MISSION STATEMENT
Affinity Research Collaboratives (ARCs) consist of faculty and trainees from different disciplines across campuses, and are organized around foci of common research interests. The extraordinary strength in biomedical and physical sciences at Boston University, and the support and development of the ARCs create opportunities for new interdisciplinary approaches to both research and training in biomedical research. Basic science discovery promoted by ARCs are also available to the Clinical and Translational Science Institute and to other centers for collaborative translational applications.

FOUNDED and SUPPORTED BY
The Evans Center for Interdisciplinary Biomedical Research (Dr. Katya Ravid, Founding Director), open to faculty across BU campuses, is supported by the Department of Medicine (Dr. Anthony Hollenberg, Chair), the Clinical & Translational Science Institute (Dr. David Center, Director), BU vice chair for research office (Dr. Gloria Waters) and by the Evans Medical Foundation (2009-present). The Boston University Interdisciplinary Biomedical Research Office (BU IBRO) (2015-present) within the office of BU Associate Provost for Research provide additional collaborations and support.

ARC PATHWAYS TO IMPACT (with achievement of ≥3 deemed as success)
1. Publish Science to build a scientific knowledge base to make an impact in research
2. Obtain grants to build a scientific knowledge to make an impact in research
3. Engage with corporations to implement Sponsored Research Agreements to make an impact in research
4. Engage with corporations to get licensing agreements to make an impact in research
5. Engage with corporations and investors to launch start-up companies to make an impact in research
6. Present science at meetings to catalyze scientific knowledge and collaborators to make an impact in research
7. Use Science dissemination strategies to fast-track timely uptake of research by investigators, policy groups, news media and the public to increase visibility and to make an impact in research
8. Engage in advocacy and community-engagement to translate research into guidelines, practices & policy to make an impact in research
The Evans Center for Interdisciplinary Biomedical Research (ECIBR)
and BU Interdisciplinary Biomedical Research Office (BU IBRO)

Founding and current Director: Katya Ravid, Barbara E. Corkey Professor of Medicine
Professor of Biochemistry, Biology, Health Sciences; Fulbright Research Scholar

BY THE NUMBERS

1. 24 multidisciplinary ARCs have received funding to investigate novel research topics since 2009, with about 309 core faculty participants, and 261 predocs & 198 postdocs. Minority researchers have similar percent representation as in the faculty body.

2. 4 multidisciplinary ARCs have engaged with 4 hubs in CTSA network; an ARC-driven Thrombotic Microangiopathy regional Consortium; Adoption of the ARC Model by 2 hubs in the CTSA network.

3. 1,183 collaborative publications catalyzed by ARCs, to date; 75% of co-authors had never published together prior to the ARC.

4. 428 external grants awarded to ARC affiliated projects out of 762 applied for to date (totaling $299,107,317), with at least two ARC faculty in the co-PI or co-I roles.

5. ARCs catalyzed investigators from 14 schools, 38 departments & industry to form multidisciplinary research projects.

6. Average of 12 seminars, 3 workshops, a retreat and a symposium per each ARC per year, attracted a range of 25 – 60 investigators & trainees per event. *Exception 2023: Precision Medicine in Alzheimer Disease ARC International Symposium with 400+ attendees.

7. Dr. Ravid co-developed Master of Science Programs in Nanomedicine and in Biomedical Research Technologies, currently instructed by some ARC members.

8. 8 ARCs developed during 2015-2023, including a new initiative focused on Tuberculosis and one on Musculoskeletal Health; Multidisciplinary Program to Identify Predictors of Efficacy and Resistance to Cancer Checkpoint inhibition; COVID-19; Tobacco Sciences; Thrombosis and Hemostasis; Fibrosis: Connecting Tissues and Investigators; Mobile and Electronic Health; Precision Medicine for Alzheimer Disease

9. 4 publications about the influence of the ARC Model and best practices shared with the CTSA network.

10. We rapidly respond to newly emerging biomedical research and technology challenges, as exemplified by a new ARC focused on Biomedical Innovation and Technology (BIT-ARC), now in its inaugural year (developed in 2023; see last pages of this publication).

