadrupole ion trap (LIT or QIT) is limited by the low-mass cutoff 

issue. 

2.3.1.2 Electron-Capture Dissociation (ECD) 

ECD is another fragmentation method that can induce efficient dissociation of 

proteins and peptides. It was first introduced by McLafferty and Zubarev in 1998 [143]. 

In ECD, multiply charged protein or peptide ions are irradiated by low-energy electrons 

(< 0.2 eV) which can be captured at a protonated site. The electron capture is an 

exothermic process resulting in the release of ~6 eV of recombination energy. Instead of 

undergoing internal energy randomization, the released energy is used locally to induce 
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peptide backbone cleavages via a nonergodic process. The classic ECD fragmentation 

mechanism (also known as the Cornell mechanism) proposed by Zubarev is illustrated in 

Figure 2.13. The addition of an electron to a protonated amine group (R-NH3
+
) produces 

an odd electron species (R-NH3
•
). An H

•
 can dissociate from R-NH3

•
 and migrate to an 

amide carbonyl group which has a higher H
•
 affinity than the amine group. The resulting 

carbon-centered aminoketyl radical intermediate induces N-Cα cleavage to produce c- and 

z-type ions[144]. Compared to CID, ECD has the advantage of being able to generate 

extensive backbone cleavages while preserving the types of labile PTMs (e.g. 

phosphorylation and glycosylation) that are often lost during CID. In addition, disulfide 

bond cleavage is favored by the ECD process, presumably because of the higher 

hydrogen affinity of the sulfhydryl group (H
•
 affinity: sulfhydryl group > amide carbonyl 

group > amino group) [145]. Moreover, isomeric amino acid residues, e.g.,aspartic and 

isoaspartic acids, can be distinguished by ECD through secondary, radical-induced side 

chain cleavage [146].  

The nonergodic premise in the Cornell mechanism was later challenged by the 

Utah-Washington mechanism which maintains that electron capture can occur directly at 

a backbone amide site, with sufficient Coulomb stabilization. The subject of ECD 

mechanism(s) has been extensively reviewed [147, 148], and will not be discussed further 

here. Despite its many advantages, the use of ECD has been limited because its 

implementation is largely restricted to expensive FTICR instruments. Additionally, ECD 

is only applicable to multiply charged precursor ions, and its dissociation efficiency is 

relatively low. Finally, it is important to recognize that CID and ECD are complementary 
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methods, and thus it is desirable to combine the information obtained from both, 

whenever possible. 

 

Figure 2.13 The mechanism proposed at Cornell, for ECD of protonated peptides, 

adapted from reference [149]. 

 

2.3.1.3 Electron-Transfer Dissociation (ETD) 

ETD is an ECD-like fragmentation method introduced by Hunt and co-workers in 

2004 [149]. Instead of relying on direct electron capture, the ETD process originates via 

electrons transferred from reagent anion radicals to multiply charged analyte cations. 

ETD shares many features with ECD, including the extensive backbone cleavage, 

production of c- and z-type ions, and preservation of labile PTMs. A major advantage of 
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ETD over ECD is that ETD can be performed in low cost instruments such as LITs and 

QITs. Thus, ETD has quickly been widely implemented in proteomics research. ETD 

appears to be a more gentle fragmentation process than ECD, due to its smaller energy 

deposit and the presence of collisional cooling in ion trap instruments, and thus even the 

most labile PTMs such as sulfation can be preserved during ETD. 

2.3.2 Sample Preparation Prior to Mass Spectrometry Analysis 

In parallel with their development of better MS instrumentation and novel 

fragmentation techniques, researchers have also exerted a great deal of effort to optimize 

the protocols for sample preparation prior to MS analysis. A poorly prepared sample not 

only leads to failure of MS detection, but can also be deleterious to the mass spectrometer 

hardware. Whereas there is no universal sample preparation strategy, the protocols need  

to be tailored case by case based on the sample type and quantity, experimental goals, 

and the detection method. Successful proteomic sample preparation can be time-

consuming and may involve (but is not limited to) the optimization of protein extraction, 

proteolysis, enrichment, separation, and desalting. Generally speaking, the common goal 

here is to efficiently reduce the sample complexity and remove impurities, albeit without 

causing appreciable sample losses. 

2.3.2.1 Sample Enrichment 

Successful MS analysis of targeted proteins or the whole proteome relies on the 

efficient enrichment of the protein(s) of interest, especially for low-abundance proteins. 

Enrichment can be performed at either the protein or the peptide level. For example, the 
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targeted protein can be affinity purified using a specific antibody. In order to facilitate the 

purification, as well as to increase the abundance of the target protein, the protein under 

investigation can be (over)expressed with affinity tag(s) such as the His-tag, Flag-tag, or 

GST-tag, so that it can be later pulled down by corresponding resins. Meanwhile, 

enrichment at the peptide level is often used for PTM studies. A successful example is 

phosphoproteomics, where the total protein extract is often first digested into peptides 

followed by the enrichment of phosphopeptides by immobilized metal chromatography 

[150].  

2.3.2.2 Sample Desalting 

Buffer salts and other additives such as detergents are usually not compatible with 

MS analysis and have to be removed from the analyte solution, as these impurities can be 

ionized so easily that their presence will significantly suppress the signal of analyte 

molecules. Additionally, additive-analyte clusters may be formed, spreading the analyte 

signal into many peaks, which not only reduces the intensities of individual signals but 

also complicates spectral interpretation. Commonly used desalting techniques include 

dialysis, centrifugal filtration, and solid-phase extraction (SPE). 

2.3.2.3 Sample Separation 

The total protein mixture extracted from biological samples is usually too 

complex to be analyzed directly by MS. The MS instrument has a limited dynamic range 

and low-abundance proteins may not be efficiently ionized and will be difficult to 

identify in a complex mass spectrum dominated by ions from high-abundance proteins. 



 

58 

Additionally, there is a serious issue caused by  the overlap of ions with similar m/z 

values in complex samples. Reduction of the sample complexity is a demanding but 

important task for successful proteomics analyses. Improved separation before the MS 

analysis lowers the interferences among analytes and increases the information content in 

the resulting mass spectra. In the early days of proteomics, protein separation for MS 

analysis was mainly gel-based. With this approach, protein mixtures are subjected to 

either one-dimensional separation by SDS-PAGE or two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) which separates proteins based on both their molecular 

weights and/or isoelectric points. A gel spot containing the protein of interest is excised 

and subjected to a series of treatments including reductive alkylation, proteolytic 

digestion, peptide extraction, and desalting. The masses of the resulting peptides can be 

measured by MALDI-TOF MS. By combining the MS database search result with the 

protein isoelectric point and molecular weight information from the 2D-PAGE, the 

protein sequence can be determined. Gel-based protein separation is still widely used 

today because it separates proteins well, is simple to perform, and can easily remove 

impurities [151]. 

More recently, HPLC has become increasingly widely used. HPLC is a type of 

gel-free separation technique tightly linked to MS analyses. A modern HPLC instrument 

typically consists of a sample injector, a mobile phase (solvent gradient system), a 

stationary phase (usually densely packed column), a degasser, solvent pumps, a UV 

detector, and a fraction collector. An analyte mixture is first dissolved in the mobile 

phase and introduced into HPLC through the sample injector. The mobile phase is pushed 
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by the pumps through the system, bringing the analyte to the analytical column where 

different components in the mixture can be separated. After components elute from the 

column, they are detected at the detector, recorded as peaks in a chromatogram. Eluting 

analytes can be collected by a fraction collector for later analysis. The degasser is placed 

prior to the pump to remove air pockets in the mobile phase, leading to better 

chromatographic baselines. Optimization of the HPLC conditions is a delicate and time-

consuming task. In order to obtain a desirable chromatogram, several parameters need to 

be optimized, including the mobile phase composition/pH/flow rate, the column 

material/dimensions/temperature, the sample concentration/solubility, and the injection 

volume. 

The commonly used stationary phases for separation of proteins and peptides are 

the reversed phase (RP) materials, typically with alkyl chains (C4, C8, or C18) covalently 

bonded to a silica resin. RP-HPLC separates analytes based on their hydrophobicity. The 

mobile phase of RP-HPLC consists of an aqueous solution (water) and an organic 

modifier (e.g. acetonitrile, methanol). The sample is initially loaded into the system with 

a high percentage of the aqueous solution. The analytes can adsorb to the surface of the 

stationary phase though hydrophobic interaction. Addition of the organic modifier leads 

to partition of the analytes between the mobile phase and the stationary phase and the 

analytes will elute from the stationary phase into mobile phase when a critical organic 

concentration is reached. The separation is achieved by gradually increasing the 

concentration of the organic modifier: molecules with higher hydrophobicity bind to the 

stationary phase more tightly, so that a higher percentage of organic modifier is needed to 
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elute them out, leading to a longer retention in the column. A major advantage of RP-

HPLC is that its mobile phase is compatible with the ESI source, and by scaling down the 

flow rate to nL/min level, RP-HPLC, as a single phase or the last dimension of 

multidimensional separation [152], can be coupled directly to a mass spectrometer 

equipped with an ESI source. In addition, the column for online-HPLC analysis is usually 

packed with smaller particles (1.7 µm vs. the traditionally used 5 µm), significantly 

boosting the separation speed with superior resolution and sensitivity [153]. Generally, a 

trapping column can be mounted before the analytical column to enable online desalting 

and sample enrichment. The coupling of HPLC to MS is the cornerstone for shotgun 

proteomics, enabling global proteome analysis in a single run while generating a huge 

amount of structural data [152].   
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Chapter 3: Direct Detection of S-Palmitoylation by Mass Spectrometry 

3.1 Introduction 

It is often desirable to perform MS analysis of protein PTMs in their native form, 

as it does not require laborious reactions, such as derivatization, metabolic labeling, or 

click chemistry, and minimizes artifacts during sample preparation. There are few 

ambiguities: the type of modifications and their locations can be determined with high 

confidence by tandem MS analysis. When coupled with modern separation techniques, 

very complex samples can be analyzed and both qualitative and quantitative information 

can be obtained in a single experiment. However, direct PTM analysis can also be a very 

difficult task. The barriers for successful detection of PTM may include its low 

abundance or ionization efficiency, instability and potential loss during MS and MS/MS 

analyses. Various strategies to overcome these barriers have been developed and are still 

an active research area. To date, MS-based methods have been extensively applied to the 

studies of many types of PTMs, including phosphorylation [154], acetylation [155], 

deamidation [156], ubiquitination [157], among others [158, 159]. MS has become an 

increasingly powerful and indispensable tool for everyday PTM analysis in proteomic 

studies.  

Direct detection of S-palmitoylation by MS has also been reported [160-165]. 

This usually starts with the purification of the proteins of interest, followed by a classic 

bottom-up proteomic sample preparation involving reduction, alkylation, tryptic digestion 

either in-gel or in-solution, and sample cleanup. MS analysis, typically using a MALDI-
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TOF or a MALDI-TOF/TOF instrument, can then be performed for palmitoyl peptide 

identification. This seemingly straightforward method has never become widely adopted, 

and no follow-up study with advanced instrumentation has been reported. Most 

researchers still choose the laborious ABE chemistry or metabolic labeling over this 

simple approach, because of the difficulties for direct palmitoyl detection.  

Although the approach described above has shown some success on the discovery 

of novel palmitoylation sites in some proteins, it is not always applicable to other 

proteins, especially those with a low degree of palmitoylation. Quantification could also 

be problematic, as complete or partial palmitoyl loss may occur during sample 

preparation, because of the labile thioester linkage. In particular, controversy exists over 

the stability of palmitoylation when dithiothreitol (DTT) is used as the reducing agent 

[68, 165, 166]. The effect of other experimental factors, such as buffer salts, temperature, 

and the presence of detergents, on the palmitoyl stability has not been investigated. 

Additionally, palmitoyl groups may be lost, through prompt or metastable fragmentation, 

during tandem MS analysis, leading to uncertainty in palmitoylation site determination. 

Finally, the large difference in the hydrophobicity of the palmitoylated and 

unpalmitoylated peptides makes relative quantification a challenging task. All these 

uncertainties and difficulties have greatly impeded palmitoyl analysis, and necessitate the 

development of a universal protocol tailored for direct detection of S-palmitoylation.  

In this section, we will present a comprehensive strategy for direct detection of S-

palmitoylation by MS. The stability of palmitoylation in several palmitoyl peptide 

standards under various experimental conditions was investigated in order to establish a 
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sample preparation protocol that retains palmitoylation for MS analysis. The potential of 

a derivatization strategy for relative quantification of palmitoyl peptides and their 

unmodified counterparts was also explored. Lastly, the fragmentation behavior of 

palmitoyl peptides under several dissociation modes was studied to evaluate their 

applicability for characterization of palmitoyl peptides.  

3.2 Experimental Section 

3.2.1 Materials 

Cysteine-containing synthetic peptide standards, PDFRIAFQELLCLR, 

MGCVQCKDKEA, and ARAWCQVAQKF were acquired from AnaSpec (San Jose, 

CA). Palmitoyl chloride, Tris(2-carboxyethyl)phosphine (TCEP), DTT, tetrahydrofuran 

(THF), ammonium bicarbonate (ABC), ammonium acetate (AA), and 

tris(hydroxymethyl)aminomethane (Tris) were purchased from Sigma-Aldrich (St. Louis, 

MO). Trifluoroacetic acid (TFA), formic acid (FA), iodoacetamide (IAM), and micro 

BCA (bicinchoninic acid assay) protein assay kits were purchased from Pierce (Rockford, 

IL, USA). N-[(3-perfluorooctyl)propyl] iodoacetamide (FIAM) was obtained from 

Fluorous Technologies Inc. (Pittsburgh, PA). The MALDI matrix DHB was obtained 

from Bruker Daltonics (Billerica, MA). Acetonitrile (ACN) and isopropanol (IPA) were 

obtained from Burdick and Jackson (Muskegon, MI). 

3.2.2 Preparation of Palmitoyl Peptides 

The palmitoylation reaction was performed as previously reported [167] with 

some modifications. Each peptide standard (200 μg) was allowed to react with 1 μL of 
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palmitoyl chloride in 10 μL of 100% TFA for 10 min at room temperature. The resulting 

mixture was dried under a nitrogen flow. Purification of the products was performed on 

an Agilent 1200 series HPLC system (Agilent Technologies, Santa Clara, CA) using a 

Vydac 214ms5215 column (C4, 5 µm, 300 Å, 2.1 mm ID x 150 mm). Mobile phase A 

consisted of 95:5 water/ACN with 0.1% TFA and mobile phase B consisted of 85:10:5 

ACN/IPA/water with 0.1% TFA. The sample was suspended in 400 μL of 30% B (singly 

palmitoylated peptides) or 40% B (doubly palmitoylated peptides), sonicated for 1 min, 

centrifuged for 10 min at 21,000 RCF (relative centrifugal force). The supernatant was 

collected and centrifuged for another 10 min before HPLC injection. A linear gradient of 

30−100% B (singly palmitoylated peptides) or 40-100% B (doubly palmitoylated 

peptides) over 20 min was employed with a flow rate of 0.3 mL/min. UV detection was 

performed at 214 nm. The palmitoyl peptide fractions were collected, aliquoted, and 

dried. The amount of palmitoyl peptide in each aliquot was determined by a micro BCA 

protein assay kit. Aliquots were frozen at -80 °C for later use. 

3.2.3 Stability Test of Palmitoyl Peptides 

Aliquots of HPLC-purified palmitoyl peptides were incubated in 100 mM ABC 

(pH 8.0), 50 mM Tris (pH 7.4), or 50 mM AA buffer (pH 4.0), with or without the 

presence of DTT or TCEP in different concentrations, at either 37 
o
C or 55 

o
C. At several 

time points, a 0.5-μL aliquot was taken and diluted in 5 μL of 50% ACN/0.1% TFA. A 

portion of diluted sample (0.5 μL) was co-crystallized with 0.5 μL of DHB (10 μg/μL in 

50% ACN/0.1% TFA) on a steel MALDI target plate, and later analyzed on either a 

Reflex IV MALDI-TOF mass spectrometer (Bruker Daltonics, Billerica, MA) or an 
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ultrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, Billerica, MA) 

with 25~50% laser power. A typical MALDI-TOF mass spectrum was acquired by signal 

averaging over 4000 laser shots from a Smartbeam-II
TM

 Nd:YAG laser operating at 355 

nm and a repetition rate of 2 kHz. The MALDI-TOF mass spectra were analyzed using 

the FlexAnalysis 3.4 software. 

3.2.4 Preparation of IAM- and FIAM-labeled Peptides 

Alkylation with IAM was performed according to the manufacturer’s protocol. 

