Active Plasmonic Nanostructures in Biosensing and Imaging

Bjoern M. Reinhard Department of Chemistry

Noble Metal Nanoparticles

The alternating surface charges effectively form an oscillating dipole, which radiates electromagnetic waves.

Single Particle Rayleigh Spectroscopy

3 µm

Sonnichsen et al., Phys. Rev. Lett, 88, 077402 (2002).

Tuning Plasmons

Plasmon Coupling

(Nanoparticle Assemblies enable additional Functionalities)

Talley et al. Nano Lett, 5, 1569 (2005).

Distance Dependent Plasmon Coupling

Problem for rational assembly strategies of active nanostructures: (In)Stability of Colloids

RNA Plasmon Rulers

Plasmon Ruler Calibration

Reinhard et al. Nano Letters, 5, 2246 (2005).

Highly parallel in vitro single molecule assay for RNA

Restriction Nucleases such as the Dicer Enzyme are important enzymes involved in transcription regulation.

They create the correct substrates for the siRNA and miRNA processing machinery.

Other potential applications: Mechanochemistry of viral Nucleoprotein-RNA complexes

Zhou et al, Science 311, 195 (2006)

Single RNA Cleavage Assay

1000 nm

Spermidine modulated RNase A Activity

Spermidine modulated RNase A Activity

(One) Secondary Structure

Measuring Distance and Orientation Changes

$$P = \frac{I_1 - I_2}{I_1 + I_2}$$

H. Wang & B. M Reinhard, J. Phys. Chem. C 113, 11219 (2009)

Polarization Resolved Compaction Trajectories

Simulation of Polarization Anisotropy in the Dipolar Coupling Limit

Distance and Refractive Index Dependencies

Silver Plasmon Rulers

Plasmon Coupling between 2-Dimensionally Confined Probes

Rong et al, Nano Letters, 8, 3386 (2008)

Receptor Clustering

Plasmon Coupling Microscopy (PCM)

Calibration of PCM with 530/580 nm channels

Resolving Sub-Diffraction Limit Contacts Using PCM

Future Directions of PCM

The performed proof of principle experiments show that PCM is capable of resolving sub-diffraction limit distances between individual particles diffusing on a cellular membrane.

PCM could be a useful tool to detect and monitor dynamic contacts between individual gold nanoparticle labeled membrane components.

One important challenge that lies ahead is the specific labelling without perturbation of the biological functionality.

Engineered SERS Substrates for Rapid Pathogen Detection BUPC Collaboration with DalNegro/Ziegler

Cell wall structure of Gram(-) bacteria. The bacteria have a thin peptidoglycan layer and an outer membrane that contains phospholipids and proteins.

Active Market to trace for Survival and Inveging

for Engineered SERS Substrates: **Nanoparticle Dimers with Junction** Plasmons

Talley et al. Nano Lett, 5, 1569 (2005).

BU College of Arts & Sciences

(2003)

Nanoparticle Cluster Arrays: Improved Building Blocks Through Combined Top-**Down/Bottom-Up Fabrication**

Ebeam lithography is used to define binding sites for the template assisted self-assembly of nanoparticles.

Yan et al, ACS Nano, 3, 1190 (2009).

Control over Average Cluster Size

Control over Intercluster Separation

Calibration of SERS Performance with para-Mercaptoaniline (pma)

NCAs vs. Random Colloidal Substrates and "Smooth" Gold Nanoparticle Arrays

SERS Characterization and **Identification of Bacterial Pathogens**

Advantages of Engineered SERS **Substrates for Bacterial Diagnostics**

- High substrate to substrate and on chip reproducibility
- Rational fabrication approach allows optimization of substrates for specific samples (bacteria versus spores for instance)
- Fabricated SERS chips can be interfaced into microfluidic devices for intergrated solutions

SERS Analysis of Bacteria

Analysis of Spectra through PCA / DFA

Conclusions

- Plasmon rulers are maturing into a robust highly parallel assay for distance and orientation measurements on the single molecule level
- Plasmon Coupling Microscopy (PCM) capable of resolving sub-diffraction resolution limit contacts with high temporal resolution.
- Nanoparticle Cluster Arrays engineerable SERS platform with high reproducibility that enable to create hot-spots at will at defined locations.

Acknowledgements:

Guoxin Rong, Hongyun Wang, Lynell Skewis, Linglu Yang, Bo Yan, Xinwei Yu, Ankita Shastri, Tarik Silk, Brandon Sherzer

Larry Ziegler (BU Chem) Luca Dal Negro (BU ECE) S. Eramilli (BU Phys) Rachel Fearns (BU Med)