KEYS FOR SUCCESS: THE FIVE Cs (K. Ravid)

1. **Capability**
 Creative research ideas

2. **Cooperation**
 Willingness to learn

3. **Communication**
 Effective scientific exchanges

4. **Coaching**
 Generous mentoring/insights by the Center’s Director and ARC leadership

5. **Conditions**
 Supportive resources and academic culture

PUBLICATIONS

“Thrombotic Microangiopathy: A Multidisciplinary Team Approach.”
Gordon CE, Chitalia VC, Sloan JM, Salant DJ, Coleman DL, Quillen K, Ravid K, Francis JM.
View at http://bit.ly/2kdXH0g

View at http://bit.ly/2kdYgXW

“Promoting interdisciplinary research in departments of medicine: results from two models at Boston University School of Medicine.”
Coleman DL, Spira A, Ravid K.
View at http://bit.ly/2k9qLG8

“Building interdisciplinary biomedical research using novel collaboratives.”
SYNOPSIS
(This ARC includes 25 faculty from various disciplines)

Tuberculosis (TB) remains the leading infectious disease killer globally, with an estimated 1.5 million deaths and 10 million new infections annually. In 2020, case notifications plummeted because of the COVID-19 pandemic related disruptions of services, with subsequently the first rise in TB mortality in more than a decade. We are falling gravely short of the WHO’s End TB Strategy goal of reducing TB incidence by 80%, TB deaths by 90% and eliminating catastrophic costs for TB-affected households by 2030. It is now clear that progress towards TB elimination will require focused attention on addressing comorbidities, improving diagnostics and biomarkers of treatment response, and awareness of post-TB sequelae, from understanding biology through potential intervention impacts. The Boston University Tuberculosis Interdisciplinary Approach to Research Alliance (TIARA) Affinity Research Collaborative (ARC) has as its mission the identification and promotion of a cohort of diverse TB clinical and translational research and researchers at Boston University who will accelerate ending the TB epidemic through innovative, interdisciplinary, and creative approaches. The ARC builds on existing TB core faculty with strong research portfolios, but as of recently with minimal coordinated efforts to advance as consortium interdisciplinary approaches to this research topic.

HIGHLIGHTS

This ARC consists of researchers from Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston University Sargent College, Boston University National Emerging Infectious Diseases Laboratories, and Boston University School of Public Health. Devoted to the pursuit of translational research to reduce the burden of TB worldwide, there is special focus on key populations including persons who use alcohol and/or illicit drugs, persons with malnutrition and diabetes, children/adolescents, and persons with drug resistant TB; all reflective of cases in the BMC patient populations.

WHERE ARE THEY NOW?

ARC launched in 2023
Musculoskeletal Health (MHet)

Co-Directors: Drs. Paola Divieti Pajevic, David Felson, LaDora Thompson

(ARC, 2023-present)

SYNOPSIS

(This ARC includes 20 faculty from various disciplines)

The mission of the Musculoskeletal Health (MHet) Affinity Research Center (ARC) is to bring together investigators across specialties and campuses (Medical and Charles River Campuses) to conduct multidisciplinary studies related to the musculoskeletal system. The MHet ARC will comprise investigators from Boston University Chobanian & Avedisian School of Medicine, Boston University Goldman School of Dental Medicine, Boston Medical Center, Boston University Sargent College, and Boston University College of Engineering.

In addition to specific research projects, the following aims are proposed:

1) Create a university-wide community of investigators interested in researching musculoskeletal conditions;
2) Generate pilot data using animal models and organ systems to support NIH grant proposals;
3) Train the next generation of researchers (pre and post-doctoral fellows) and;
4) Organize monthly meetings, seminars and an annual mini-symposium with invited speakers.

HIGHLIGHTS

Core members are Drs. Louis Gerstenfeld and Beth Bragdon (project 1), Drs. Brianne Connizzo and Katherine Zhang (project 2), Beth Bragdon (project 3) and Drs. Louis Gerstenfeld and Paul Tornetta (Aim2). The MHet will comprise numerous trainees and more than 20 faculty members committed to and interested in musculoskeletal research.

WHERE ARE THEY NOW?

ARC launched in 2023
SYNOPSIS
(This ARC includes 26 faculty from various disciplines)

Immune checkpoint inhibitors (ICIs) target inhibitory receptors on T cells and antigen-presenting cells and have transformed cancer treatment. Because the efficacy of immune checkpoint inhibitors is dependent on T cell function, factors that affect the host immune environment can have a significant impact on treatment efficacy. Early studies have shown that levels of immunosuppressive metabolites, the host microbiome, and tumor-derived exosomes may play a role in mediating the efficacy of checkpoint inhibitors. All of these factors can be influenced, either directly or indirectly, by socioeconomic status. These associations, however, are essentially unstudied: only 4% of enrollees in clinical trials of immune checkpoint inhibitors have been from under-represented minority populations. To address this knowledge gap, this broad-based study will investigate associations between circulating metabolites, AhR activity, the microbiome, and tumor-derived exosomes on treatment efficacy in patients at Boston Medical Center receiving treatment with immune checkpoint inhibitors. Our studies will utilize an expanding cancer biobank within the BU-BMC Cancer Center and will bring clinical investigators together with laboratory-based investigators in a broad range of fields.