FIAM-labeling was performed following the protocol as described previously [168] with 

slight modifications. The peptide standard was first dissolved in 50 mM Tris buffer (pH 

7.4) with 0.5 mM TCEP and kept at 37 °C for 30 min; the resulting solution was 

incubated with equal amount of 10 mM FIAM dissolved in THF at 37 °C for 30 min in 

the dark. The mixture was dried under a nitrogen flow. Purification was performed using 

a linear gradient of 30−100% B over 20 min at a flow rate of 0.3 mL/min. The amount of 

IAM- and FIAM-labeled peptides in each fraction was determined using a micro BCA 

protein assay kit. Aliquots were frozen at -80 °C for later use. 

3.2.5 HPLC Separation  

The HPLC behavior of IAM-labeled, FIAM-labeled and palmitoyl peptides was 

investigated on an Agilent 1200 series HPLC system using a Vydac 214ms5215 column 

with the solvent system as described above. The samples were introduced at 20% B and 

analyzed with a linear gradient of 20−100% B over 20 min at a flow rate of 0.3 mL/min. 
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Peaks were detected by the UV absorption at 214 nm, and fractions were collected and 

analyzed by MALDI-TOF MS for identification. 

3.2.6 LC-MS Quantification 

Quantification was achieved by LC-MS on an LTQ-Orbitrap XL instrument 

(Thermo Fisher Scientific, San Jose, CA) equipped with a nanoACQUITY UPLC 

(Waters, Milford, MA) and a Triversa Nanomate system (Advion Biosystems, Inc., 

Ithaca, NY). A nanoACQUITY BEH300 C4 column from Waters (1.7 µm, 150 µm ID x 

100 mm) was used for separation. Mobile phase A consisted of 95:5 water/ACN with 

0.1% FA and mobile phase B consisted of 95:5 ACN/water with 0.1% FA. Palmitoyl 

peptides and FIAM-labeled peptides were combined at different ratios and introduced at 

40% B with a flow rate of 0.5 µL/min. The gradient was held at 40% B for 20 min, 

followed by a ramp to 100% B over 30 min. It was then held at 100% B for 5 min, 

followed by a ramp to 40% B over 2 min, and was maintained at 40% B for 23 min for 

column re-equilibration. All mass spectra were acquired in the Orbitrap and analyzed by 

the Xcalibur software. 

3.2.7 Tandem MS Analyses 

Off-line tandem MS analyses were performed on a 12-T solariX hybrid Qh-

FTICR mass spectrometer (Bruker Daltonics, Bremen, Germany). HPLC-purified 

palmitoyl peptides were dissolved in 50:50 water/ACN with 0.1% FA to a concentration 

of 1 pmol/µL and directly infused into the mass spectrometer. Precursor ions of interest 

were isolated by the front-end quadrupole and fragmented by different dissociation 
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methods. Collision-induced dissociation (CID) was performed with the collision voltage 

set to 7 to 20 V; electron capture dissociation (ECD) was achieved with irradiation of 

~1.5-eV electrons from an indirectly heated cathode dispenser for 50 ms; electron transfer 

dissociation (ETD) was performed with a 400-ms reagent accumulation and a 50 to 100-

ms reaction time. A 1-s transient was acquired for each scan and each spectrum was the 

result of summing 100 transients. Fluoranthene anions were used as the reagent for ETD. 

On-line LC-MS/MS analyses were performed on the LTQ-Orbitrap XL mass 

spectrometer. Data-dependent acquisition was performed by switching between one MS 

scan (r = 60,000 at m/z 400) and three MS/MS events (r = 7,500). The three most 

abundant ions with charge state ≥ 2 were isolated with a window of ±3 m/z for CID, high-

energy CID (HCD), and ETD (with fluoranthene anions). The normalized collision 

energy was set at 35% for CID, and 30% for HCD. ETD reaction time was set at 80 ms 

with supplemental activation set at 15.  

3.3 Results and Discussion 

3.3.1 Stability of Palmitoyl Peptides 

Synthetic peptides PDFRIAFQELLCLR, MGCVQCKDKEA, and 

ARAWCQVAQKF were chosen as model systems because their sequences contain 

palmitoylation motifs from proteins that are known to undergo in vivo palmitoylation: 

beta-2 adrenergic receptor [106], tyrosine-protein kinase Fyn [169], and glutamate 

decarboxylase 2 [170], respectively. The chosen sequences do not contain serine, 

threonine, or tyrosine residues, which are targets of O-palmitoylation that could 
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complicate the analysis. The in vitro palmitoylation was performed in 100% TFA, under 

which condition all basic groups, including the N-terminal amine and the side chains of 

the lysine and arginine residues, were protonated and not palmitoylated. Tandem MS 

analysis showed that palmitoylation occurred at the cysteine and tryptophan residues, 

producing PDFRIAFQELLCpalmLR, MGCpalmVQCpalmKDKEA, and 

ARAWpalmCpalmQVAQKF. The stability of palmitoylation in various buffers was 

investigated by incubating HPLC-purified palmitoyl peptides at 37 
o
C for 1 hr, 3 hr, 6 hr, 

and 16 hr. The MALDI-TOF mass spectra (Figure 3.1) show that 6-hr incubation of 

MGCpalmVQCpalmKDKEA in the standard tryptic digestion buffer (100 mM ABC, pH 

8.0) at 37 
o
C already led to significant palmitoyl loss, whereas all three palmitoyl 

peptides were stable after overnight incubation in either the neutral buffer (50 mM Tris, 

pH 7.4) or the acidic buffer (50 mM AA, pH 4.0). Further investigation revealed that 

even incubation in the pH 7.4 ABC buffer resulted in complete depalmitoylation within 

16 hr, and this was attributed to the gradual pH increase of the solution containing the  

ABC buffer (Figure 3.2), presumably because CO2 is more volatile than NH3. Since most 

proteases used in proteomics research attain their highest enzymatic activities at or near 

physiological pH, Tris buffer was used in the following studies. 
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Figure 3.1 Stability of the three palmitoyl peptide standards in 100 mM ABC buffer (pH 

8.0), 50 mM Tris buffer (pH 7.4), and 50 mM AA buffer (pH 4.0) at 37 
o
C. 
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Figure 3.2 Plot of the pH value of several buffer solutions measured at various time 

points after preparation. All solutions were kept at 37 
o
C. 

 
To test the effect of the reducing agents on the palmitoyl stability, palmitoyl 

peptide standards were incubated in Tris buffer in the presence of DTT or TCEP at 37 
o
C 

or at 55 
o
C for 30 min and 1 hr. The results are summarized in Figures 3.3 and 3.4, which 

show the relative abundances of the palmitoyl peptides and their depalmitoylated forms 

as a function of the incubation time and temperature, with DTT or TCEP. DTT, a 

reducing agent commonly used for reduction of disulfide bonds and other reversible 

oxidative modifications of cysteines, accelerated the depalmitoylation process for all 

three peptides, but the other widely-used reducing reagent, TCEP, did not cause 

appreciable loss of palmitoylation. Further, the depalmitoylation rate was significantly 
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increased at higher temperature, as one would expect for any reaction with an activation 

barrier. 

 

Figure 3.3 Stability of three palmitoyl peptides, as represented by the relative abundance 

of the palmitoyl peptides and their various depalmitoylated forms after 30 min or 60 min 

of incubation in Tris buffer (50 mM, pH 7.4) at 37 
o
C or at 55 

o
C, in the presence or 

absence of DTT or TCEP. 
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Figure 3.4 Stability of the three palmitoyl peptide standards in the presence of 1 mM and 

10 mM DTT/TECP in 50 mM Tris buffer (pH 7.4). 

 
The mechanisms for disulfide bond reduction by DTT and by TCEP are illustrated 

in Figure 3.5. For DTT, disulfide reduction proceeds via sequential thiol-disulfide 

exchange reactions, where one of the two disulfide sulfur atoms is attacked by a thiolate 

group of DTT, releasing one cysteine residue and creating a mixed disulfide species; the 

subsequent nucleophilic attack by the remaining thiolate of DTT releases the other 
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cysteine and forms cyclic oxidized DTT. Although thiol-disulfide exchanges are 

reversible, disulfide bond reduction by DTT is quite unidirectional, as the byproduct, the 

oxidized DTT, is highly stable due to its 6-membered ring structure. DTT is reactive only 

at pH >7 since the negatively charged thiolate is the only reactive form. Furthermore, 

DTT must be used in at least 20-fold molar excess to the disulfide bond to ensure 

complete reduction [171]. However, thiolate is a strong nucleophile that can also attack 

the carbonyl of the thioester linkage in S-palmitoylated peptides, resulting in disruption 

of the palmitoylation, as observed here. 

The reactive group on TCEP is the free electron pair on the phosphine group, 

which can attack the disulfide bond, releasing one cysteine and forming an intermediate 

phosphorus-sulfur linkage. The subsequent nucleophilic attack to the positively charged 

phosphorus by the oxygen of a water molecule releases the second cysteine, and forms a 

phosphine oxide. This reaction is irreversible because of the formation of a strong 

phosphorus-oxygen double bond in the oxidized TCEP [172] and proceeds at nearly 

stoichiometric ratio. TCEP is a potent reducing agent, and works under a broad pH range 

since phosphine is a very weak base and retains its nucleophilic character even in acidic 

solutions. In addition, phosphine does not react with a thioester, making TCEP an ideal 

reducing agent for studying S-palmitoylation. 
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Figure 3.5 Mechanisms for disulfide bond reduction by DTT (top) and by TCEP 

(bottom). 



 

75 

3.3.2 Analysis of Palmitoyl Peptides by RP-HPLC  

Several HPLC methods have been developed to analyze very hydrophobic 

peptides [173] and peptides with lipid modifications [174, 175]. Due to their dramatic 

difference in hydrophobicity, it is challenging to analyze palmitoyl peptides and their 

unmodified counterparts in a single HPLC run. While it is possible to analyze lipid 

modified peptides on a C18 column, it requires the use of strong organic solvent systems. 

For example, Gustafsson et al. reported that SP-C, a 35-residue palmitoyl peptide, can be 

separated on a C18 column by using 60~75% methanol/ethanol as the initial solvent 

followed by elution with isopropanol [175], under which conditions most unmodified 

peptides cannot be retained. Meanwhile, C4 columns retain palmitoyl peptides through 

weaker interactions, allowing separation and elution of palmitoyl peptides using mild 

organic solvents such as acetonitrile. However, C4 columns are not suitable for analysis 

of unmodified peptides which are usually not retained. Figure 3.6a shows the 

chromatogram of a mixture of the three palmitoyl peptide standards and their IAM-

labeled counterparts, acquired on a C4 column with the gradient program shown in the 

inset. Although all three palmitoyl peptides were retained and well separated; two of the 

three IAM-labeled peptides flowed through with the initial solvent. One way to overcome 

this difficulty is to increase the hydrophobicity of unmodified peptides through 

derivatization. FIAM, with its structure shown in Figure 3.7, is a cysteine alkylation 

reagent with a hydrophobic perfluoroalkyl moiety, that our laboratory has demonstrated 

to be useful for enrichment of native cysteine-containing peptides and the RP-HPLC 

analysis of the mixtures of these products with their irreversibly modified analogs [168]. 
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For the quantitative studies undertaken herein, we rationalized that this selective 

hydrophobic FIAM labeling of the cysteine thiol group in the unmodified peptides would 

allow them to be analyzed simultaneously with the palmitoyl peptides. Figure 3.6b shows 

the chromatogram of a mixture of the palmitoyl peptides and their FIAM-labeled 

counterparts, acquired on a C4 column using the same gradient program as shown in 

Figure 3.6a. All six peptides were retained on the C4 column in the initial phase, and 

were well resolved by gradient elution with mild organic solvent. 
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Figure 3.6 (a)  Chromatogram of a mixture of three palmitoyl peptides and their IAM-

labeled counterparts; (b) Chromatogram of a mixture of three palmitoyl peptides and their 

FIAM-labeled counterparts. 
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Figure 3.7 Chemical structure of N-[(3-perfluorooctyl)propyl] iodoacetamide. 

 

3.3.3 Relative Quantification of Palmitoyl Peptides by On-Line LC-MS  

Site-specific quantification of protein palmitoylation can be achieved by utilizing 

either the ABE chemistry or metabolic labeling. However, these methods are not suitable 

for relative quantification of palmitoyl peptides with respect to their unpalmitoylated 

forms, as the unpalmitoylated peptides are usually not retained under the HPLC 

conditions employed. As demonstrated above, with FIAM-labeling, all the cysteine-

containing peptides, both with and without palmitoylation, can be analyzed in a single LC 

run. Here, an on-line LC-MS study of palmitoyl and FIAM-derivatized peptide mixtures 

was performed on an LTQ-Orbitrap XL mass spectrometer using an in-house built C4 

column to explore the potential of using extracted ion chromatograms (EICs) for the 

relative quantification of peptide palmitoylation. 

Figure 3.8a shows the total ion chromatogram (TIC) of a mixture of palmitoyl and 

FIAM-labeled peptide standards containing equal amounts of each peptide. The six 

peptides were well separated from one another and eluted between 50% and 90% B. Note 

that the differences in the peak areas observed for these peptides likely results from 

differences in their ionization efficiencies. LC-MS analyses were then performed on 

mixtures of these peptides at seven different ratios (FIAM/palm = 10:1, 5:1, 2:1, 1:1, 1:2, 

1:5, and 1:10). The ion abundance of each peptide was calculated as the sum of the 
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charge-state normalized integrated peak areas of all observed charge states in their 

respective EICs using the Xcalibur Quan browser. The calibration curve for relative 

quantification was generated by plotting the ratio of the calculated ion abundance as a 

function of the ratio of the amount of peptides injected. As shown in Figures 3.8b-d, for 

all three pairs of palmitoyl and FIAM-labeled peptides, a satisfying linear correlation 

exists between these two ratios, thus establishing the validity of relative quantification 

based on the integrated EIC peak areas of the palmitoyl and FIAM-derivatized peptides. 

It is important to note that all samples must be analyzed under the same LC conditions as 

those used to generate the calibration curve. A change in the column, solvent system, 

and/or gradient program would lead to changes in the solvent composition during elution 

of peptides of interest, and consequently, their ionization efficiencies. 
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Figure 3.8 Relative quantification by UPLC-MS analysis on an LTQ-Orbitrap XL mass 

spectrometer. (a) The total ion chromatogram of a mixture of palmitoyl and FIAM-

labeled peptides; (b), (c), and (d) the relative quantification calibration curves of the 

DFRIAFQELLCFIAMLR and PDFRIAFQELLCpalmLR peptide pair, the 

MGCFIAMVQCFIAMKDKEA and MGCpalmVQCpalmKDKEA peptide pair, and the 

RAWCFIAMQVAQKF and ARAWpalmCpalmQVAQKF peptide pair, respectively. 

 

3.3.4 Tandem MS Analysis of Palmitoyl Peptides 

Tandem mass spectrometry is a powerful tool for identification and localization of 

PTMs, and has been applied to characterize lipid-modified peptides
 
[168]

 
[176-178]. In 
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general, the thioether linkage is stable under low-energy CID conditions, as illustrated by 

the retention of the perfluoroalkyl group in most CID fragment ions from the FIAM-

labeled peptides [168]. Hoffman and Kast reported a CID study of peptides with various 

lipid modifications, including N-myristoylation, farnesylation, and S-palmitoylation 

[176]. Whereas N-myristoylation was fairly stable under CID, S-palmitoylation was labile 

upon collisional activation, producing abundant b – 238 ions as the result of the thioester 

bond breakage either before or after the backbone amide cleavage. On the other hand, 

labile modifications are often preserved under ECD, which is considered non-ergodic and 

directional towards the backbone N-Cα bond cleavage. Guan studied the CID and ECD 

fragmentation behaviors of ghrelin [177], a peptide with O-acylation, and found that ECD 

produced far more extensive backbone fragmentation without breaking the ester bond, 

while the ester-linked octanoyl group was lost in many CID fragments. Kaczorowska et 

al. recently studied the CID and ECD fragmentation behaviors of S-dipalmitoylated 

peptides, and found that both CID and ECD could provide structural information on the 

peptide sequence and the modification [178]. However, in the S-dipalmitoylated peptides 

reported in that study, the palmitoyl groups were not directly attached to the cysteine 

thiol group, but were connected via ester linkages to a glycerol, which was linked to the 

cysteine via a thioether bond. Since the thioester linkage is more labile than the ester 

linkage, we felt that it would be important to study the fragmentation behaviors of S-

acylated peptides under different dissociation conditions. A systematic investigation of 

the fragmentation behaviors of S-palmitoyl peptides was performed here with CID, ECD, 

and ETD as the dissociation modes. Tandem mass spectra were acquired either on-line on 
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the LTQ-Orbitrap instrument (CID, HCD, and ETD), or off-line on the hybrid Qh-FTICR 

instrument (CID, ECD, and ETD). Representative tandem mass spectra of the three 

palmitoyl peptide standards and their corresponding cleavage maps are shown in Figures 

3.9, 3.11, and 3.12, respectively.  