HIGHLIGHTS
The findings from our study should shed light not only on how specific biomarkers are associated with immune status and treatment outcomes, but also on how these biomarkers may differ in diverse patient populations. As such, our study has broad implications for understanding cancer biology and optimizing cancer treatment.

EXAMPLE OF COLLABORATIVE DISCOVERY AMONG SEVERAL
Based on work done on ARC, we received funding for two new investigator-initiated studies on breast and prostate cancers in collaboration with Bristol Myer Squibb.

- Multidimensional Markers of Response and Resistance in advanced breast cancer: CDK4/6 Inhibitors (HR+/HER2-)
- Multidimensional Markers of Response and Resistance to Therapies in Metastatic Castration Resistant Prostate Cancer

WHERE ARE THEY NOW?
ARC Program with newly developed platforms for clinical trials
SYNOPSIS
(This ARC includes 46 faculty from various disciplines)

COVID-19 emerged as a new human disease in November 2019 and it swept through the whole world at a lightning speed, claiming over a million human lives and bringing the global economy to a standstill. The purpose of this ARC was to assemble a team of scientists with expertise in various disciplines of biomedical sciences with the goals to (1) generate tools for the investigation of COVID-19, (2) delineate the molecular mechanisms that underlie the COVID-19 pathophysiology, and (3) to develop therapeutic options for the treatment of COVID-19.

HIGHLIGHTS

A collaborative work by several members of this ARC led to the development of a stem cell-derived model of SARS-CoV-2 infection to interrogate the virus-host interface in a physiologically relevant setting. Using this infection model that comprises the lung type II pneumocytes, the team dissected the mechanisms by which SARS-CoV-2 impairs the normal lung functions.

Also, we established a panel of highly infectable human cell lines representing various SARS-CoV-2 target organs, such as lungs, liver, intestine, brain, heart, and kidneys. We used this panel of cell lines to uncover the molecular details of how SARS-CoV-2 blocks antiviral immune signaling and creates a favorable environment for its replication.

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
ARC Program focused on researching emerging pathogens
SYNOPSIS
(This ARC includes 26 faculty from various disciplines)

Aberrant fibrogenesis or fibrosis is a common response to chronic tissue injury of almost every organ, contributing to about 45% of all deaths in the U.S. Fibrosis at the phenotypic level shows remarkable similarities across different organ systems, but it is not understood whether cell populations or molecular mechanisms that contribute to the excessive deposition of extracellular matrix are conserved across organs. The central hypothesis is that there are both shared and tissue-specific factors in organ fibrosis that can be utilized to develop improved diagnostics and therapies.

HIGHLIGHTS
- Completed single cell RNA sequencing of fibrosis in a variety of organs, including skin, lungs, adipose tissue, oral cavity and kidneys.
- Developed new portable spatial-frequency domain imaging to measure collagen content in the skin of scleroderma patients.
- Optimized elastic-scattering spectroscopy to quantify interstitial fibrosis/tubular atrophy in kidney.
- Identified candidate metabolites to differentiate between diseased and healthy lungs in preclinical model of pulmonary hypertension.

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
ARC Program in collaboration with BU Center for Multiscale & Translational Mechanobiology
SYNOPSIS
(This ARC includes 32 faculty from various disciplines)

Tobacco Regulatory Science (TRS) ARC brings together a multidisciplinary investigative team (Pulmonary/Cardiovascular Medicine; Computational Biology; Global Health; Community Health Sciences; Health Policy & Health Services; Epidemiology; Health Law, Policy, and Management; Biomedical Engineering; Strategy and Innovation; Public Relations, Communication, Computer Sciences) with the mission of understanding complex tobacco use patterns and health impacts in vulnerable populations across the life course.

The safety of e-cigarette use has been called into question with the emergence of EVALI and younger individuals who vape appear to be at greater risk for more severe symptoms and hospitalization with COVID-19 for reasons that are not yet understood. E-cigarettes have been on the market for nearly 10 years but have evolved rapidly, outpacing scientific inquiry into the health effects.

The majority of studies to date evaluating the cardiopulmonary effects of e-cigarettes have focused on e-cigarette products (first- and second-generation devices) no longer in use.

HIGHLIGHTS
A major highlight discovery is that e-cigarette use and some of the product characteristics like flavoring additives are associated with cardiovascular and pulmonary injury. This is the result of several publications by the ARC, not one individually but rather the collective.

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL

Fetterman JL†, Keith RJ, ..., Hamburg NM. Alterations in vascular function associated with the use of combustible and electronic cigarettes. JAHA. 2020. 9(9):e014570.

WHERE ARE THEY NOW?
Morphed into an American Heart Association-funded Strategically Focused Research Network
SYNOPSIS
(This ARC includes 33 faculty from various disciplines)

The primary aims of this ARC are to identify subtypes of AD within the Framingham Heart Study (FHS) dataset, validate these subtypes using other available data from the national AD Centers database and other public databases, investigate the biological underpinnings of these subtypes, and identify new therapeutic targets specific for these subtypes. This project introduces a very novel approach for extracting key information from very large and complex datasets that will define subtypes and risk profiles for AD.

HIGHLIGHTS

The mechanism(s) underlying the protective effect of the APOE ε2 allele against Alzheimer disease (AD) is poorly understood. To evaluate the contribution of other genetic factors to the protective effect of ε2, we conducted a genome-wide association study for AD among ε2 carriers and applied a systems biology approach involving generating and analyzing various ‘omic data and performing immunohistochemistry experiments in brain tissue from 761 AD cases and controls, as well as validation experiments in APOE allele-specific iPS cells. Collectively, our findings demonstrated for the first time a molecular link between a tau phosphatase and the classical complement pathway, especially C4, and AD-related tau pathology.

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
ARC Program with NIH-funded U19 center of excellence
SYNOPSIS
(This ARC includes 47 faculty from various disciplines)

Microbial communities play a crucial role in the health of plants, animals and humans, and of marine and terrestrial ecosystems. Understanding these communities can have great impact in many areas, including agriculture and food production, climate change, immune system function and infectious disease. The goal of our ARC is to develop a new, multi-level mechanistic understanding of how microbe-microbe, microbe-environment, and microbe-host interactions determine microbial community dynamics, diversity and stability, and use this knowledge to understand how to control and engineer microbial communities for defined purposes.

HIGHLIGHTS

We have made significant progress towards the construction of the Microbiome Junction, a hub of computational tools to help conduct quantitative microbiome research. This serves as the point of convergence of multiple data types generated by different investigators, helping them interpret the data in the form of microbial and host interaction networks. We are actively applying these methods and tools in multiple contexts, including cancer (lung, pancreatic, immunotherapies, etc) and infectious diseases (HIV, TB, etc).

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?

BU-supported Program on System Biology Approaches to Microbiome Research
SYNOPSIS
(This ARC includes 175 faculty from various disciplines)

The mission the ME-ARC is to conduct research and training on mobile health with an emphasis on underserved populations and transdisciplinary research. Since, 2017, the ME-ARC has held monthly seminars, annual symposiums, reduced digital silos at BU, and provided mentorship to post-docs, K awardees, and consultation to BU researchers. The ME-ARC has received external funding across a wide variety of areas (e.g., smoking, diet, physical activity, obesity, alcohol, oral health) and digital platforms (Virtual Reality, mobile apps, web, social media, text messaging, connected devices) that have been deployed in real-world clinical and public health settings. The ME-ARC has built strong collaborations with other BU groups (Tobacco-ARC and Framingham Heart Study) resulting in additional publications and external grant award funding. In addition to the leadership team above, the ME-ARC has a steering committee, external advisory board, trainees, and >176 BU members.

HIGHLIGHTS
Dr. Borrelli received a $4.2M five-year award from the NIH that resulted from one of the ME-ARC pilots, entitled, “Delivery of a Smoking Cessation Induction Intervention Via Virtual Reality Headset During a Dental Cleaning.” She also received a $1.8M award from the American Heart Association to study cessation of adolescent vaping using Virtual Reality and texting. This project is part of a multi-project center grant led by Naomi Hamburg of the Tobacco-ARC. In addition, Dr. Lisa Quintiliani was awarded an NIH R01 to develop and test a weight management intervention for public housing residents that uses text messaging and connected devices. ME-ARC members are Co-Is on all of the above projects.

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
CTSI and university Program focused developing digital solution to health-inequities
SYNOPSIS
(This ARC includes 34 faculty from various disciplines)

The Thrombosis and Hemostasis in Health and Disease ARC had evaluated several facets of thrombosis spanning from novel mediators to the generation of the animal model up to validating the hypotheses in human cohorts. This ARC has investigated thrombosis using emerging techniques such as machine-learning techniques in the context of organ pathologies (e.g., renal failure), infectious disease (e.g., Shigella-Toxin mediated) and Thrombotic Microangiopathy Collaborative (TMA), a highly complex disease mediated primarily by the aberrant hyperactivation of complement system. The ARC established the first Boston University TMA initiative with BU CTSI.