For the triply charged peptide, PDFRIAFQELLCpalmLR, low-energy CID spectra 

acquired on both instruments provided complete inter-residue cleavage coverage, 

generating abundant b- and y-type ions, as well as a few a-ions (Figure 3.9a, b). Some y-

ions, labeled with an asterisk (y*), were also observed with loss of the palmitoyl group 

(C16H30O, 238.23 Da). In general, y* ions were in much lower abundance than normal y-

ions, and should not have a significant impact on palmitoylation site determination. 

Similar sequence coverage was obtained by HCD (Figure 3.9c). However, with its higher 

energy input, HCD also resulted in increased palmitoyl losses from many y-ions. 

Nonetheless, the palmitoylation site could still be localized to the cysteine residue based 

on the presence of a high-abundance y3 ion with the palmitoyl group attached (m/z 

629.44) and absence of any smaller palmitoyl group-carrying y-ions.  

The ECD spectrum (Figure 3.9d) of the same precursor ion was characterized by 

extensive c- and z- ion series, providing complete inter-residue cleavage coverage. 

Surprisingly, ECD also produced many z ions with loss of a palmitoyl group, labeled as 

z
*
 ions, some of which were in very high abundance. Considering that insignificant 

palmitoyl loss was observed in the CID spectra of this peptide, formation of these z
*
 ions 

was unlikely an ergodic process. It has been previously reported that the alpha carbon 

radical formed upon N-Cα bond cleavage in ECD can initiate further backbone and/or 
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side-chain cleavages, with or without radical migration [179-181]. Figure 3.10a illustrates 

a possible mechanism for the z
*
 ion formation, in which the backbone alpha carbon 

radical abstracts a hydrogen from the alpha carbon of the palmitoyl group, and the 

subsequent radical-induced alpha cleavage releases a tetradecylketene (C16H30O, 238.23), 

leaving the radical on the sulfur atom of the cysteine residue. Palmitoyl loss here was 

driven by the stability of the sulfur-centered radical formed, whereas in the case of O-

acylation, no acyl loss was observed because it would have required the unfavorable 

formation of an oxygen-centered radical [177]. The ECD spectrum also contains another 

series of ions, labeled as z
§
 ions, which correspond to z ions with partial loss of the 

cysteine side-chain (C15H31COS
•
, 271.21 Da). The z

§
 ions were likely formed as the result 

of radical induced alpha cleavage following radical migration to the alpha carbon of the 

cysteine residue (Figure 3.10b). Loss of the C15H31COS
•
 group was so energetically 

favored, once the radical was formed at the alpha carbon of the cysteine residue, that 

neither the z3 nor the z3
*
 ion was observed in the ECD spectrum. The N-Cα bond cleavage 

N-terminal to the palmitoylated cysteine residue was always followed by the partial 

cysteine side chain loss, leading to the formation of an abundant z3
§
 ion. Overall, we 

found that ECD generated too many site-nonspecific side chain loss product ions as a 

result of radical migration to be useful for palmitoylation site determination.  

Similar to ECD, ETD of the triply charged PDFRIAFQELLCpalmLR precursor 

also produced extensive c- and z- ion series, with complete inter-residue cleavage 

coverage. However, unlike ECD, no palmitoyl loss was observed in any of the z ions 

formed. Moreover, only one z
§
 ion was detected: a z3

§
 ion. Note that the z3

§
 ion is 
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essentially the w3 ion, and its formation did not require radical migration. It appears that 

radical migration was suppressed in ETD, either due to its lower energy input, or because 

of radical stabilization by collisional cooling. The palmitoylation site could be 

confidently assigned to the cysteine residue based on the mass difference between the c11 

and c12 ions. The absence of the z3 ion and the presence of the w3 ion provided additional 

evidence for cysteine palmitoylation. 
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Figure 3.9 Tandem MS spectra of PDFRIAFQELLCpalmLR: (a) CID on solariX, (b) CID 

on Orbitrap, (c) HCD on Orbitrap, (d) ECD on solariX, and (e) ETD on solariX. * 

indicates loss of C16H30O (238.23 Da); § indicates loss of C15H31COS
•
 (271.21 Da).   
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Figure 3.10 Proposed mechanisms for formation of z
* 
and z

§
 ions in ECD. 

 

The tandem MS fragmentation behavior of the doubly palmitoylated peptide, 

MGCpalmVQCpalmKDKEA, was similar to that of the PDFRIAFQELLCpalmLR peptide, 
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but also showed some distinct differences. For the triply charged 

MGCpalmVQCpalmKDKEA precursor ion, low-energy CID (Figure 3.11a) produced only a 

limited number of b- and y- type ions, and the palmitoylation site at the second cysteine 

residue could not be determined because no backbone cleavage at either side of that 

cysteine residue was observed. Although its HCD spectrum (Figure 3.11b) was more 

informative, and provided 100% cleavage coverage, most palmitoyl-containing fragment 

ions also underwent extensive palmitoyl loss during the fragmentation process, including 

some with loss of two palmitoyl groups, e.g. the y10
**

 ion, thus preventing reliable 

palmitoylation site localization. For this peptide, unlike in the previous case, ECD 

(Figure 3.11c) produced complete cleavage coverage with minimum palmitoyl loss. Note 

that the PDFRIAFQELLCpalmLR peptide contains polar residues (D, E, and R) near both 

termini, allowing it to adopt a folded gas-phase conformation, in which the palmitoyl-

cysteine residue was close to several potential backbone cleavage sites. Upon the N-Cα 

bond cleavage by ECD, the radical could migrate from the initial Cα position to the 

spatially adjacent palmitoyl-cysteine residue even if it was distant in sequence, initiating 

further side chain losses and formation of z
§
 and z

*
 ions. Such spatial proximity may not 

be present in the MGCpalmVQCpalmKDKEA peptide, because all of its polar residues (K, 

D, and E) were located on one side of the palmitoyl-cysteine residues, and the two bulky 

hydrophobic palmitoyl-cysteine side chains further prevented formation of a compact 

structure. Consequently, radical migration was not prevalent here, resulting in only two 

low-abundance z7
§
 and z8

§
 ions. As in the previous case, z ions with an N-terminal 

cysteine, z6 and z9, were not observed; instead, cleavages N-terminal to the two cysteine 
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residues led to the formation of the z6
§
 (w6) and z9

§
 (w9) ions, which could be used to 

confirm the two cysteine palmitoylation sites. The ETD spectrum of 

MGCpalmVQCpalmKDKEA (Figure 3.11d) was very similar to its ECD spectrum, 

containing a complete series of N-Cα bond cleavages, with no palmitoyl loss. Partial 

cysteine side chain loss was only observed for z ions with an N-terminal cysteine. 

Interestingly, two c ions with partial cysteine side chain loss, c9
§
 and c10

§
, were also 

observed. As c ions are even electron species, radical migration was unlikely to play a 

role here. Since both c9
§
 and c10

§
 ions were singly charged ions produced from triply 

charged precursor ions with all three potential protonation sites residing within the first 

nine residues, these two ions were likely formed as a result of two electron transfer 

processes, with one accounting for the cysteine side chain loss, and the other leading to 

the backbone N-Cα bond cleavage. 

 



 

91 



 

92 

 

Figure 3.11 Tandem MS spectra of MGCpalmVQCpalmKDKEA: (a) CID on Orbitrap, (b) 

HCD on Orbitrap, (c) ECD on solariX, (d) ETD on Orbitrap. * indicates loss of C16H30O 

(238.23 Da); § indicates loss of C15H31COS
•
 (271.21 Da). 

 
The general features of the tandem mass spectra (Figure 3.12) of the triply 

charged peptide, ARAWpalmCpalmQVAQKF, resemble those of the other two peptides. 

Abundant palmitoyl losses were observed in its low-energy CID (Figure 3.12a) and HCD 

spectra (Figure S3b). For ECD (Figure 3.12c), in addition to the palmitoyl loss and 

cysteine side chain loss, abundant tryptophan side chain loss remote from the ECD 

cleavage site was observed, in agreement with findings from a previous study.[182] 

Again, the ETD spectrum (Figure 3.12d) was the most informative with minimal 

secondary side chain losses, except for the characteristic cysteine side chain loss at the 

cysteine cleavage site. 
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Figure 3.12 Tandem MS spectra of ARAWpalmCpalmQVAQKF: (a) CID on Orbitrap, (b) 

HCD on Orbitrap, (c) ECD on solariX, (d) ETD on Orbitrap. * indicates loss of C16H30O 

(238.23 Da); § indicates loss of C15H31COS
•
 (271.21 Da); # indicates loss of 

C15H31CONC8H5 (354.28 Da). 

 

3.4 Conclusion 

S-palmitoylation is a labile modification both in solution and in the gas phase. In 

order to minimize palmitoyl loss during proteomic sample preparation, it is recommended 

that palmitoyl (and other acylated) proteins and peptides be processed under neutral or 

slightly acidic conditions and at room temperature. Use of DTT should be avoided; 

instead, TCEP is the preferred disulfide reducing agent for palmitoyl protein analysis. 

The drastic difference in hydrophobicity between palmitoyl peptides and their 

unpalmitoylated forms can be reduced by derivatization of free cysteine residues with a 

perfluoroalkyl tag, enabling relative quantification of palmitoylation by LC-MS. CID of 
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S-palmitoylated peptides can lead to facile loss of palmitoyl groups, whereas ECD can 

result in extensive radical migration and secondary side chain loss driven by the 

formation of stable sulfur-centered radicals. ETD appeared to be the best fragmentation 

method for tandem MS analysis of palmitoyl peptides because it produced extensive 

backbone fragmentation with minimum palmitoyl loss. In summary, this study presents a 

comprehensive strategy, including sample preparation, LC-MS and tandem MS analysis, 

for direct detection and quantification of S-palmitoyl peptides. 
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Chapter 4: S- to N-Palmitoyl Transfer during Proteomic Sample Preparation 

4.1 Introduction 

Besides S-palmitoylation, a less common form, N-palmitoylation, has also been reported, 

and this involves palmitoyl attachment to the lysine side chain [175, 183-185] or the 

protein N-terminus [186-190]. Unlike S-palmitoylation, N-palmitoylation is irreversible 

and not regulated. The biological functions of N-palmitoylation are not well understood, 

but are believed to derive primarily from its interaction with lipid bilayers. Olsen and 

Andersen suggested that palmitoylation at the lysine (or tyrosine/threonine) residue of the 

R peptide of the Moloney murine leukemia virus could play a role in controlling the 

conformational change of the p15E transmembrane protein and regulating the viral 

budding process [183]. Hackett et al. reported that adenylyl cyclase toxin, a virulence 

factor responsible for forming hemolytic channels and catalyzing the conversion of ATP 

to 3',5'-cyclic AMP in host cells, underwent palmitoylation at lysine 983 in the wild-type 

Bordetella pertussis stain. In contrast, the cyaC-deficient mutant strain lacking the 

acyltransferase showed no toxin or hemolytic activity, signifying the importance of lysine 

palmitoylation for membrane insertion and delivery of the catalytic domain [184]. In vivo 

N-terminal palmitoylation was first detected in human sonic hedgehog (Shh) [186], an 

extracellular signaling protein that is a key regulator for cell proliferation and 

differentiation during embryonic development [191]. For Shh, palmitoylation on its N-

terminal cysteine is required for its normal distribution and for inducing cell signaling 

[187, 188]. Another secreted ligand, Spitz, was also found to undergo N-terminal 

palmitoylation, and this could restrict its diffusion to allow proper local signaling [189]. 
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Recently, Kleuss et al. reported that the α-subunit of the heterotrimeric G protein (Gαs) is 

palmitoylated on its N-terminal glycine (Gly2) [190], in addition to its well-known S-

palmitoylation site at Cys3
 
[108]. Gly2-palmitoylation appeared to lead to more efficient 

stimulation of particulate adenylyl cyclases, and this was attributed to its preferential 

membrane localization. Localization of the palmitoylation site to Gly2 was confirmed by 

the observation of a palmitoylated b1 ion in the CID spectrum of the tryptic peptide 

2
GpalmCIAMLGNSK

8
.  

The mechanism for N-palmitoylation is still under debate. It was originally 

suggested that N-terminal palmitoylation of Shh is a two-step process involving 

intramolecular S→N palmitoyl transfer after the initial palmitoyl attachment to the 

cysteine sulfhydryl group [186]. Consistent with this, Gly2-palmitoylation was not 

observed in the Cys3 mutants of the Gαs protein. Later, however, Buglino et al. showed 

that hedgehog acyltransferase (Hhat) could directly catalyze palmitoyl attachment to the 

N-terminal amino group of Shh without a thioester intermediate [192]. Interestingly, the 

three proteins with N-terminal palmitoylation reported to date all contain a cysteine 

residue either at the N-terminus (Shh, and Spitz), or next to the N-terminus (Gαs). It is 

unclear whether such proximity of a cysteine residue to the N-terminus is a required 

motif for the acyltransferase activity, or the evolutionary result to facilitate intramolecular 

palmitoyl transfer.  

Although no explicit studies on S→N palmitoyl migration in peptides have been 

reported to date, S→N acyl transfer in small model systems has been extensively studied 

[193-196]. For the series CH3COS(CH2)nNH3
+
, at pH < 7, acetyl transfer from sulfur to 
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nitrogen was observed when n = 2 or 3, but not for n ≥ 4 [193]. S→N acyl transfer has 

also been utilized in protein synthesis by native chemical ligation (NCL) [197]. NCL 

works effectively when the C-terminal peptide segment of the protein contains a cysteine 

residue at its N-terminus, thus enabling intramolecular transacylation via an entropically 

favored five-membered ring intermediate [198]. Similarly, rapid O→N acyl transfer was 

observed only when the esterified serine residue was present at the N-terminus [199]. The 

rate of transacylation increases with increasing pH. At pH 8, intramolecular acyl transfer 

via larger ring intermediates could also take place [193]. As protein characterization often 

involves sample processing in neutral or slightly basic solutions, it is important to 

investigate whether S→N palmitoyl migration could occur during sample preparation, 

even when the cysteine residue is not at the N-terminus, and whether this would lead to 

erroneous reporting of in vivo N-palmitoylation. 

In this study, an analogue of the N-terminal tryptic peptide from the protein Gαs, 

GCLGNAK, was chosen as the model system to test the palmitoyl migration hypothesis. 

The serine
7
 residue was replaced by an alanine residue to avoid potential interference 

from O-palmitoylation. 

4.2 Experimental Section 

4.2.1 Materials 

Synthetic peptide GCLGNAK was acquired from AnaSpec (San Jose, CA). 

Palmitoyl chloride, DTT, and ABC were purchased from Sigma-Aldrich (St. Louis, MO). 

TFA, FA, and IAM were purchased from Pierce (Rockford, IL, USA). RapiGest
TM

 was 
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obtained from Waters (Milford, MA).  DHB was obtained from Bruker Daltonics 

(Billerica, MA). ACN and IPA were obtained from Burdick and Jackson (Muskegon, 

MI). 

4.2.2 Sample Preparation 

Palmitoyl peptide standard GCpalmLGNAK was produced by incubating 

GCLGNAK with excess palmitoyl chloride in TFA, followed by C4-RP-HPLC 

purification on an Agilent 1200 series HPLC system (Agilent Technologies, Santa Clara, 

CA) as described previously [200]. The incubation typically took place in either 100 mM 

ABC buffer (pH 8.0) or 50 mM Tris (pH 7.4) at 37 °C for 3 hr with or without 0.1% 

RapiGest
TM

. The resultant peptides were diluted, co-crystallized with DHB, and analyzed 

on an ultrafleXtreme MALDI-TOF/TOF instrument (Bruker Daltonics, Billerica, MA). A 

typical MALDI-TOF mass spectrum was acquired by signal averaging over 4000 laser 

shots from a Smartbeam-II
TM

 Nd:YAG laser operating at 355 nm and a repetition rate of 

2 kHz. Alternatively, the resultant peptides were desalted by POROS R1 50 and 

subjected to LC-MS/MS analysis. 

4.2.3 Mass Spectrometry Analysis 

Online HPLC-MS/MS was performed on an LTQ-Orbitrap XL instrument 

(Thermo Fisher Scientific, San Jose, CA) equipped with a nanoAcquity UPLC (Waters, 

Milford, MA) mounted with a BEH300 C4 column (150 µm ID x 10 mm, 1.7 µm, 

Waters). Mobile phase A consisted of 5:95 ACN/water with 0.1% FA and mobile phase 

B consisted of 95:5 ACN/water with 0.1% FA. Samples were loaded to C4-UPLC with 
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equal amount at 20% B at a flow rate of 0.5 µL/min. The gradient was held at 20% B for 

15 min, followed by a ramp to 100% B over 40 min and then held at 100% B for 5 min. It 

was then ramped to 20% B over 2 min, and held at 20% B for 25 min for column re-

equilibration. Data dependent acquisition was performed by switching between the MS 

scan (r = 60,000) and MS/MS events (r = 30,000) with an inclusion list of peptides of 

interest. The isolation window was ±3 m/z. The normalized collision energy was set at 

35% for CID. ETD reaction time was set at 80 ms with supplemental activation set at 15. 