HIGHLIGHTS

This ARC has successfully brought together basic and translational research through a cross-disciplinary approach to gain deeper understanding of thrombosis pathogenesis and to develop novel personalized predictive tools and therapeutic targets. As reported earlier, ARC members have initiated and developed the first Thrombotic Microangiopathy (TMA) program in BUSM. An additional unique, innovative contribution of the TtoH ARC has been a focus on organ pathology-induced changes in thrombosis and vascular hemostasis, which in the past year has been expanded to initiate studies related to mechanisms of cancer-induced thrombosis. Thrombotic mechanisms related to chronic kidney disease and bone marrow myelofibrosis have been probed, both used as model systems to examine this newly studied paradigm, resulting in notable publications and new grant support. Our collaborative pursuits led to identifying certain human plasma metabolites retained in chronic kidney disease, such as Kynurenine, as thrombogenic. Further, the secreted enzyme in myelofibrosis, lysyl oxidase, was found to enhance platelet activation and thrombosis in vivo in mice, and more recently new collaborative proteomic approaches led to identifying in in bone marrow malignant cells modified integrins known to participate in promoting thrombosis.

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY
Morphed into an American Heart Association-funded Strategically Focused Research Network (Cardio-Oncology)
SYNOPSIS
(This ARC includes 20 faculty from various disciplines)

Recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid β-peptide (Aβ), the accumulation of which is thought central to the pathogenesis of Alzheimer disease (AD).

This ARC explores the role of vesicular sorting proteins and other genes involved in protein trafficking in the etiology and pathophysiology of AD and other neurodegenerative disorders. The power of this ARC lies in its diverse, interdisciplinary expertise, and ability to validate any finding using independent approaches of genetic epidemiology, cell biology, model systems and pathology.

HIGHLIGHTS
Notably, cognitive decline has been observed disproportionately in persons affected with MS and to a lesser extent with celiac disease, suggesting that these three diseases share a common immune or inflammatory pathway. Future studies of the protective mechanism of these HLA alleles may provide insight into the neurobiology of cognitive decline and dementia and novel therapeutic approaches for these disorders.

TWO EXAMPLES OF COLLABORATIVE DISCOVERY AMONG SEVERAL
Ma Y, Jun GR, ..., Lunetta KL. CpG-related SNPs in the MS4A Region have a dose-dependent effect on risk of late-onset Alzheimer disease. Aging Cell 2019; 18(4):e12964.

WHERE ARE THEY NOW?
ARC Program with platforms for researching genetic biomarkers
Mitochondrial Dynamics in Health and Disease (mtARC)
Directors: Drs. Orian Shirihai and Andrea Havasi

(Synopsis: This ARC included 28 faculty from various disciplines)

The mtARC focused on the role of mitochondria in physiology and pathophysiology. Diverse membership encompassed 12 sections/departments with representation from both the Medical and Charles River Campuses. In addition, membership included labs from other universities and from industry. This ARC also provided training and tools for investigating mitochondrial bioenergetics, dynamics and reactive oxygen species (ROS) in various systems.

HIGHLIGHTS
The mitochondrial ARC collaboratively discovered a role for mitofusin 2 (Mfn2) and mitochondrial dynamics in neurodegeneration and metabolic diseases in different organ systems and was shown to have an important role in organ survival after ischemia. This ARC gave rise to an institutional Research Core focused on Bioenergetics.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
Leading faculty recruited to chair a department at UCLA, where ARC principles were implemented.
BU iPS Cell Bank
Directors: Drs. Darrell Kotton, Gustavo Mostoslavsky and George Murphy

SYNOPSIS
(This ARC included 15 faculty from various disciplines)

The discovery that mature somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells provides unprecedented opportunities to better understand and treat a variety of human diseases.

ARC members developed in the past a novel reagent, the lentiviral ‘stem cell cassette’ vector (STEMCCA) that allows the most efficient generation of iPS cells.

This ARC utilized this vector to develop an extensive bank of human iPS cells from individuals with diseases commonly found in the Boston Medical Center patient population: Sickle Cell Anemia, Amyloidosis, Emphysema, Inflammatory Bowel Disease, Scleroderma, and Diabetes.

HIGHLIGHTS

The iPS Cell Bank, Regenerative Medicine ARC initiative, among the first ARCs to be awarded at Boston University, facilitated the launch of an Open-Source stem cell bank that has grown over the years into one of the most widely shared NIH-sponsored stem cell repositories in the US. Today, this repository continues to serve as the heart of a new ARC- facilitated born Center for Regenerative Medicine and has become the largest bank of disease- specific induced pluripotent stem (iPS) cells for studying sickle cell disease, amyloidosis, and genetic lung diseases including alpha-1 antitrypsin deficiency, cystic fibrosis, and a wide variety of genetic neonatal lung disorders.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
Launched a BU center for Regenerative Medicine (CRem)
WHERE ARE THEY NOW?
Leading faculty recruited to build program at Columbia University, where collaborative ARC principles are implemented.

Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes. Mol Metab. 2015 Sep 18;4(11):758-70.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL
This ARC focused on the role of adipose tissue biology in the metabolic complications of obesity in men and women. Members have complementary expertise in biochemistry, cell biology, immunology and translational research in obesity, diabetes and cardiovascular disease. This ARC had a close relationship to an existing NIH-funded center, the Boston Nutrition and Obesity Research Center, and has initiated novel collaborations resulting in interdisciplinary grant proposals, including ‘brite’ adipocytes, adiporedoxin, a novel adipocyte dysfunction in insulin resistance. The ARC also engaged in fruitful ARC-ARC collaborations with four other ARCs: Mitochondria, Arterial Stiffness, Cancer and Inflammation, and Metabolic Disease and Insulin Resistance: Studies in Patients Undergoing Bariatric Surgery.

SYNOPSIS
(This ARC included 21 faculty from various disciplines)
This ARC focused on the role of adipose tissue biology in the metabolic complications of obesity in men and women. Members have complementary expertise in biochemistry, cell biology, immunology and translational research in obesity, diabetes and cardiovascular disease. This ARC had a close relationship to an existing NIH-funded center, the Boston Nutrition and Obesity Research Center, and has initiated novel collaborations resulting in interdisciplinary grant proposals, including ‘brite’ adipocytes, adiporedoxin, a novel adipocyte dysfunction in insulin resistance. The ARC also engaged in fruitful ARC-ARC collaborations with four other ARCs: Mitochondria, Arterial Stiffness, Cancer and Inflammation, and Metabolic Disease and Insulin Resistance: Studies in Patients Undergoing Bariatric Surgery.

HIGHLIGHTS
The ARC team found that glucocorticoids (GC) have profound effects on adipose tissue, adipogenesis and adipose tissue metabolic and endocrine function. With chronic excess GC, produced systemically or through local adipose tissue conversion, fat accumulates in central adipose depots and contributes to metabolic derangements.
SYNOPSIS
(This ARC included 14 faculty from various disciplines)

Obesity promotes a chronic inflammatory state, which contributes to the development of insulin resistance and cardiovascular disease. This ARC intended to promote translational research by bringing basic and clinical research laboratories together to study the cardiovascular consequences of obesity and diabetes. Activities of basic science labs and clinical research labs were coordinated to assess the interrelationship between metabolic dysfunction and vascular disease.

Angiogenesis in adipose tissue (Walsh and Aprahamian et al.)

HIGHLIGHTS
The ARC identified and studied the role of angiogenesis in adipose tissue biology, with focus on fat cell expansion.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL
Bretón-Romero R1, Feng B1, Holbrook M1, Farb MG1, Fetterman JL1, Linder EA1, Berk BD1, Masaki N1, Weisbrod RM1, Inagaki E1, Gokce N1, Fuster JJ1, Walsh K1, Hamburg NM2. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling. Arterioscler Thromb Vasc Biol. 2016 Mar;36(3):561-9.

WHERE ARE THEY NOW?
Launched an NIH-funded Program Project before the ARC leader was recruited to lead a section at the University of North Carolina at Chapel Hill
Projects designed by this ARC were to build on existing expertise and to take advantage of preliminary research studies performed at BUMC in transgenic mice and animal models of metabolic disease. A discovery-based proteomics approach was designed to identify candidate biomarkers related to metabolic disease. The studied hypothesis was that metabolic changes in diseased tissues may be detected by changes in plasma protein abundances that betray leakage of tissue-specific proteins, and bypost-translational modifications (PTMs) that reflect abnormal tissue metabolism.

HIGHLIGHTS
This ARC team discovered changes in metabolic function that may be maladaptive, leading to a situation in which substrate supplied to the heart for energy generation is adequate in amount but cannot be fully utilized. They provided a model to offer specific molecular insights regarding the cellular and physiological mechanisms that lead to metabolic heart disease.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL
Behring JB, Kumar V, Whelan SA, Chauhan P, Siwik DA, Costello CE, Colucci WS, Cohen RA, McComb ME, Bachschmid MM. Does reversible cysteine oxidation link the Western diet to findings that demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. FASEB J. 2014 May; 28(5):1975-87.