4.2.4 UV Monitoring of S-Palmitoyl Peptides 

The kinetics of de-S-palmitoylation due to thioester hydrolysis or S→N palmitoyl 

migration was studied by monitoring the UV absorption of the thioester functional group 

at λ = 230 nm, measured by an Agilent Cary 60 UV-Vis spectrophotometer (Agilent 

Technologies, Santa Clara, CA). The UV-Vis absorption of the palmitoyl peptide 

standard GCpalmLGNAK was monitored for 3 hr following its incubation in 50 mM Tris 

(pH 7.4) buffer with or without the presence of 0.1% RapiGest
TM

 at 37°C. 

4.3 Results and Discussion 

4.3.1 Preparation of the S-Palmitoyl Peptide Standard GCpalmLGNAK 

Reliable investigation of the S→N palmitoyl migration requires the use of a pure 

S-palmitoyl peptide standard. In vitro palmitoylation with palmitoyl chloride in TFA 

should produce only S- and O-palmitoylation, but not N-palmitoylation, since the amino 

and guanidino groups would be protonated in an acidic solution and lose their 

nucleophilic property. Incubation of the peptide standard, GCLGNAK, with palmitoyl 
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chloride in TFA produced a singly palmitoylated peptide, (GCLGNAK)palm, as evidenced 

by the 238.23-Da mass shift in its MALDI-TOF mass spectrum (Figure 4.1a, b). 

HA/IAM treatment of the HPLC-purified peptide (GCLGNAK)palm led to complete 

palmitoyl loss (Figure 4.1c), suggesting that all palmitoyl peptides existed in the form of 

GCpalmLGNAK, where the palmitoyl group was connected to the cysteine residue via a 

thioester linkage, as HA should selectively remove S-palmitoylation [68, 201] but not N-

palmitoylation [202].  

 

Figure 4.1 MALDI-TOF mass spectra of the peptide standard, GCLGNAK, (a) before 

and (b) after reaction with palmitoyl chloride in 100% TFA. (c) The MALDI-TOF mass 

spectrum of sample (b) after subsequent incubation with 500 mM HA/25 mM IAM. 
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4.3.2 Intermolecular Palmitoyl Migration 

After a 3-hr incubation at 37 °C in either 100 mM ABC buffer (pH 8.0) or 50 mM 

Tris buffer (pH 7.4), GCpalmLGNAK gave rise to a mixture of peptides, containing zero, 

one, or two palmitoyl groups, respectively (Figure 4.2). The presence of a doubly 

palmitoylated peptide is indicative of the occurrence of in vitro palmitoyl transfer 

between two palmitoyl peptides.  

 

Figure 4.2 MALDI-TOF mass spectra of the palmitoyl peptide standard, GCpalmLGNAK, 

after incubation in (a) 50 mM ABC buffer (pH 8.0) or (b) 50 mM Tris (pH 7.4) at 37°C 

for 3 hr.  

 

In neutral or slightly basic solutions, hydrolysis of S-palmitoyl peptides should 

produce primarily palmitate ions (pKa of palmitic acid is 4.78) which are not reactive 

towards amino groups. Thus, intermolecular S→N palmitoyl transfer must have occurred 
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directly between two palmitoyl peptides without palmitoyl release into the solution, and 

this would require that the palmitoyl group on one peptide be in the vicinity of the amino 

group on the other peptide. In support of this hypothesis, a 3-hr co-incubation of the 

peptides GCpalmLGNAK and GCIAMLGNAK in the 100 mM ABC buffer at 37 °C led to 

intermolecular palmitoyl transfer only between two palmitoyl peptides, but not from a 

palmitoyl peptide to an IAM-labeled peptide, as no (GCIAMLGNAK)palm peptide was 

observed (Figure 4.3). This preference may be attributed to the aggregation of palmitoyl 

peptides in aqueous solutions because of the hydrophobic interaction between their 

palmitoyl groups. Such interaction was lacking between an IAM-labeled peptide and a 

palmitoyl peptide.  

 

Figure 4.3 MALDI-TOF mass spectra of a mixture of GCpalmLGNAK and 

GCIAMLGNAK (a) before and (b) after incubation in ABC buffer (pH 8.0) at 37°C for 3 

hr. 
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4.3.3 The Effect of Detergent on Palmitoyl Migration  

If the intermolecular S→N palmitoyl migration was facilitated by the aggregation 

of palmitoyl peptides, it could be suppressed by disrupting their hydrophobic interaction. 

To test this hypothesis, GCpalmLGNAK was incubated in either 100 mM ABC buffer (pH 

8.0) or 50 mM Tris buffer (pH 7.4) with 0.1% RapiGest
TM

 (structure shown in Figure 

4.4), an MS-compatible detergent commonly used to solubilize proteins and to prevent 

protein/peptide aggregation. The MALDI mass spectrum remained largely unchanged 

after 3 hr of incubation at 37 °C, although a very low level of doubly palmitoylated 

peptide was observed (Figure 4.5). Therefore, it seems that RapiGest
TM

 significantly 

reduced the intermolecular palmitoyl transfer. 

 

Figure 4.4 The chemical structure of RapiGest
TM

. 

 



 

105 

 

Figure 4.5 MALDI-TOF mass spectra of the palmitoyl peptide standard, GCpalmLGNAK, 

after incubation in (a) 50 mM ABC buffer (pH 8.0) /0.1% RapiGest
TM

 or in (b) 50 mM 

Tris buffer (pH 7.4) /0.1% RapiGest at 37°C for 3 hr. 

 

Though the MALDI-TOF MS analysis provided solid evidence for the occurance 

of intermolecular palmitoyl migration, it was unable to determine whether the palmitoyl 

group was transferred to the peptide N-terminus or the lysine side chain. Neither did it 

suggest whether intramolecular migration took place since it is not possible to 

differentiate among the three palmitoyl peptides, GCpalmLGNAK, GpalmCLGNAK, and 

GCLGNAKpalm based only on their m/z values. LC-MS/MS analysis was then performed 

in order to distinguish and determine the relative abundances of various palmitoyl peptide 

isomers, since separation of isomeric palmitoyl peptides by reversed phase HPLC has 

been previously reported [199], and tandem MS analysis would provide information for 

palmitoyl localization. All samples were analyzed by online-C4-UPLC-MS/MS analysis 
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on an LTQ-Orbitrap XL instrument with equal sample loading amounts. Figure 4.6 and 

4.7 show the base peak chromatogram (BPC) and the extracted ion chromatograms 

(EICs) of various forms of peptides identified after a 3-hr incubation of GCpalmLGNAK 

in 50 mM Tris (pH 7.4) without and with 0.1% RapiGest
TM

. The palmitoylation sites on 

various peptides were determined based on their tandem mass spectra (Figure 4.16) and 

will be discussed later. Note that the depalmitoylated peptide, GCLGNAK, observed in 

the MALDI-TOF mass spectra was not detected by LC-MS/MS, because it was very 

hydrophilic and had been removed during the desalting step. EIC of 

[GCLGNAK+palm+2H]
2+

 (m/z 450.7830) contains a single peak (Figures 4.6b, 4.7b), 

and it is assigned as GCpalmLGNAK base on the similarity of its retention time (RT = 

40.8 min) and fragmentation pattern to those of the GCpalmLGNAK standard (Figure 

4.13a). Meanwhile, EIC of [GCLGNAK+2palm+2H]
2+

 (m/z 569.8978) (Figures 4.6c, 

4.7c) contains two peaks with baseline separation and these two isomers are later 

identified as GCpalmLGNAKpalm (RT = 51.9 min) and GpalmCpalmLGNAK (RT = 53.2 min) 

(Figures 4.6c, 4.12a-b). Another pair of isomeric peptides (m/z 899.5509) were also 

observed in very low abundance, and they correspond to the disulfide-bonded homo-

dimer of GCLGNAKpalm (RT = 47.25 min) and of GpalmCLGNAK (RT = 47.76 min) 

(Figures 4.6d, 4.7d). These dimers were not observed in the MALDI-TOF mass spectra. 
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Figure 4.6 (a) The base peak chromatogram of GCpalmLGNAK after incubation in 50 

mM Tris buffer (pH 7.4) at 37°C for 3 hr; (b-d) the EICs of various modified forms of 

GCLGNAK. Palmitoyl localization was achieved by tandem MS analysis, as illustrated 

in Figure 4.16. 
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Figure 4.7 (a) The base peak chromatogram of GCpalmLGNAK after incubation in 50 

mM Tris buffer (pH 7.4) with 0.1% RapiGest
TM

 at 37°C for 3 hr; (b-d) the EICs of 

various modified forms of GCLGNAK. Palmitoyl localization was achieved by tandem 

MS analysis, as illustrated in Figure 4.16.  

 

We further evaluated the effect of RapiGest
TM

 on S→N palmitoyl migration by 

comparing the relative abundances of the various peptides that resulted from incubation 

of GCpalmLGNAK in the Tris and Tris-RapiGest
TM

 buffers from the LC-MS/MS data. 

The absolute ion abundance of each peptide was measured as the sum of the charge-state 

normalized integrated peak areas of all observed charge states in their respective EICs 

and is presented in a bar graph (Figure 4.8). Each data set was derived from five 

experimental repeats with the same loading amount. The average ion abundance of each 
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peptide and its relative ratio between the two incubation conditions are presented in Table 

4.1. Addition of RapiGest
TM

 led to a significant decrease in the level of 

GCpalmLGNAKpalm and GpalmCpalmLGNAK, and an increase in the level of disulfide-

bonded homo-dimers, especially the GpalmCLGNAK dimer. This is understandable, as the 

hydrophobic palmitoyl group can be effectively solvated by the RapiGest
TM

 micelle, and 

this should inhibit intermolecular palmitoyl migration and may facilitate intramolecular 

palmitoyl migration. If so, the N-terminal amino group should be the preferred target site 

for intramolecular palmitoyl migration due to its proximity to the cysteine residue, which 

explains the preference for the formation of the GpalmCLGNAK dimer. It is, however, not 

possible to determine the percentage of the GCpalmLGNAK peptides that underwent inter- 

or intra-molecular palmitoyl migration based on the LC-MS/MS result, since the resultant 

peptides have different ionization efficiencies. 

The thioester group has a very strong UV absorption at 230 nm with an extinction 

coefficient (ε) of 4300 M
−1

 cm
−1

 compared to that of the amide group (ε = 122 M
−1

 cm
−1

) 

[195]. Thus, the change in the S-palmitoyl content (c) under various incubation 

conditions can be studied by monitoring the UV absorbance (A) at 230 nm, according to 

the Lambert-Beer law: A = εcL, where L is the light path length. Figure 4.9a shows that 

the UV absorbance of GCpalmLGNAK was reduced by nearly half when incubated in 50 

mM Tris buffer (pH 7.4) for 3 hr, indicating a significant loss of S-palmitoylation. This is 

in stark contrast to the previous observation that the S-palmitoyl group in several 

palmitoyl peptide standards was stable in neutral Tris buffer. However, the S-palmitoyl 

loss in GCpalmLGNAK can be greatly slowed by addition of RapiGest
TM

 to the incubation 
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buffer, by an estimate of 510 fold (Figure 4.9b). Meanwhile, the LC-MS/MS result 

showed that addition of RapiGest
TM

 led to an abundance decrease of the two doubly 

palmitoylated peptides, GCpalmLGNAKpalm and GpalmCpalmLGNAK, presumably the 

intermolecular palmitoyl migration products, by only 28-fold and 5-fold, respectively 

(Table 1). Thus, the thioester decay in the Tris-only buffer should mainly result from the 

thioester hydrolysis rather than from the intermolecular palmitoyl migration.  

 

Table 4.1 The average ion abundances of the peptides resulting from incubation in Tris 

and Tris-RapiGest
TM

 and their relative ratios.   

Peptide Sequence Average Ion Abundance Abundance Ratio 

 Tris Tris-RapiGestTM Tris /Tris-

RapiGestTM 

GCpalmLGNAK 916255313 10680552362 0.09 

GCpalmLGNAKpalm 52499259 1875914 27.99 

GpalmCpalmLGNAK 339175845 68210171 4.97 

GCLGNAKpalm (dimer) 229817 519292 0.44 

GpalmCLGNAK (dimer) 349611 3655364 0.10 
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Figure 4.8 Comparison of the ion abundances of GCpalmLGNAK-derived peptides after a 

3-hr incubation in 50 mM Tris (pH 7.4) in the absence or presence of 0.1% RapiGest
TM

. 

Unpaired t test, standard deviation, n = 5, * p < 0.05, ** p < 0.01. 

 



 

112 

 

Figure 4.9 The decay of UV absorbance at 230 nm of GCpalmLGNAK in 50 mM Tris (pH 

7.4) buffer without (a) and with (b) 0.1% RapiGest
TM

 over a 3-hr incubation. 

 

4.3.4 RapiGest
TM

: an S-palmitoyl Stabilizer in Aqueous Solution 

The stabilizing effect of RapiGest
TM

 upon S-palmitoylation was further 

investigated by incubating the three previously studied palmitoyl peptide standards in the 

presence of DTT. All three palmitoyl peptides underwent severe palmitoyl loss when 
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DTT was added to the neutral Tris buffer, whereas addition of RapiGest
TM

 greatly 

decelerated the DTT-induced depalmitoylation process in all cases as shown in Figure 

4.10. We suggest that the hydrophobic alkyl chain of the palmitoyl group can either insert 

into the RapiGest
TM

 micelle or aggregate with the RapiGest
TM

 molecules, and such 

interaction would shield the thioester group from the nucleophilic attack by water or 

DTT, thus stabilizing the S-palmitoylation. (Figure 4.11) 

 

Figure 4.10 Stability of the three palmitoyl peptide standards, as represented by the 

relative abundances of the palmitoyl peptides and their various depalmitoylated forms 

after 1-hr incubation in 50 mM Tris (pH 7.4), 50 mM Tris/10 mM DTT, and 50 mM 

Tris/0.1% RapiGest
TM

/10 mM DTT. All experiments were performed at 37 °C.  
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Figure 4.11 Proposed mechanism for the stabilization of the thioester group by 

RapiGest
TM

. 

 

4.3.5 Tandem MS Analysis of Palmitoyl Peptide Isomers 

 In proteomic studies, tandem MS is often used for characterization of PTMs, for 

which successful PTM localization requires PTM retention at its original site. For labile 

PTMs, such as sulfation and O-glycosylation, CID can lead to facile side-chain group 

loss, thus preventing accurate PTM localization. Additionally, PTM relocation has been 
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observed during CID of phosphotyrosine-containing peptide monoanions [203], although 

another study suggested that such relocation of the phosphate group was minimal during 

CID of both tryptic and Lys-N generated peptide cations [204].  

Here, we first investigated the LC-MS/MS behaviors of three singly palmitoylated 

peptide isomers [GCLGNAK+palm]. The EIC of the S-palmitoyl peptide standard 

GCpalmLGNAK contained a single peak (Figure 4.12a), with the doubly charged ions as 

the dominant species in its mass spectrum (Figure 4.12c). Incubation in 100 mM ABC 

(pH 8.0) followed by DTT treatment produced three peaks in the EIC for the singly 

palmitoylated species (Figure 4.12b). The isomer with the shortest retention time was 

identified as GCpalmLGNAK based on its similar retention time, ionization pattern and 

CID/ETD spectra as the S-palmitoyl peptide standard (Figures 4.13a, 4.14a). The isomer 

with the intermediate retention time was assigned as GCLGNAKpalm based on the 

observation of a series of palmitoylated y/z ions in its CID/ETD spectra (Figures 4.13b, 

4.14b). The isomer with the longest retention time was assigned as GpalmCLGNAK based 

on the presence of a series of palmitoylated b/c ions (Figures 4.13c, 4.14c) in its 

CID/ETD spectra. Noticeably, GCLGNAKpalm and GpalmCLGNAK produced doubly 

charged precursor ions in much lower abundance than GCpalmLGNAK (Figure 4.12c), as 

expected when one of the two favored protonation sites was occupied by the transferred 

palmitoyl group.  
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Figure 4.12 Integrated EICs of the singly palmitoylated species [GCLGNAK+palm] 

obtained from the LC-MS analysis of the S-palmitoyl peptide standard GCpalmLGNAK 

(a) before and (b) after a 3-hr incubation in 100 mM ABC (pH 8.0) buffer at 37°C 

followed by DTT reduction. (c) MS spectra of the three [GCLGNAK+palm] isomers. 

Note that each integrated EIC represents the sum of the singly (m/z 450.78) and doubly 

(m/z 900.56) charged species of [GCLGNAK+palm]. 
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As expected, the CID spectrum of the S-palmitoyl peptide standard 

GCpalmLGNAK (Figure 4.13a) was characterized by a series of palmitoylated b ions (b2 - 

b6) and y ions without palmitoylation (y1, y2, y4, and y5). Surprisingly, a palmitoylated a1, 

a palmitoylated b1, and an unpalmitoylated y6 ion were also observed in relatively high 

abundance, although they were supposed to be the diagnostic ions for palmitoylation at 

the N-terminus. The presence of these ions suggests the occurrence of palmitoyl 

migration from the cysteine residue to the peptide N-terminus during the CID process. 

For peptide ions, the formation of b- and y- ions during CID is usually initiated by the 

proton migration from a charged basic site (e.g. the amino group at the N-terminus) to an 

amide group along the peptide backbone. Protonation at a backbone amide not only 

weakens the amide bond, but also increases the electrophilicity of the amide carbon, 

which is subsequently attacked by the oxygen from its N-terminal neighboring carbonyl 

group followed by chemical rearrangement to produce an oxazolone b ion and its 

complementary y ion (Figure 4.15a). The b1 ion cannot be produced via the oxazolone 

pathway in the absence of carbonyl oxygen on the N-terminal side of the first amide 

group along the peptide backbone. For the peptide GCpalmLGNAK, however, the carbonyl 

group of the cysteine thioester may be nucleophilically attacked by the N-terminal 

nitrogen during CID, leading to the transfer of the palmitoyl group from the cysteine thiol 

to the amine at the N-terminus. After migration, the carbonyl oxygen from the palmitoyl 

group can attack the N-terminal amide carbon to produce a palmitoylated b1 ion and its 

complementary unpalmitoylated y6 ion (Figure 4.15b). Because of the palmitoyl 

migration, CID of GCpalmLGNAK generated the same b- and y-ion series as that of 
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GpalmCLGNAK, but with different ion abundances. A major difference between the CID 

spectra of these two peptides is the presence of a [M + H - 238.23]
+
 ion in the 

GCpalmLGNAK spectrum but not in that of GpalmCLGNAK. The 238.23 Da loss from the 

precursor ion corresponds to the loss of a palmitoyl group (C16H30O), which is diagnostic 

to S-palmitoyl peptides, as reported previously [200]. Meanwhile, Hoffman and Kast 

reported that no neutral loss of a myristoyl group was observed in CID of the doubly 

charged GAPVPYPDPLEPR with a myristoyl group covalently attached to its N-

terminus through the amide linkage which is the same linkage as the N-terminal 

palmitoylation in GpalmCLGNAK studied here [176]. Moreover, in the CID spectrum of 

GCLGNAKpalm (Figure 4.13b), the palmitoyl group was also retained on the precursor 

ion and all fragment ions, further indicating that the amide-linked N-palmitoylation is 

stable under CID and that the presence or absence of [M+H-238.23]
+
 could be used for 

the differentiation of S- and N- palmitoyl peptide isomers. 

 The lysine palmitoylation in GCLGNAKpalm could also be identified by ETD 

based on the observation of several palmitoylated z-ions (Figure 4.14b). However, it was 

challenging to use ETD for differentiation of GCpalmLGNAK (Figure 4.14a) and 

GpalmCLGNAK (Figure 4.14c). ETD produced the same backbone fragments from these 

two isomers, as the potential diagnostic c1 fragments had too low abundance to be 

efficiently charged. The other potential diagnostic ion, the palmitoylated z6 ion from 

GCpalmLGNAK, underwent efficient side chain loss, producing the same w6 ions (m/z 

556.31) as that of GpalmCLGNAK. However, different from GpalmCLGNAK (Figure 

4.14c), the ETD spectrum of GCpalmLGNAK (Figure 4.14a) contains two peaks assigned 
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as [M + 2H - C15H31COHS]
+• 

(m/z 629.35) and [M + 2H - NH3]
+• 

(m/z 844.54). The 

neutral loss of C15H31COHS from the precursor ion was commonly observed in ECD and 

ETD of S-palmitoyl peptides [200], and may be produced by electron transfer to the 

protonated carbonyl of the thioester linkage followed by the radical-induced alpha 

cleavage (Figure 4.15c). The NH3 loss from the charge-reduced precursor ion is very 

common in ECD/ETD, and generally does not provide any information for peptide 

sequencing. However, as the NH3 loss often originates from the N-terminal amine, the 

absence of NH3 loss could suggest the presence of the N-terminal modification [205]. 

As was the case for the singly palmitoylated peptide isomers, it is also possible to 

identify the doubly palmitoylated isomers [GCLGNAK+2palm] (m/z 569.8978) based on 

their fragmentation behaviors. A 3-hr incubation of GCpalmLGNAK in the Tris or 

Tris/RapiGest
TM

 buffer produced two doubly palmitoylated isomers (Figures 4.6c, 4.7c). 

The CID spectrum of the isomer that eluted first (RT = 51.9 min) (Figure 4.16a) was 

characterized by a series of y ions with a palmitoyl group (y1, y2, y4, and y5), indicating 

that the C-terminal lysine was one of the palmitoylation sites. Meanwhile, the presence of 

[M + H - 238.23]
+
 indicated that the second palmitoyl group was attached to the cysteine 

residue. Thus, the first isomer could be identified as GCpalmLGNAKpalm. The doubly 

palmitoylated isomer that eluted later (RT = 53.2 min) was similarly identified as 

GpalmCpalmLGNAK based on the observation of the [M + H - 238.23]
+
 ion and a series of 

b ions carrying two palmitoyl groups (b2-6) (Figure 4.16b). The CID spectra of the two 

disulfide-bonded dimers (Figures 4.6d, 4.7d) are shown in Figure 4.16c-d, and they could 

be identified as the homo-dimer of GCLGNAKpalm (RT = 47.25 min) and GpalmCLGNAK 
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(RT = 47.76 min), based on the characteristic palmitoylated y-ions and b-ions, 

respectively.  
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Figure 4.13 CID spectra of (a) GCpalmLGNAK, (b) GCLGNAKpalm, and (c) 

GpalmCLGNAK. 
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Figure 4.14 ETD spectra of (a) GCpalmLGNAK, (b) GCLGNAKpalm, and (c) 

GpalmCLGNAK. 
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Figure 4.15 Proposed mechanisms for (a) formation of b- and y- ions in CID; (b) 

formation of b1+palm and y6-palm ions from the peptide GCpalmLGNAK in CID; and (c) 

formation of the [M + 2H - C15H31COHS]
+•

 ion from the peptide GCpalmLGNAK by ETD. 
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Figure 4.16 CID spectra of (a) GCpalmLGNAKpalm, (b) GpalmCpalmLGNAK, and the 

disulfide-linked homo-dimers of (c) GCLGNAKpalm and (d) GpalmCLGNAK. 

 

4.4 Conclusion 

Here, using the S-palmitoyl peptide standard, GCpalmLGNAK, as the model 

system, we observed palmitoyl migration from the cysteine residue to either the peptide 

N-terminus or the lysine side chain during incubation in both neutral (Tris, pH 7.4) and 

slightly basic buffers (ABC, pH 8.0) commonly used for proteomic sample preparation. 

Moreover, the thioester of GCpalmLGNAK underwent extensive hydrolysis, even in the 

neutral Tris buffer, which had previously been reported to preserve the S-palmitoylation 

on other palmitoyl peptide standards. It was found that addition of the MS-compatible 

detergent RapiGest
TM

 at suggested concentration could significantly inhibit thioester 

hydrolysis, DTT-induced thioester cleavage, and intermolecular S→N palmitoyl 

migration. Although the use of detergent may slightly facilitate intramolecular migration, 



 

128 

it should not be a major concern for the palmitoylation site localization, since the inter- 

and intra-molecular migration processes are both fairly slow. Therefore, RapiGest
TM

 is 

recommended during palmitoyl protein/peptide sample preparation. The palmitoylation 

site(s) in various palmitoyl peptide isomers can be generally determined by tandem MS 

analysis. However, complications may arise due to the gas-phase transfer of the palmitoyl 

group from the cysteine residue to the peptide N-terminus during CID, which may lead to 

false identification of N-palmitoylation. One must be careful with sample preparation and 

interpretation of tandem mass spectra for identification of N-palmitoylation. 
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Chapter 5: Surfactant-Induced Artifacts during Proteomic Sample Preparation 

5.1 Introduction 

Bottom-up proteomics is a MS-based methodology for protein identification and 

quantification, and for characterization of PTMs [206-210]. In bottom-up proteomics, MS 

is often used in conjunction with chromatographic separation to analyze peptides 

generated by enzymatic digestion of proteins. The success of a bottom-up proteomics 

experiment hinges upon attaining high sequence coverages, and this requires optimized 

sample preparation prior to MS analysis. A typical sample preparation procedure involves 

protein solubilization, disulfide reduction, enzymatic digestion, and sample cleanup. 

Detergents are often used to solubilize and denature proteins to improve their 

accessibility to enzymatic digestion, thereby producing more peptide fragments, 

especially for hydrophobic proteins. However, many detergents interfere with LC 

separation and MS analysis, and must be removed after digestion. Recently, several acid 

labile surfactants (ALS’s) have been designed for proteomic sample preparation [211-

213]. As its name suggests, an ALS degrades in acidic conditions, and its degradation 

products can be readily eliminated before subsequent LC-MS analysis. Figure 5.1 

illustrates the decomposition pathway of a widely used ALS, sodium 3-((1-(furan-2-

yl)undecyloxy)carbonylamino)propane-1-sulfonate, marketed by Promega under the 

trade name of ProteaseMAX
 TM

 (PM) [213]. The hydrophilic head of PM is connected to 

its hydrophobic alkyl tail through a labile furanyl carbamate group. Hydrolysis of PM 

produces a hydrophilic zwitterionic species (3-aminopropane-1-sulfonic acid) and a 

lipophilic compound (1-(furan-2-yl)undecan-1-ol), both of which can be easily removed, 
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by RP-SPE and by centrifugation, respectively. Unlike other ALSs, PM hydrolyzes under 

weakly basic conditions, e.g., over the course of tryptic digestion (pH 8.0, 37 °C), thus 

eliminating the need for buffer acidification after digestion. Moreover, the hydrophobic 

degradation product of PM helps to improve the recovery of peptides by preventing their 

adsorption to plastic during and after digestion. These advantages over other ALSs would 

seem to make PM the favored surfactant for LC-MS analysis.  

 

Figure 5.1 Schematic of acid-induced decomposition of ProteaseMAX
 TM

 

 

 A major confounding factor in MS-based PTM analysis is the introduction of 

artifacts during sample preparation, especially in bottom-up proteomics, which requires 

additional sample processing steps associated with proteolysis [214-216]. Artifacts may 

be produced simply because of the prolonged sample incubation in various buffer 

solutions. A common artifact in bottom-up proteomics is asparagine deamidation in the 

tryptic digestion buffer, and its conversion to an aspartate may be mistaken as in vivo 

deamidation [217] or misinterpreted as a marker for newly released N-linked 

glycosylation sites following PNGase F digestion [218]. Sample exposure to ambient 

oxygen species may also lead to a variety of oxidative modifications that are difficult to 

differentiate from in vivo oxidative PTMs [219-221]. Moreover, the presence of 
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chaotropic, reducing, or alkylating reagents, detergents and other chemicals can cause 

additional modifications that complicate the spectral interpretation. For example, the 

unpolymerized acrylamide in polyacrylamide gels can react with a free sulfhydryl group 

to form a cysteinyl-S-propionamide adduct [222-224]. Cyanate, which is a degradation 

product from urea, can react with the amino and sulfhydryl groups to produce in vitro 

carbamylation [225, 226]. Some chemical modifications may be mistaken as in vivo 

PTMs, as highlighted in two recent studies. Thibault and co-workers showed that the 

common silver-staining procedure could introduce artifactual sulfation on serine, 

threonine and tyrosine residues, and this may be misinterpreted as in vivo sulfation or as 

phosphorylation if only low-mass accuracy data are available [227]. Mann and co-

workers showed that lysine residues could be covalently modified by two acetamide 

molecules when iodoacetamide was used as the alkylating reagent [228]. The resultant 

114.0429-Da mass shift is the same as that caused by the diglycyl modification from the 

ubiquitin remnant after trypsin digestion, and this could lead to erroneous reporting of 

ubiquitination sites. 

The work presented here was prompted by our recent study on the lipid 

modifications of RGS4 from insect cells. RGS4 is a member of the family of GTPase 

activating proteins which are responsible for switching off the G protein signaling 

pathway. It was previously reported that RGS4 contains three potential S-palmitoylation 

sites at Cys95 and Cys2/Cys12 residues, as determined by a radioactive labeling 

experiment and site mutation [61]. We have recently shown that with optimized sample 

preparation, MS can be used for direct detection of S-palmitoylation [200]. The MALDI-
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TOF MS analysis of the RGS4 tryptic digest revealed the presence of two types of 

hydrophobic modifications, which were initially assigned as S-palmitoylation and 

hydroxyfarnesylation based on their mass shifts and response to the HA treatment. 

However, these two modifications were found to be ubiquitously present in all cysteine 

residues, a characteristic of in vitro modifications. The present study aims to understand 

the origin of these modifications and to evaluate whether they could be problematic for 

PTM analysis. 

5.2 Experimental Section 

5.2.1 Materials 

Tris, ABC, DTT, HA, and CHAPS were purchased from Sigma-Aldrich (St. 

Louis, MO). TFA, FA, IAM, and the micro BCA protein assay kit were acquired from 

Pierce (Rockford, IL, USA). DHB was obtained from Bruker Daltonics (Billerica, MA). 

ACN was obtained from Burdick and Jackson (Muskegon, MI). PM and Trypsin Gold
TM 

were purchased from Promega (Madison, WI). RapiGest
TM

 (RG) was acquired from 

Waters (Milford, MA). Ni-NTA Magnetic Agarose Beads were obtained from Qiagen 

(Valencia, CA). C18 ZipTip and 10K MWCO centrifuge filter were acquired from 

Millipore (Billerica, MA). POROS R1 50 was obtained from Applied Biosystem (Foster 

City, CA). Insect cell culture medium Sf-900™ II SFM was purchased from Invitrogen 

(Carlsbad, CA). Complete EDTA-free protease inhibitor cocktail tablets were acquired 

from Roche (Indianapolis, IN). The RGS4 baculovirus was generously provided by Prof. 

Elliott M. Ross at the University of Texas Southwestern Medical Center. 



 

133 

5.2.2 Overexpression and Purification of His-Tagged RGS4 from Sf9 Cells 

Sf9 cells were maintained in the Sf-900™ II SFM media. His-tagged RGS4 was 

overexpressed by infection of the Sf9 cells with baculovirus. Cells were harvested after 

the 24-h infection and washed with PBS twice. The cell pellets were resuspended in 10 

volumes of lysis buffer (300 mM NaCl, 25 mM sucrose, 0.5% CHAPS in 1x PBS 

supplemented with the protease inhibitor cocktail), sonicated, and kept on ice for 30 min. 

The cell debris was removed by centrifugation at 21,000 x g for 20 min at 4 °C. The 

affinity purification of His-tagged RGS4 was performed by incubation of the resultant 

cell extract with Ni-NTA magnetic agarose beads followed by elution against 250 mM 

imidazole in the lysis buffer according to the QIAexpressionist protocol [228]. The 

amount of protein was determined by the BCA protein assay. A small portion of the 

purified proteins was separated by SDS-PAGE, digested by trypsin according to the PM 

in-gel digestion protocol [229], and analyzed by an ultrafleXtreme MALDI-TOF/TOF 

mass spectrometer (Bruker Daltonics, Billerica, MA) for protein ID. A typical MALDI-

TOF mass spectrum was acquired by signal averaging over 4000 laser shots from a 

Smartbeam-II
TM

 Nd:YAG laser operating at 355 nm and a repetition rate of 2 kHz. The 

rest of the protein mixture was aliquoted and stored at -80 °C for later use.  