WHERE ARE THEY NOW?
Launched an NIH-funded Program Project and later fused with BUSM Proteomic Center
WHERE ARE THEY NOW?
Gave rise to a research core focused on Arterial Stiffness
Calcium Homeostasis in Health and Disease
Directors: Drs. Victoria Bolotina and Michael Kirber

SYNOPSIS
(This ARC included 26 faculty from various disciplines)

Comprised of experts in complementary fields from 18 laboratories in 15 Sections/Departments from BUSM and Charles River BU campuses, this ARC looked at the mechanisms of cellular function from many different perspectives, which enabled the group to identify common molecular determinants and mechanisms of Ca2+ signaling in diverse cell types, and allowed their translation to human disease to address the mechanisms of impairment in Ca2+ homeostasis in cardiovascular, neurological, pancreatic and other systems.

HIGHLIGHTS
Calcium ARC supported a ground-breaking discovery of a novel Ca2+ signaling mechanism of Parkinson’s disease and has provided school-wide expertise in the study of calcium homeostasis.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
Leading faculty developed a Biotech Start up focused on Calcium Signaling in Parkinson Disease
Obesity, Inflammation and Cancer
Directors: Drs. Gerald V. Denis and Barbara Nikolajczyk
(ARC, 2010-2013)

SYNOPSIS
(This ARC included 9 faculty from various disciplines)

Population studies identify cohorts of high body mass index (BMI) subjects with unexpectedly reduced risk for breast and colon cancer, and normal BMI subjects with unexpectedly elevated risk for breast cancer, provoking hard thinking about cellular and molecular mechanisms that most strongly couple obesity to cancer occurrence or progression. Emerging work suggests that abnormal metabolism and its associated chronic inflammation make the difference.

HIGHLIGHTS
Discoveries made by this ARC support a new hypothesis: metabolic disease in obesity promotes breast cancer incidence and metastasis.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
ARC Projects and members joined BUSM Cancer Center
Nanotheranostics

Directors: Drs. Victoria Herrera, Mark Grinstaff, Joyce Wong and Karl Karlson

(SYSNOPSISS
(This ARC included 26 faculty from various disciplines)

Nanotheranostics is defined as the integrated combination of target-specific diagnostics and delivery of therapeutics based on nanotechnology platforms. The ARC-program has provided the opportunity to utilize prototype nanotechnology platforms and proof of concept imaging formats. Operationalization of the experiments to test the diagnostics, therapeutic and intraoperative survival visualization and resection required the inter-disciplinary expertise and capabilities of several departments: Chemistry, Biomedical Engineering, Molecular Medicine, Pathology, and Surgery.

HIGHLIGHTS
The ARC discovered and proved that low pH-responsive expansile nanoparticles (eNPs) home to and selectively localize intracellularly in pancreatic cancer cells in xenograft model of pancreatic peritoneal carcinomatosis, while sparing peri-tumoral normal cells – endothelium, mesothelium, adipocytes, pancreatic tissue, and all normal intra-abdominal organs including the liver and spleen where all other nanoparticles typically end-up by default.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
A formalized new BU Program in Nanomedicine, hosting a MS of Sciences program on the topic
Metabolic Diseases and Insulin Resistance: Studies in Patients Undergoing Bariatric Surgery

Directors: Drs. Neil Ruderman, Konstantin Kandror and Caroline Apovian

(ARC, 2012-2014; 2015-on, members joined other metabolic-related ARCs)

SYNOPSIS
(This ARC included 4 faculty from various disciplines)

Morbidly obese individuals are predisposed to a wide range of diseases including type 2 diabetes, atherosclerotic cardiovascular disease (ASCVD), fatty liver disease, and certain cancers, all of which can be improved or prevented by bariatric surgery. This ARC team along with a few other groups, have observed that approximately 25% of morbidly obese individuals are insulin sensitive (IS) and the remainder are insulin resistant (IR). Intriguingly, compared to the IR group, the IS patients are less likely to develop ASCVD, and presumably other obesity-associated comorbidities.

HIGHLIGHTS
The ARC found that the activity of fuel sensing enzyme AMP-activated protein kinase (P-AMPK) in adipose tissue is markedly diminished (70%) in the insulin resistant patients at the time of surgery. Likewise, 3-months post-operatively decreased AMPK activity was eliminated.

Comparison of AMPK phosphorylation in the subcutaneous fat of 11 matched pre- and post-bariatric surgery patients (*p<0.05).