5.2.3 In-Solution Proteolytic Digestion of His-Tagged RGS4 

In-solution tryptic digestion was performed following the PM in-solution 

digestion protocol [230]. Briefly, a 50-µg aliquot of purified His-tagged RGS4 protein 

was precipitated with 4 volumes of cold acetone. The protein pellet was solubilized by 

adding 20 µL of ABC buffer (50 mM, pH 8.0) containing 0.2% PM, and vortexing for 
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15~20 min. Another 71 µL of ABC buffer was then added to the resultant protein 

solution. Reductive alkylation was performed by addition of 1 µL of DTT (500 mM) and 

incubation at 56 °C for 20 min, followed by addition of 3 µL of IAM (500 mM) and 

incubation at room temperature for 15 min in the dark. Digestion was performed by 

addition of 1 µL of PM (1%) and 4 µL of trypsin (0.5 µg/µL) and incubation at 37 °C for 

3 hr. For tryptic digestion without reductive alkylation, 50 µg of purified His-tagged 

RGS4 was buffer exchanged against 100 µL of Tris (50 mM, pH 7.4)/0.05% PM solution 

through a 10K MWCO centrifuge filter, followed by addition of 2 µg of trypsin and 

incubation at 37 °C for 3 hr. In both cases, the resultant digests were incubated with 0.5% 

TFA at room temperature for 10 min to hydrolyze PM and to deactivate trypsin. The 

insoluble PM degradation product was removed by centrifugation at 16,000 x g for 10 

min. The digests were aliquoted, dried and stored at -80 °C for later use.  

5.2.4 LC-MS/MS Analysis 

RGS4 digests with (RGS4-RA) or without reductive alkylation (RGS4-noRA) 

were desalted by C18 ZipTip. Briefly, samples were loaded onto C18 ZipTip pipette tips 

in 5% ACN/0.1% TFA, eluted with 90% ACN/0.1% TFA after 5 washes with 5% 

ACN/0.1% TFA, dried down, and re-dissolved in 5% ACN/0.1% FA. LC-MS/MS 

analyses were performed on an LTQ-Orbitrap XL instrument (Thermo Fisher Scientific, 

San Jose, CA) equipped with a nanoAcquity UPLC (Waters, Milford, MA) and a Triversa 

Nanomate system (Advion Biosystems, Inc., Ithaca, NY). Mobile phase A consisted of 

99:1 water/ACN with 0.1% FA and mobile phase B consisted of 1:99 water/ACN with 

0.1% FA. Samples were loaded onto a Waters Symmetry trapping column (C18, 5 µm, 
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0.18 mm ID x 20 mm) at a flow rate of 4 µL/min and washed with 95% A for 4 min. 

Separation was performed on a Waters BEH130 analytical column (C18, 1.7 μm, 0.15 

mm ID x 100 mm) at a flow rate of 0.5 µl/min. The gradient was held at 5% B for 3 min, 

increased to 95% B over 90 min, and kept at 95% B for 9 min. It was then ramped to 98% 

B in 1 min, kept at 98% B for 4 min, and ramped down to 5% B over 3 min followed by 

column re-equilibration at 5% B for 15 min. The MS event cycle consists of one MS scan 

(r = 60,000 at m/z 400) and three data-dependent MS/MS scans (r = 7,500), where the 

three most abundant ions with charge state ≥ 2 were selected with an isolation window of 

±3 m/z for CID tandem MS analysis with the normalized collision energy set at 35%. The 

MS data were processed manually using the Proteome Discoverer software (Thermo 

Fisher Scientific, San Jose, CA).  

5.2.5 MALDI-TOF MS Analysis of the Hydrophobic Peptides  

Hydrophobic peptides were enriched using the homemade RP-SPE tips packed 

with the POROS R1 50 resin. An aliquot of RGS4-noRA was dissolved in 5% ACN/0.1% 

TFA and loaded onto the POROS R1 50 tip. After 3 washes with 5% ACN/0.1% TFA, 

the sample was sequentially eluted with 20% ACN/0.1% TFA, 40% ACN/0.1% TFA, and 

60% ACN/0.1% TFA. A small portion of the RGS4-noRA digest and each of its three 

fractions were crystallized with DHB (10 μg/μL in 40% ACN/0.1% TFA) and analyzed 

on an ultrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker Daltonics, Billerica, 

MA). Additional aliquots of the 40% ACN eluent which contains the majority of the 

hydrophobic peptides were dried down and incubated either in  the 50 mM ABC buffer 

containing 10 mM DTT at 37 °C for 1 h, or in 1 M HA (pH 7.4) at room temperature for 
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1 h. The resulting peptides were also analyzed on the ultrafleXtreme instrument. The 

spectra were analyzed with the FlexAnalysis 3.4 software. 

5.3 Results and Discussion 

5.3.1 Extraction of His-Tagged RGS4 from Sf9 Cells 

SDS-PAGE of the purified proteins showed a major band at ~25 kDa (> 90% 

purity, Figure 5.2). This band was excised and subjected to reductive alkylation, in-gel 

digestion, and MALDI-TOF MS analysis. Peptide mass fingerprinting showed a match of 

the 25-kDa band to RGS4 with 73% sequence coverage by tryptic digestion, indicating 

the successful overexpression and purification of RGS4.  
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Figure 5.2 MALDI-TOF mass spectrum of the tryptic digest of the major band at 25 kDa 

in the SDS-PAGE of Ni-NTA purified proteins from the Sf9 cells overexpressed with 

His-tagged RGS4. Peptide mass fingerprinting showed a match of this band to RGS4 

with a 73% sequence coverage (top). 

 

5.3.2 Characterization of the Hydrophobic Peptides by MALDI-TOF MS Analysis 

Although the in-gel tryptic digest of RGS4-RA covered 9 out of 11 cysteine 

residues, including all three reported in vivo palmitoylation sites, no palmitoyl peptide 



 

138 

was observed. The absence of palmitoyl peptides could be due to their low abundances 

and/or facile palmitoyl loss during sample preparation or MS analysis. It was recently 

shown that S-palmitoylation is unstable in the regular ABC-containing tryptic digestion 

buffer, and that the presence of DTT greatly accelerates the depalmitoylation process 

[200]. Here, following the protocol suggested by our previous study, in-solution tryptic 

digestion of purified RGS4 was performed in the neutral Tris buffer (50 mM, pH 7.4) 

with PM (0.05%) added to the digestion buffer to prevent protein aggregation and 

adsorption of hydrophobic peptides to onto plastic surfaces. Since there is no disulfide 

bond in RGS4, the reductive alkylation step was skipped to minimize potential palmitoyl 

loss. Enrichment of the hydrophobic peptides was achieved by stepwise elution as 

described in the experimental section.  

The MALDI-TOF mass spectra of RGS4-noRA and its digestion products (Figure 

5.3) showed that nearly all peptides were recovered in the 20% and 40% ACN elution 

buffers, with rough separation of the more hydrophilic peptides into the 20% ACN/0.1% 

TFA eluent and the hydrophobic peptides into the 40% ACN/0.1% TFA eluent. The 

majority of the hydrophobic peptides contained either modification X (238.19 Da) or 

modification Y (220.18 Da) (Figure 5.4a). To further determine the linkage of these 

modifications, the 40% ACN eluent was subjected to either DTT or HA treatment, and 

the MALDI-TOF mass spectra of the DTT- and HA-treated sample are shown in Figure 

5.4b and Figure 5.5, respectively. Incubation with DTT or HA resulted in the loss of 

modification X from all X-modified peptides, whereas modification Y was resistant to 

the DTT and HA treatments. HA cleavage is considered specific to the thioester linkage 
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and has been commonly used to distinguish S-acylation from other cysteine 

modifications. Because modification X resulted in a mass shift close to that caused by 

palmitoylation (238.230 Da), and was similarly susceptible to the DTT and HA 

treatments, it seemed reasonable to assign it as S-palmitoylation. Meanwhile, 

modification Y was tentatively assigned as hydroxyfarnesylation (220.183 Da) due to 

their comparable mass shift and similar resistance to the DTT and HA treatments. 

 

Figure 5.3 MALDI-TOF mass spectra of RGS4-noRA (a) and its sequential eluents with 

20% ACN/0.1% TFA (b), 40% ACN/0.1% TFA (c), and 60% ACN/0.1% TFA (d). 
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Figure 5.4 MALDI-TOF mass spectra of the hydrophobic peptides in the 40% ACN 

eluent (a) before and (b) after 1-h incubation with 10 mM DTT at 37 
o
C. X-modified 

peptides are labeled in blue, Y-modified peptides are labeled in red, and unmodified 

peptides are labeled in black. 
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Figure 5.5 The MALDI-TOF mass spectrum of the 40% ACN/0.1% TFA eluent of the 

RGS4-noRA digest following the HA treatment. 

 

5.3.3 LC-MS/MS Analysis of Hydrophobic Peptides 

To further determine the modification site(s), the tryptic digest of RGS4-noRA 

was analyzed by LC-MS/MS on an LTQ-Orbitrap instrument. Figure 5.6a shows the TIC 

of the 3-hr tryptic digest of RGS4 analyzed on a nano-C18-UPLC column using the 

gradient program described in the experimental section. Most unmodified peptides were 

eluted within 35 min, whereas the modified peptides were eluted after 35 min, 

presumably due to their increased hydrophobicity. Like the MALDI-TOF MS analysis, 
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LC-MS/MS analysis also revealed two types of modifications on these hydrophobic 

peptides. Figures 5.6b-d and 5.7 show the extracted ion chromatograms and the CID 

tandem mass spectra of a tryptic peptide and its two modified counterparts from RGS4-

noRA. The peptide eluted at 31.3 min (m/z 822.8834, Figure 5.6b) was identified as 

FYLDLTNPSSCGAEK ([M + 2H]
2+

, m/z 822.8823) based on its accurate mass and CID 

spectrum (Figure 5.7a). This peptide was also detected in the X- and Y-modified forms. 

The CID spectrum of the X-modified peptide FYLDLTNPSSCXGAEK ([M + 2H]
2+

, m/z 

941.9805, R.T. = 48.2 min, Figure 5.6c) is shown in Figure 5.7b. Modification X can be 

localized to the cysteine residue based on the mass difference between the y4 and y5 ions 

(Δm = mCys + 238.196). Similar to S-acylation, modification X appeared to be labile under 

CID, as evidenced by the presence of a high-abundance [M – X + 2H]
2+

 ion and several y 

– X ions (labeled as y
*
 ions) in the CID spectrum. However, despite having the same 

nominal mass as palmitoylation and sharing similar chemical and physical properties as 

S-acylation, modification X cannot be assigned as S-palmitoylation, as such an 

assignment would have a mass error that significantly exceeds the range acceptable for an 

Orbitrap measurement. The CID spectrum of the Y-modified peptide 

FYLDLTNPSSCYGAEK ([M + 2H]
2+

, m/z = 932.9744, R.T. = 48.5 min, Figure 5.6d) is 

shown in Figure 5.7c. The mass difference between the y4 and y5 ions as well as that 

between the b11 and b11 ions (Δm = mCys + 220.184) indicates that modification Y also 

occurred at the cysteine residue. Consistent with the MALDI-TOF MS result, the 

accurate mass of modification Y also matches that of hydroxyfarnesylation.  
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Figure 5.6 (a) The TIC of the RGS4-noRA sample; (b-d) the extracted ion 

chromatograms of the doubly charged tryptic peptide FYLDLTNPSSCGAEK and its X- 

and Y-modified forms. 
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Figure 5.7 The CID spectra of the doubly protonated peptides (a) 

FYLDLTNPSSCGAEK, (b) FYLDLTNPSSCXGAEK, and (c) FYLDLTNPSSCYGAEK. 
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 Although the MS analysis positively identified two types of cysteine 

modifications here, neither modification has been reported on RGS4, and modification X 

does not match any known PTM in the Unimod database. X and Y appeared to be 

universal modifications, with either or both occurring on all eleven cysteine residues on 

RGS4 (Figure 5.8a). Such non-specificity is a hallmark of in vitro modifications. 

Moreover, the accurate mass of modification X matches that of the hydrophobic 

degradation product of PM, and the mass difference between modifications X and Y 

suggested that Y may be simply formed from X via loss of a water molecule. To further 

investigate the origin of these modifications, the tryptic digestion was performed in the 

Tris buffer without PM, but with the addition of a different ALS, RapiGest
TM

. LC-

MS/MS analysis of the RGS4 digest in RapiGest
TM

 (data not shown) showed no evidence 

of peptides carrying either modification X or Y, suggesting that these modifications were 

ProteaseMAX
 TM

-induced artifacts.  
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Figure 5.8 Sequence coverage maps and identified cysteine modifications obtained from 

the LC-MS/MS analysis of the tryptic digests of RGS-noRA (a) and RGS-RA (b). 

 
Figure 5.9a illustrates a possible mechanism for formation of X-modified 

peptides. In an aqueous solution, the hydrophobic degradation product of PM, 1, exists in 

equilibrium with its various protonated forms. The C5-protonated species can be 

represented by several resonance structures, 2a-2c, among which the oxonium cation, 2c, 

is the preferred structure, with all atoms having octets of electrons. The C4 position in 2c 

may be attacked by the sulfhydryl group on the cysteine residue via 1,4-nucleophilic 

conjugate addition, forming the X-modified peptide, 3. The cysteine sidechain can also 

be attached to other positions on the furanyl ring, depending on the original proton 

attachment site. For example, C2 protonation would lead to C3 substitution (Figure 

5.10a). In general, protonation at α positions (C2, C5) is favored over protonation at β 

positions (C3, C4), as it results in more extensive charge delocalization. Further, a β-
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protonated furan can only undergo 1,2-addition, and the resultant thioketal or thioacetal 

product is not as stable as the thioether (Figure 5.10b, c). It is important to note that, 

regardless of the cysteine attachment site, the aromaticity of the furanyl ring is gone in 

the X-modified peptide, and this may contribute to the shift of equilibrium towards loss 

of modification X, especially in the presence of HA or DTT due to their competitive 

binding to the oxonium. Meanwhile, formation of Y-modified peptides may proceed via a 

mechanism shown in Figure 5.9b, in which protonation of the hydroxyl group in 1 is 

followed by water loss. The resultant oxonium ion, 4, may be attacked by the cysteine 

thiol via 1,6-nucleophilic conjugate addition to form the Y-modified peptide, 5. In 

structure 5, the aromatic furanyl ring is regenerated and modification Y is connected to 

the cysteine residue via a stable thioether linkage. Consequently, modification Y is more 

stable, and resistant to HA- and DTT-induced cleavages. Further chemical analysis is 

needed to validate the structure of X- and Y-modifications. 
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Figure 5.9 Proposed mechanisms for the formation of (a) X- and (b) Y-modified peptides 
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Figure 5.10 Alternative pathways for the formation of X-modified peptides 
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5.3.4 Extent of ProteaseMAX
 TM

 -Induced Artifacts in Proteomic Sample 

Preparation 

Given the wide use of ProteaseMAX
 TM

 in proteomics studies, it is necessary to 

investigate the extent of PM-induced artifacts in proteomic sample preparation. The 

analysis so far has been focused on the RGS4-noRA sample, where the reductive 

alkylation step was omitted to minimize potential loss of S-palmitoylation. However, 

reductive alkylation is commonly used in MS-based proteomic analysis, and since the 

reducing reagent DTT has a profound effect on modification X, an accurate account of 

the extent of PM-induced artifacts should be obtained following the routine sample 

preparation protocol. Figure 5.8b shows the modification map of RGS4-RA from the LC-

MS/MS analysis of its tryptic digest. Even with reductive alkylation, modification X was 

still detected on 2 cysteine residues and modification Y on 7 cysteine residues. The effect 

of reductive alkylation can be evaluated by comparing the relative abundance of X- and 

Y-modified peptides from the RGS4-noRA and RGS4-RA samples. To compensate for 

the variation in the sample loading amount, electrospray current, and other factors, the 

native reference peptide method [231] was adopted for ion abundance normalization 

among different samples. Here, the tryptic peptide LGFLLQK from RGS4 was chosen as 

the internal reference, since it does not contain any missed cleavage or residue that is 

prone to in vitro modifications. The peak area of the extracted ion chromatograms of the 

reference peptide and peptides of interest in all observed charge states was measured 

manually in the Xcalibur Quan browser, and the normalized peptide abundance was 
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calculated as the ratio of the integrated peak area of the peptide of interest to that of the 

internal reference peptide.  

 The relative abundances of 9 cysteine-containing peptides with free thiol, X-, Y-, 

or carbamidomethyl modification in the RGS4-noRA and RGS4-RA samples are 

summarized in Figure 5.11. In the RGS4-noRA sample, the extent of X- and Y-

modifications varied substantially from peptide to peptide, possibly influenced by the 

location of the cysteine residue and the pKa value of its thiol group. Not surprisingly, 

with reductive alkylation, modification X was either undetectable or significantly 

diminished in abundance because of its vulnerability to the DTT treatment. The 

observation of a small amount of X-modified peptides, VVTCXR and GLAGLPASCXLR, 

could be due to incomplete alkylation that allowed addition of X to the residual free thiol 

during the subsequent digestion step. Additionally, the hydrophobic X-groups may have 

been buried inside PM micelles and protected against the DTT cleavage. In contrast, in 

the sample prepared for the MALDI-TOF MS analysis (Figure 5.4), complete removal of 

modification X by DTT was achieved because PM was eliminated by hydrolysis under 

acidic condition prior to the DTT treatment. 

 The level of modification Y was also reduced in the RGS4-RA digest despite its 

apparent resistance to the DTT treatment (Figure 5.4). This could be due to the competing 

reaction of DTT with the hydrophobic PM degradation product. Consistent with this 

hypothesis, co-incubation of a cysteine-containing peptide standard GCLGNAK with PM 

and DTT for 3 hr produced negligible amounts of modifications X and Y (Figure 5.12b). 

On the other hand, the Y-modified peptide remained an abundant product when DTT or 
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HA was added after it had already been formed during the 3-h incubation with PM 

(Figure 5.12c, d). Similarly, many Y-modified peptides were detected in the RGS4-RA 

sample, and they were presumably formed during the protein solubilization step before 

the addition of DTT. A time-course study on these PM-induced modifications revealed 

that Y-modification was a slow process, with its level gradually increasing over a span of 

5 hr, whereas X-modification was much faster, reaching a high level within 10 minutes. 

The level of X-modification dropped substantially at later time points, possibly due to its 

reversible nature and competition from the irreversible Y-modification (Figure 5.13). It 

appears that reductive alkylation can largely eliminate X-modification and significantly 

reduce the level of Y-modifications, provided that there is not much delay between the 

addition of PM and the addition of DTT. In an actual proteomic experiment, however, the 

rate of these modifications will likely vary depending on the accessibility of the cysteine 

residue and its local environment. The RGS4-RA study showed that these artifacts will 

remain a tangible problem even with a short solubilization period (Figure 5.11). It is 

recommended to revise the ProteaseMAX
 TM

 digestion protocol to minimize the impact 

of these artifacts. 
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Figure 5.11 The relative abundances of 9 cysteine-containing peptides with free thiol, X-

, Y-, or carbamidomethyl modification in the RGS4-noRA and RGS4-RA digests. 
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Figure 5.12 (a-b) MALDI-TOF mass spectra of the peptide standard GCLGNAK after a 

3-hr incubation at 37 
o
C in 50 mM ABC/0.05% ProteaseMAX TM without DTT and with 

10 mM DTT, respectively. (c-d) MALDI-TOF mass spectra of sample (a) after 

subsequent incubation in 10 mM DTT at 37 
o
C for 1 h or in 1 M HA at room temperature 

for 1 h, respectively. 
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Figure 5.13 (a) The MALDI-TOF mass spectrum of the peptide standard GCLGNAK. 

(b-f) MALDI-TOF mass spectra of GCLGNAK after incubation in 50 mM ABC/0.05% 

ProteaseMAX TM at room temperature for 10 min (b), or at 37 
o
C for 30 min (c), 1 hr (d), 

3 hr (e) and 5 hr (f). 
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5.4 Conclusion 

The present study shows that two types of in vitro cysteine modifications (X and Y) can 

occur during routine proteomic sample preparation involving ProteaseMAX
TM

. 

Modification X has the same nominal mass and similar chemical and physical properties 

as S-palmitoylation, including its gas-phase fragmentation behavior under CID, and this 

could lead to false reporting of in vivo palmitoylation, especially when a low-mass 

accuracy MS instrument is used. Modification Y has the same elemental composition as 

hydroxyfarnesylation, likely via the same thioester linkage, making it extremely difficult 

to differentiate these two modifications by chemical reactions or mass spectrometry. 

Although the level of PM-induced modifications can be substantially reduced by 

performing reductive alkylation immediately after a short solubilization period, addition 

of DTT also causes undesirable loss of in vivo S-acylation. Thus, one should be cautious 

with the use of ProteaseMAX
 TM

 in proteomic sample preparation, especially when 

studying lipid modifications of proteins. In addition, the current study also calls for an 

investigation on the impact of these PM-induced artifacts on the accuracy of quantitative 

analysis of various cysteine modifications because they too, target the cysteine thiol 

group.  
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Chapter 6: Analysis of Lipid Modifications on RGS4 from Sf9 Cells 

6.1 Introduction 

RGS4 is a GTPase-activating protein that belongs to the RGS family. It facilitates 

the intrinsic GTPase of the Gα protein, accelerating the hydrolysis of GTP to GDP and 

thus bringing the Gα protein to its inactive form to switch off the G-protein coupled 

receptor (GPCRs) signaling (Figure 6.1). RGS4 is widely distributed in the central 

nervous system (CNS) [232]. By modulating the Gαi/o and Gαq activities [233], RGS4 

regulates a number of neurotransmitter signals, such as dopamine [234], metabotropic 

glutamate [235], and serotonin receptor signaling [236]. Previous studies showed that 

RGS4-deficient mice have sensorimotor deficits [237], whereas a decrease in RGS4 

expression has been linked to human schizophrenic disorders [238], suggesting an 

important role of RGS4 in CNS.  

 

Figure 6.1 The regulatory role of RGS4 in GPCR signaling, adapted from reference 

[239]. 
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Three potential palmitoylation sites (Cys2/Cys12 and Cys95) have been reported 

by Tu and co-workers [61]. In their study, His-tagged-RGS4 (rat) was first overexpressed 

in Sf9 cells by baculovirus infection. In order to detect palmitoylation, in vivo radioactive 

labeling was performed by incubation of Sf9 cells with [
3
H] palmitate. His-tagged-RGS4 

was then purified, subject to SDS-PAGE, and exposed to autoradiography film for 

detection. In vitro labeling of purified RGS4 with radioactive palmitoyl-CoA was also 

performed as supportive evidence for in vivo RGS4 palmitoylation. Palmitoylation sites 

were subsequently localized to Cys2/Cys12 and Cys95 by cyanogen bromide (CNBr) 

cleavage combined with site mutation. They further noticed that palmitoylation on 

Cys2/Cys12 is required for Cys95 palmitoylation, since mutation of Cys2 and Cys12 

eliminated all palmitoylation on RGS4 both in vivo and in vitro. 

As a robust and sensitive technique, mass spectrometry has been widely used for 

PTM characterizations. In this chapter, we will present an application of our established 

method to the analysis of biological samples. RGS4, a protein known to undergo in vivo 

palmitoylation, was chosen as the model system, so that we could validate our recently 

developed direct MS detection method and compare its performance with other methods. 

6.2 Experimental Section 

6.2.1 Materials 

Tris, Na-Hepes, palmitate, dimethyl sulfoxide (DMSO), BSA, and CHAPS were 

purchased from Sigma-Aldrich (St. Louis, MO). FA was acquired from Pierce (Rockford, 

IL, USA). DHB was obtained from Bruker Daltonics (Billerica, MA). ACN was obtained 

from Burdick and Jackson (Muskegon, MI). Trypsin Gold
TM

 was purchased from 
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Promega (Madison, WI). RG was acquired from Waters (Milford, MA). Ni-NTA 

Magnetic Agarose Beads were obtained from Qiagen (Valencia, CA). The 10K MWCO 

centrifuge filters were acquired from Millipore (Billerica, MA). POROS R1 50 was 

obtained from Applied Biosystems (Foster City, CA). Insect cell culture medium Sf-

900™ II SFM was purchased from Invitrogen (Carlsbad, CA). Complete EDTA-free 

protease inhibitor cocktail tablets were acquired from Roche (Indianapolis, IN). The 

RGS4 baculovirus was generously provided by Prof. Ross at the University of Texas 

Southwestern Medical Center. 

6.2.2 Sf9 Cell Culture, RGS4 Overexpression, and in vivo Metabolic Labeling with 

Palmitic Acid 

Overexpression of His-tagged RGS4 in Sf9 cell culture has been described in the 

last chapter. For in vivo metabolic labeling, palmitic acid (2 mM in stock) was prepared 

by gradually adding 400 mM palmitic acid (in DMSO) into 6.7% BSA/Sf-900™ II SFM 

media, heating at 57 
o
C until well dissolved. The resulting solution was subjected to 

sterile filtering and stored at -20 
o
C for later use. The labeling solution was made by 

diluting the palmitic acid stock solution to 30 µM with Sf-900™ II SFM media. Sf9 cells 

were first infected with RGS4 virus for 24 hr. Cells were gently spun down, resuspended 

and incubated with the labeling solution for 1 hr. Cells with or without metabolic labeling 

were harvested and subjected to lysis buffer. His-tagged RGS4 was purified, quantified, 

aliquoted, and stored at 80 °C as previously described. 
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6.2.3 In vitro Auto Palmitoylation of His-tagged RGS4 from Sf9 Cells 

Sf9 cells overexpressing His-tagged RGS4 were harvested and resuspended in 

lysis buffer. His-tagged RGS4 was pulled down from the whole cell lysate by using Ni-

NTA magnetic agarose beads. On-bead palmitoylation was performed by incubating His-

tagged RGS4-beads with either 1 mM or 100 µM palmitoyl-CoA in 50 mM NaHepes 

(Ph7.8), 0.1% RapiGest
TM

, 100 µM DTT at 30
 o

C for 3 hr [61]. The beads were washed 

with 50 mM NaHepes (pH 7.8), 0.1% RapiGest
TM

 for 3 times followed by incubation 

with 250 mM imidazole to elute His-tagged RGS4. The eluent was aliquoted and stored 

at -80 °C for later use.  

6.2.4 In-Solution Proteolytic Digestion of His-Tagged RGS4, Hydrophobic Peptide 

Enrichment, and MALDI-TOF Analysis 

Purified His-tagged RGS4 proteins were filtered by the 10 K MWCO centrifuge 

filter, buffer exchanged with the digestion buffer containing 50 mM Tris (pH 7.4) and 

0.05% RG. Trypsin was added to the protein solution at a 1:50 enzyme/protein ratio and 

the digestion was performed at 37 °C for 3 hr. The digest was acidified with 0.5% TFA at 

room temperature for 10 min and dried down in a speed vac. The digest was then 

resuspended in 20% ACN/0.1% TFA and loaded into POROS R1 50 resin followed by 3 

washes and sequential elution with 40% ACN/0.1% TFA, 60% ACN/0.1% TFA, and 

80% ACN/0.1% TFA. A small portion of the digest and its eluents were crystallized with 

DHB and analyzed on an ultrafleXtreme
TM

 MALDI-TOF/TOF mass spectrometer with 

40~45% laser power. A typical MALDI-TOF mass spectrum was acquired by signal 

averaging over 4000 laser shots from a Smartbeam-II
TM

 Nd:YAG laser operating at 355 
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nm and a repetition rate of 2 kHz. The spectra were analyzed using the FlexAnalysis 3.4 

software. 

6.2.5 LC-MS/MS Analysis of the Enriched Hydrophobic Peptides 

The LC-MS/MS analysis was performed on a C4-nanoACQUITY UPLC 

connected to an LTQ-Orbitrap XL mass spectrometer as described in Chapter 3. Mobile 

phase A consisted of 95:5 water/ACN with 0.1% FA and mobile phase B consisted of 

95:5 ACN/water with 0.1% FA. The 60% ACN/0.1%TFA eluent of the RGS4 digest was 

dried down and loaded into the nanoACQUITY UPLC with 40% B. The flow rate was 

kept at 1.5 µL/min for the first 2 mins, ramped down to 0.5 µL/min during the next 

minute, and kept constant at 0.5 µL/min for the rest of the HPLC run. The gradient was 

held at 40% B for 4 mins, and increased to 100% B over 30 mins. It was then held at 

100% B for 5 mins, followed by a ramp to 40% B over 2 mins, and maintained at 40% B 

for 29 mins for column re-equilibration. The eluted peptides were subjected to MS 

analysis on the LTQ-Orbitrap XL and the instrument setup was the same as described in 

Chapter 3.  

6.3 Results and Discussion 

6.3.1 Production and Analysis of the Palmitoyl-RGS4 Standard 

There are 11 cysteine residues on RGS4 and in-solution tryptic digestion covered 

all cysteines as shown in the previous chapter. Successful mapping of all in vivo 

palmitoylation sites requires our method for palmitoyl peptide preparation and LC-MS 

analysis to work properly for all cysteine-containing tryptic peptides from RGS4. In order 
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to test this, it is necessary to produce a palmitoyl RGS4 standard (RGS4-palm-std), 

ideally with all 11 cysteines palmitoylated. This was achieved by incubating purified 

RGS4 with 1 mM palmitoyl-CoA, as a concentration sufficiently high to produce 

universal palmitoylation at all accessible sites. The palmitoyl RGS4 standard was 

subsequently subjected to tryptic digestion in 50 mM Tris (pH 7.4)/0.05% RapiGest
TM

 to 

preserve palmitoylation. An aliquot of the tryptic digest was fractionated by POROS R1 

50 based on the peptide hydrophobicity. Figure 6.2 shows the MALDI-TOF mass spectra 

of the tryptic digest of RGS4-palm-std and its eluents with 40% ACN/0.1% TFA, 60% 

ACN/0.1% TFA, and 80% ACN/0.1% TFA. These three eluents showed very different 

peptide distributions. Further analysis revealed that the most palmitoyl-peptides were 

recovered in the 60% ACN/0.1% TFA eluent , which contained few unmodified peptides. 

Thus, the palmitoyl-peptides were successfully enriched in the 60% ACN/0.1% TFA 

eluent which was subjected to LC-MS/MS analysis. With the optimized LC conditions 

developed in Chapter 3, enriched palmitoyl-peptides could bind to and elute from the 

column properly (Figure 6.3). Furthermore, with MS/MS sequencing, all cysteine 

residues were found to be palmitoylated (Figure 6.4a). Figure 6.5 shows the CID spectra 

of several palmitoyl peptides including GHHHHHHMCpalmK
3
, 

4
GLAGLPASCpalmLR

14
, 

and 
82

SEYSEENIDFWISCpalmEEYKK
100

. Near-complete sequence coverage was 

obtained and, in each case, the palmitoyl group could be unambiguously localized to a 

specific cysteine residue. Note that the cysteine residues on these three peptides are Cys2, 

Cys12, and Cys95, which have been identified as in vivo palmitoylation sites by the 

radioactive labeling method previously. 
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Figure 6.2 MALDI-TOF mass spectra of tryptic digests of RGS4-palm-std (a) and its 

sequential eluents from the Poros R1 50 resin (b-d). 
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Figure 6.3 The TIC of the 60% ACN/0.1% TFA eluent of the RGS4-palm-std digest. 
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Figure 6.4 Sequence coverage maps and identified palmitoylation sites obtained from the 

LC-MS/MS analysis of the tryptic digests of RGS4 pre-incubated with 1 mM palmitoyl-

CoA (a), RGS4 from in vivo metabolic labeling (b), and RGS4 pre-incubated with 100 

µM palmitoyl-CoA (c). 
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Figure 6.5 The CID spectra of GHHHHHHMCpalmK (a), GLAGLPASCpalmLR (b), and 

SEYSEENIDFWISCpalmEEYKK (c) extracted from the LC-MS/MS analysis of the 

RGS4-palm-std tryptic digest. 
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6.3.2 LC-MS/MS Analysis of in vitro Palmitoylated RGS4 and RGS4 Obtained 

from Sf9 Cell with or without Palmitate Labeling  

As described above, our established LC-MS/MS method has the capability to 

detect palmitoylation at every site on RGS4 if it is present. However, when native RGS4 

was prepared and tested under the same conditions, no palmitoylation was identified at 

any cysteine residue. Although acyl-biotin switch assay identified a single palmitoylation 

site at Cys12, it may be a false positive due to the incomplete blockage of free thiols. 

Since both MS-based methods failed to detect palmitoylation in RGS4 expressed under 

basal conditions, we decided to re-investigate the previously reported results. In a typical 

in vivo metabolic labeling experiment, approximately 1~2 mCi/mL [
3
H]palmitate is 

added to the cell culture medium [240, 241], which is equal to about 30~60 µM 

according to the manufacturer’s information sheet ([
3
H]palmitate specific activity:  32 

Ci/mmol) [241]. It is necessary to investigate whether at such concentration, the 

exogenous palmitate could change the profile of fatty acid metabolites, especially the 

level of in vivo palmitoyl-CoA.  

To further evaluate the results obtained by radioactive metabolic labeling, an 

additional experiment was performed by analyzing RGS4 purified from Sf9 cells treated 

with palmitate (RGS4-palm-in-vivo), under the same conditions as were used in the early 

study by Tu and co-workers [61]. With palmitate added to the cell culture, three 

palmitoyl-containing peptides, 
4
GLAGLPASCpalmLR

14
, 

140
NMLEPTITCpalmFDEAQKKIFNLMEK

162
, and 

173
FYLDLTNPSSCpalmGAEK

187
 were 

identified by LC-MS/MS analysis. Figure 6.6 shows the CID spectra of 
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140
NMLEPTITCpalmFDEAQKKIFNLMEK

162
 and 

173
FYLDLTNPSSCpalmGAEK

187
, 

whereas the CID spectrum of 
4
GLAGLPASCpalmLR

14
 is the same as that shown in Figure 

6.5b.  