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
Lead faculty retired; members joined other ARCs
Computational Genomics Models of Environmental Chemical Carcinogenicity

Directors: Drs. Stefano Monti and David Sherr

SYNOPSIS
(This ARC included 12 faculty from various disciplines)
This project was centered around the overarching goal of developing genomic models of carcinogenicity for cancer prevention and tailored treatment, the goal being to develop accurate and cost-effective methods for the identification of threats to our health from exposure to chemical and environmental carcinogens. An essential component of this ARC is the research into development and application of novel computational approaches to the analysis and integration of multi-omics data.

HIGHLIGHTS
The ARC team confirmed the hypothesis that the genomic profile of human cells generated in response to short term exposure with environmental chemicals in vitro can predict, with up to 83% accuracy, a long term biologic consequence, in vivo cancer development. This discovery paves the way for predicting which of the 85,000 chemicals in consumer and industrial use are human carcinogens. To date, only ~2.5% of those chemicals have been tested for carcinogenicity.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
Faculty and related research contributed to founding a new Computational Biomedicine Section
Etiology & Pathogenesis of Oral Cancer
Directors: Drs. Maria Kukuruzinska, Maria Trojanowska and Avrum Spira

SYNOPSIS
(This ARC included 14 faculty from various disciplines)

Studies conducted by the Etiology & Pathogenesis of Oral Cancer (EPOC) ARC have been conducted by an array of faculty from different schools, aiming at developing new pathways and understanding of this pathology.

HIGHLIGHTS

EPOC activities have led to significant new findings related to: 1) the mechanisms of oral squamous cell carcinoma (OSCC) development and progression with a focus on the early pathways involving the N-glycosylation/β-catenin/TAZ-YAP signaling axis, as well as the role of aryl hydrocarbon receptor in tumor initiation in collaboration with the oral microbiome; 2) the remodeling and activation of OSCC tumor stroma and its role in cancer progression; and 3) personalized early detection and treatment of oral cancer, with emphasis on early detection and amelioration of radiation treatment-induced fibrosis.

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
Formalized Cross-disciplinary Program focused on Head and Neck Cancer
PneumoniARC
Director: Dr. Joseph ‘Jay’ Mizgerd
(ARC, 2015-2017)

SYNOPSIS
(This ARC included 9 faculty from various disciplines)

A multidisciplinary team was gathered, integrating critical distinct perspectives into this complex disease process, including the basic biology disciplines of Lung Biology, Immunology, and Microbiology, combined with clinical research realms from those caring for children (Pediatrics) or older adults (Pulmonary & Critical Care Medicine), to form the PneumoniARC. In order to attack the problem of high-susceptibility to pneumonia, this ARC is coordinating the knowledge bases, research tools, and investigational activities of 9 principal investigators from 4 academic units across 6 different buildings, all of whom have studies that are complementary with others in the group and relevant to pneumonia.

From Annual Rev Physiol, 2015

HIGHLIGHTS
The ARC identified the B cell repertoire as a window into the nature and impact of the lung “Virome.”

EXAMPLE OF A COLLABORATIVE DISCOVERY AMONG SEVERAL

WHERE ARE THEY NOW?
ARC members contributed to rapid development of a timely (2020) ARC on Respiratory Viruses: A focus on COVID-19
SYNOPSIS
(This ARC includes faculty from various disciplines)

Biomedical Innovation and Technology ARC (BIT-ARC)
Initiated by the Evans Center for Interdisciplinary Biomedical Research Center, the BIT-ARC is supported by the Department of Medicine (DoM), Clinical & Translational Science Institute (CTSI), Interdisciplinary Biomedical Research Office (IBRO) and the Office of Technology Development (OTD). The ARC is designed to include at least 3 investigators representing different disciplines. Physical, chemical and data science investigators/engineers and biomedical researchers identify a technology to collaboratively develop to address a biomedical and technology need. Technologies include the development and/or application of new devices, data and analysis infrastructure, materials or innovative chemical or biological therapeutics, that address unmet needs for the diagnosis, treatment or rehabilitation of patients, especially those served by Boston University and Boston Medical Center faculty and staff. Boston University guidance towards licensing and commercialization is made available to successful projects. The goal is for such projects to be developed by the pharmaceutical, materials or device development industries under license to Boston University or Boston Medical Center.

HIGHLIGHTS
In its inaugural year, 7 dynamic projects submitted proposals for consideration. Those not selected are on a trajectory to develop new patents and technologies. The inaugural awardee will be announced in late summer of 2023.

Additional information is found at
Evans Center for Interdisciplinary Biomedical Research Center web page: bumc.bu.edu/evanscenteribr/
TO ADD THE NEW BIT-ARC WHEN AWARDED
Email to Robin MacDonald, Exec Admin [remac@bu.edu]

Boston University Research
Interdisciplinary Biomedical Research Office

Spring 2023