 

Figure 6.6 The CID spectra of NMLEPTITCpalmFDEAQKKIFNLMEK (a), and 

FYLDLTNPSSCpalmGAEK (b) extracted from the LC-MS/MS analysis of RGS4 from 

Sf9 cells treated with palmitate. 
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The previous study by Tu et al. also claimed that in vitro auto palmitoylation of 

purified RGS4 under proper conditions targeted the same cysteine residues that 

underwent palmitoylation in vivo. Here, we reproduced that experiment by incubating 

RGS4 with 100 µM palmitoyl-CoA under the same conditions and analyzed the resultant 

protein (RGS4-palm-in-vitro) by LC-MS/MS. Besides Cys12, Cys148, and Cys183, the 

three palmitoylation sites identified by LC-MS/MS analysis of RGS4-palm-in-vivo, two 

additional palmitoylation sites, Cys71 and Cys132, have been detected in RGS4-palm-in-

vitro. Figure 6.4b-c shows a comparison of palmitoylation maps produced by LC-MS/MS 

analysis of RGS4-palm-in-vivo and RGS4-palm-in-vitro. 

6.3.3 Re-evaluation of the Previous Radioactive Labeling Results  

Several studies reported that RGS4 underwent in vivo palmitoylation [61, 242-

244]. Deletion of the first thirty three amino acid residues or double mutation at Cys2 and 

Cys12 eliminated the [
3
H]palmitate incorporation both in vivo and in vitro, indicating that 

palmitoylation occurred at Cys2 and/or Cys12 [61, 242]. Tu and co-workers suggested 

Cys95 as an additional palmitoylation site, and Figure 6.7, adapted from their original 

paper, provides information on the palmitoyl localization. In that study, RGS4-palm-in-

vitro and RGS4-palm-in-vivo were treated with CNBr, which specifically cleaves the 

peptide bond at the C-terminus of a methionine residue. Since there are four methionine 

residues (Met1, Met19, Met141, and Met160) in RGS4, CNBr treatment of RGS4 could 

theoretically produce five peptide fragments: His tag-Met
1
 (1 kDa), Cys

12
-Met

19
 (1.8 

kDa), Lys
20

-Met
141

 (14 kDa), Leu
142

-Met
160

 (2.2 kDa), and Glu
161

-Ala
205

 (5 kDa). SDS-

PAGE of RGS4-palm-in-vitro and RGS4-palm-in-vivo after the CNBr cleavage both 
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showed two major radioactive bands at ~2 kDa and 14~20 kDa (Figure 6.7). The ~2 kDa 

band was assigned as Cys
12

-Met
19

 (1.8 kDa) based on the Cys2/Cys12 mutation result, 

whereas the band between 14 and 20 kDa could only be assigned to Lys
20

-Met
141

 (14 

kDa) based on the molecular weight. However, the actual palmitoylation site(s) could not 

be determined because there are five cysteines (Cys33, Cys48, Cys71, Cys95, and 

Cys132) residing on the peptide fragment Lys
20

-Met
141

. Because it would be laborious 

and time-consuming to mutate every cysteine residue, Cys95 was chosen because it is a 

conserved cysteine among all RGS family members, and the authors speculated that its 

palmitoylation might be biologically significant. Pleasingly, their speculation was 

supported by the experimental observation that Cys95 mutant showed little palmitate 

incorporation to fragment Lys
20

-Met
141 

at 14 kDa (Figure 6.7). Figure 6.8 summarizes 

their results.  

 

Figure 6.7 Localization of the palmitoylation site at Cys95 on RGS4, adapted from 

reference [61] 
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Figure 6.8 RGS4 palmitoylation map produced by radioactive labeling combined with 

the CNBr cleavage, based on the result from Figure 6.7. 

 
However, the data obtained by the LC-MS/MS analysis did not completely agree 

with the previous result produced by radioactive labeling and site mutation. LC-MS/MS 

analysis failed to identify native palmitoylation on RGS4, and this might be due to the 

very low level of RGS4 palmitoylation under basal conditions. In contrast, when RGS4 

was purified from Sf9 cells treated with palmitate, under the same conditions as used in 

the metabolic labeling experiment, palmitoylation at several cysteine sites was identified 

without much difficulty. This result underlined a caveat that is associated with the 

metabolic labeling approach: addition of [
3
H]palmitate, and potentially the palmitic acid 
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analogue, 17-ODYA, may artificially boost the in vivo palmitoylation process, possibly 

by increasing the in vivo palmitoyl-CoA concentration. Furthermore, the biological role 

of in vivo palmitoylation on RGS4 is still elusive. A functional study reported by 

Srinivasa and co-workers showed that RGS4 failed to target the plasma membrane when 

its N-terminal thirty three amino acid residues were deleted. However, mutation of Cys2 

and Cys12, although resulting in the failure of palmitate incorporation, did not affect the 

protein localization, suggesting that palmitoylation at these residues may not be 

responsible for RGS4 anchoring and trafficking [242]. Thus, results produced by 

metabolic palmitate labeling may not be a true reflection of the status of in vivo 

palmitoylation on RGS4 and it remains unclear whether RGS4 is naturally palmitoylated. 

Moreover, even with addition of palmitate to the cell culture medium, the 

palmitoylation sites identified by LC-MS/MS (RGS4-palm-in-vivo: Cys12, Cys148, and 

Cys183; RGS4-palm-in-vitro: Cys12, Cys71, Cys132, Cys148, and Cys183) still differ 

from those assigned after radioactive labeling (Cys2/Cys12, and Cys95). Whereas 

palmitoylation on Cys95 appeared to be very convincing based on the results obtained by 

experiments combining the metabolic labeling, CNBr cleavage, and site mutation, several 

fine points in Figure 6.7, might have been neglected, potentially leading to inaccurate 

identification. Firstly, the bands between 14 and 20 kDa from RGS4-palm-in-vitro 

(marked by purple square) and RGS4-palm-in-vivo (marked by purple triangle) by the 

CNBr cleavage appeared to be different upon close examination (Figure 6.9a). Band 

triangle (in vivo) migrated more slowly than band square (in vitro), and had a lower 

relative radioactive intensity. Whereas the CNBr cleavage of both RGS4-palm-in-vitro 
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and RGS4-palm-in-vivo should produce the same fragments in terms of their length and 

amount, the observed differences between the in vivo and in vitro labeling samples can 

only be attributed to the number of palmitoyl groups on the peptide fragments. It is well 

known that a palmitoylated protein or peptide migrated faster in SDS-PAGE than its 

unmodified counterpart [244]. Thus, we speculate that the peptide in band square (in 

vitro) potentially carried more palmitoyl groups than the peptide in band triangle (in vivo) 

based on its faster migration rate and higher radioactivity. This speculation is further 

supported by the LC-MS/MS data that RGS4-palm-in-vitro contained two additional 

palmitoylation sites, Cys71, and Cys132, which reside in the peptide fragment Lys
20

-

Met
141

. Secondly, because the vast majority of RGS4 was unmodified, the bands showing 

on the Coomassie Blue (CB) staining (Figure 6.9a, left panel) should mainly represent the 

unmodified RGS4 and its fragments, whereas the bands showing on the radioautograph 

(Figure 6.9a, right panel) should represent their palmitoylated counterparts. The previous 

assignment of band triangle (in vivo) in the radioautograph to the peptide Lys
20

-Met
141

 

with a palmitoyl group is inconsistent with the fact it showed up at a position well above 

its unmodified counterpart in the CB staining (14 kDa, marked with purple hexagon). 

Thus, the peptide that gave rise to band triangle likely contained more amino acid 

residues than previously speculated. As methionine undergoes oxidation easily during 

sample preparation and CNBr cannot cleave after an oxidized methionine, miscleavage 

could occur, producing larger peptide fragments than expected. If CNBr failed to cleave 

after Met141, the peptide Lys
20

-Met
160

 would be produced. With a theoretical mass of 

16297 Da, this peptide would migrate to the location of band triangle (in vivo). In support 



 

174 

of this, we did identify oxidized Met141 by LC-MS/MS: the CID spectrum of the tryptic 

peptide 
140

NMoxLEPTITCpalmFDEAQKKIFNLMEK
162

 from RGS4-palm-in-vivo is 

shown in Figure 6.9b. Thus, by careful examination of the results from both the 

radioactive labeling/CNBr cleavage experiment and LC-MS/MS analysis, we suggest that 

both band triangle (in vivo) and band square (in vitro) were the peptide fragment Lys
20

-

Met
160

 instead of Lys
20

-Met
141

 as previously reported. This could explain the controversy 

on the palmitoylation status of Cys95. Because the LC-MS/MS analysis provided direct 

and unambiguous evidence on the palmitoylation sites, we believe that the radioactive 

signal showing between 14 and 20 kDa originated mainly from palmitoyl Cys148 on the 

peptide fragment Lys
20

-Met
160

, but not from palmitoyl Cys95 on Lys
20

-Met
141

. We 

further note that the abolishment of the signal between 14 and 20 kDa following Cys95 

mutation is not a direct evidence of Cys95 palmitoylation. It only suggests that Cys95 is 

important for the palmitate incorporation to that peptide fragment. One possibility is that 

mutation of Cys95 induced protein conformational change making Cys148 inaccessible 

to palmitoyl-CoA. Actually, this may be a common caveat for PTM localization by 

amino acid mutation, which highlights the need for validation using MS-based, direct 

detection method. Lastly, besides the two major radioactive bands from RGS4 following 

the CNBr cleavage, there was another band, with low radioactivity but still observable, 

located at ~5 kDa, marked by a green cycle in Figure 6.9a. It could be assigned as 

fragment Glu
161

-Ala
205

, which is consistent with our finding of palmitoylation at Cys183. 
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Figure 6.9 Evaluation of the previous radioactive labeling results by LC-MS/MS. (a) Re-

assignment of CNBr-derived fragments produced from RGS4-palm-in-vitro and RGS4-
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palm-in-vivo, (b) The CID spectrum of the tryptic peptide 

NMoxLEPTITCpalmFDEAQKKIFNLMEK. 

6.4 Conclusion 

In this chapter, the established LC-MS/MS method was applied to analyze RGS4 

which has been shown to undergo in vivo palmitoylation. By comparing the LC-MS/MS 

data to the classic metabolic labeling results, we discovered that addition of palmitate to 

the cell culture medium in a metabolic labeling experiment increased the extent of protein 

palmitoylation, which could potentially lead to false discovery of new palmitoylation 

targets as well as inaccuracy in relative palmitoyl quantification. When combined with 

protein cleavage and cysteine mutation, radioactive metabolic labeling can provide useful 

information for localization of palmitoylation site(s). However, it is laborious and the 

results are sometimes deceiving due to the sample complexity. On the other hand, MS 

can be used to analyze proteins obtained from cells grown in a culture medium without 

addition of palmitate, providing information on palmitoylation under basal conditions. 

Moreover, LC-MS/MS is a high-throughput method that can provide direct information 

on modification sites, and is thus capable of identifying multiple palmitoylation sites in a 

single run with little ambiguity. Therefore, we believe that our established LC-MS/MS 

method would constitute a more powerful alternative for characterization of in vivo 

palmitoylation. 
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Chapter 7: General Conclusion and Future Perspectives 

7.1 General Conclusion 

As a powerful proteomics tool, MS is capable of analyzing complex samples, 

providing both qualitative and quantitative information on PTMs in a single run. 

Although MS has been extensively used to study a variety of PTMs, it has seldom been 

applied to detect protein palmitoylation in its native form. In addition, our early attempts 

to identify S-palmitoylation on H-Ras were largely unsuccessful, underlying the difficulty 

of such a task. In Chapter 3, using several palmitoyl peptide standards as the model 

system, we developed a comprehensive strategy, including sample preparation, LC-MS 

and tandem MS analysis, for direct detection and quantification of S-palmitoyl peptides. 

In Chapter 4 and Chapter 5, we further unveiled the complexity of sample 

preparation when a detergent is used. Whereas detergents are routinely used to improve 

bottom-up MS results by facilitating protein solubilization, this thesis provided the first 

evidence that they can also stabilize protein S-palmitoylation by preventing its hydrolysis 

and DTT-induced cleavage. However, one must be careful with the choice of detergent 

for palmitoyl studies, as ProteaseMAX
 TM

, a commonly used MS-compatible detergent, 

can induce artifactual protein lipid modifications that interfere with palmitoyl detection. 

Meanwhile, RapiGest
TM

 did not produce any artifacts. 

Because a palmitoyl peptide can be considered as a detergent-like molecule with 

the palmitoyl group as its hydrophobic tail and the peptide chain as its hydrophilic head, 

it is reasonable to expect the aggregation of palmitoyl peptides in aqueous solutions. 
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When studying a palmitoyl peptide standard GCpalmLGNAK, we found that aggregation 

of palmitoyl peptides could induce intermolecular palmitoyl transfer from the cysteine 

residue to the peptide N-terminus or the lysine side chain. Addition of RapiGest
TM

 

inhibited palmitoyl peptide aggregation and dramatically slowed down the intermolecular 

palmitoyl transfer. On the other hand, a small amount of palmitoyl peptides still 

underwent intramolecular palmitoyl migration in the presence of RapiGest
TM

. Thus, N-

palmitoylation can potentially arise from S-palmitoylation during proteomic sample 

preparation, and this possibility needs be examined when identifying in vivo N-

palmitoylation. Considering the major benefit of the use of RapiGest
TM

 to preserve S-

palmitoylation, and the very slow rate of intramolecular palmitoyl transfer, RapiGest
TM

 is 

recommended during sample preparation for direct detection of S-palmitoylation. 

In Chapter 6 we applied our established method to analyze biological samples, 

specifically, the RGS4 protein extracted from Sf9 cells. By comparing the LC-MS/MS 

results with those obtained by traditional radioactive labeling method, we concluded that 

addition of exogenous palmitate to the cell culture could artificially increase the level of 

protein palmitoylation, and does not reflect the true level of palmitoylation in vivo. 

Moreover, radioactive labeling, even when combined with specific site mutation, can still 

misidentify the palmitoylation sites due to sample complexity. 

The information provided in this thesis should benefit researchers who are 

interested in the study of protein palmitoylation. We believe that the LC-MS/MS method 

developed here provided a fast, sensitive and reliable alternative for characterization of 

protein palmitoylation and will become widely accepted in the future. 
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7.2 Future Perspectives 

Future work will mainly focus on the application of the established LC-MS/MS 

method to various biological samples. For example, in Chapter 6, we still failed to 

identify S-palmitoylation on RGS4 under basal conditions. It is possible that native S-

palmitoylation is present at a very low level, so that we will need to scale up the sample 

amount or use a mass spectrometer with higher sensitivity (e.g. a Q-Exactive Plus 

instrument instead of the outdated LTQ-Orbitrap XL) to improve the chance of palmitoyl 

identification. In parallel, the ABE method will be performed as a positive control. 

Regarding the conflicting results on palmitoyl localization by LC-MS/MS and radioactive 

labeling methods, we proposed that, although Cys95 does not undergo palmitoylation, its 

mutation can prevent palmitoylation on Cys148. To test this hypothesis, the RGS4 C95V 

mutant needs to be examined by LC-MS/MS. Another challenging task is to analyze the 

PTMs on the C-terminus of H-Ras under both physiological and pathological conditions. 

The C-terminus of H-Ras is extensively modified: Cys181 and Cys184 are palmitoylated, 

and Cys186 is farnesylated. These lipid modifications are responsible for the anchoring 

of H-Ras to the inner surface of the plasma membrane where it relays extracellular 

signals to modulate cell growth and survival. Our previous data indicated that in bovine 

aortic endothelial cells, oxidative PTMs resulting from high fat high glucose treatment 

can compete with palmitoylation at Cys181 and Cys184 on H-Ras, leading to the 

shedding of H-Ras from the plasma membrane and a decrease in survival signaling [79]. 

It is thus of interest to map and compare PTMs on the C-terminus of H-Ras under normal 

conditions and under oxidative stress using our established LC-MS/MS method. 
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 Another future direction would be to develop a method for top-down analysis of 

protein S-palmitoylation. The top-down approach is complementary to the bottom-up 

analysis, and is especially useful when the protein digests poorly. Furthermore, the top-

down method can also be used to study the combinatorial effect of various PTMs on an 

individual protein molecule. This project will be initiated with examination of the RGS10 

protein. There are only two cysteines on RGS10 which are both shown to be potential 

target for palmitoylation. The palmitoyl-RGS10 standard will be produced by incubation 

of the overexpressed RGS10 with palmitoyl-CoA. The method development including 

the optimization of palmitoyl protein isolation, LC-MS, and different fragmentation 

methods, will be performed in the future. 
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