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The availability of affordable high throughput technology for parallel genotyping has opened the field of
genetics to genome-wide association studies (GWAS), and in the last few years hundreds of articles report-
ing results of GWAS for a variety of heritable traits have been published. What do these results tell us?
Although GWAS have discovered a few hundred reproducible associations, this number is underwhelming
in relation to the huge amount of data produced, and challenges the conjecture that common variants may
be the genetic causes of common diseases. We argue that the massive amount of genetic data that result
from these studies remains largely unexplored and unexploited because of the challenge of mining and
modeling enormous data sets, the difficulty of using nontraditional computational techniques and the focus
of accepted statistical analyses on controlling the false positive rate rather than limiting the false negative
rate. In this article, we will review the common approach to analysis of GWAS data and then discuss
options to learn more from these data. We will use examples from our ongoing studies of sickle cell anemia
and also GWAS in multigenic traits. Am. J. Hematol. 84:504–515, 2009. VVC 2009 Wiley-Liss, Inc.

Background
Over the past 30 years, about 1,200 disease-causing

genes have been identified by studying well characterized
phenotypes and by using gene mapping techniques [1,2].
The same approach has not been as successful in identify-
ing the genetic modifiers of common diseases that have a
genetic component shown by familial aggregation but do
not follow Mendelian laws of inheritance. Examples include
many of the common age-related diseases such as hyper-
tension [3], diabetes [4,5], cardiovascular disease [6], and
dementia [7], which are presumed to be determined by
several genes (epistasis), and their interaction with environ-
mental factors (gene-environment interaction). These
common traits are a large public health burden and the dis-
covery of the genetic profiles that can be used for disease
risk prediction, prevention or treatment is one of the prior-
ities of modern ‘‘personalized’’ medicine. Genome-wide
association studies (GWAS) of common diseases have
begun to propel us toward this goal.
Three major factors have made GWAS popular and feasi-

ble in a relatively short time and are critically reviewed in
[8]. They are the common disease, common variant model
(CD-CV) developed in the mid 1990s [9], the catalog of
common variants created by the international HapMap pro-
ject [10], and the rapid development of microtechnology for
massive parallel genotyping [11,12]. The CD-CV model
hypothesized that the genetic profile of common diseases
is determined by genetic variants that are common in the
population (frequency > 0.05) and have, individually, a
small effect on the disease. This conjecture was based on
both theoretical arguments and examples of heterogeneity
of disease associated alleles including, for example, APOE-
e4 [13]. The CD-CV model made a strong case for the via-
bility of GWAS because if the model was correct, the
genetic basis of common diseases could be discovered by
searching for common variants with different allele frequen-
cies between cases and controls. To make this approach
operational, the genetic community needed access to pos-
sibly all common genetic variants [14], and to technology
for massive parallel measurements of these variants [15].
The most common genetic variations are single nucleotide

polymorphisms (SNPs)—variation of a single base of the ge-

nome sequence among individuals—and it was estimated
that the human genome has �10 million SNPs [16]. How-
ever, the work of Gabriel in [17] provided the first evidence
that, with the exception of hotspots of high recombination,
the human genome is characterized by a block structure with
sequences of SNPs that are highly correlated with each
other in blocks of linkage disequilibrium (LD) (See Table I for
technical definitions and Fig. 1). This structure implies that
one can reconstruct the majority of variability of these blocks
using a small subset of carefully selected tag-SNPs [18]. The
International HapMap project was launched in 2003 to char-
acterize common SNPs and to describe the block structure
of the human genome that could be used to identify these
tag-SNPs [19]. The first comprehensive catalog was pub-
lished in 2005 and included more than 1 million common
SNPs genotyped in 269 nuclear families of the three major
ethnic groups [10]. This catalogue was useful to design the
SNP microarrays produced by Illumina [12] and the latest
SNP microarrays produced by Affymetrix [20].
By 2005, the genetic community was ready to embark on

several GWAS. The first published GWAS reported the dis-
covery of a functional SNP in the complement factor H that
was associated with age related macular degeneration [21].
The study used a small case control design comparing the
allele distribution of �100,000 SNPs in 96 cases and 50
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controls. The small sample size was balanced by a very
careful ascertainment of cases and controls, gender match-
ing, and stringent quality control rules to reduce the chance
for spurious associations. The initial analysis identified one
SNP in strong allelic association with the disease and rese-
quencing of the region identified a novel functional variant.
This first successful example of a GWAS was soon fol-
lowed by several other applications to a variety of common
diseases including prostate and breast cancers [22–27],
Crohn’s disease [28–30], coronary artery disease and dia-
betes [6,31,32], fetal hemoglobin expression [33], and other
traits [34]. Table II provides examples of GWAS relating to
hematological disease. The catalogue curated by Terri
Manolio at the NHGRI provides updated information about
results of GWAS [44], and a graphical display of the results
mapped on the human genome is available from the Hap-
Map website (http://www.hapmap.org/karyogram/gwas.
html). Note that, besides a few exceptions, a caveat of
these findings is that they have so far identified chromo-
somal regions implicated with the traits and more intensive
studies will be needed to find the actual genetic variants re-
sponsible for the biological process linking genotypes to
phenotypes.

The State of the Art
Several reviews describe in great detail the necessary

steps to plan, analyze, and report the results of a GWAS
[45–47]. These steps are briefly reviewed here.

Study design
Typically, a GWAS uses a case–control design, in which

cases are ascertained based on the trait of interest [48].
The choice of control subjects is often less obvious. A con-
trol subject should be disease free, but must also be free
of other traits that are not shared by cases. For example, if

TABLE I. A Glossary of Terms Commonly Used in the Article

Term Description

Autosomal trait The mutation is on one of the chromosomes 1–22.
Carrier A subject carrying one copy of the mutation that leads

to a recessive disease.
Dominant trait One copy of the mutated variant is sufficient for the

trait to manifest.
False positive rate The probability of rejecting the null hypothesis of no

association when the null hypothesis is true and
there is indeed no association.

Genotype The SNP nucleotides in the chromosome pairs. A
biallelic SNP can produce three genotypes, two
homozygous genotypes when both chromosomes
have the same alleles, and a hetherozygous
genotype when the alleles are different. For
example, a SNP with alleles A and G can produce
the homozygous genotypes AA or GG and the
hetherozygous genotype AG.

Identity by state
(IBS) and identity
by descent (IBD)

SNP alleles are IBS in two subjects when they are the
same, and they are IBD when they are inherited
from a common ancestor.

Linkage disequilibrium
(LD)

Non random association between SNP alleles on the
same chromosome.

Minor allele
frequency (MAF)

The frequency of the minor allele.

Multiple comparison
problem

This refers to controlling the false positive rate when
testing many hypotheses simultaneously.

Penetrance The probability that the genotype manifests in the
phenotype.

Population
stratification

The situation when allele frequency differences in
cases and controls are due to differences in
ancestry rather than association between genes and
disease.

P-value In the context of hypothesis testing, probability of
observing a result as extreme as that observed in
the data given the null hypothesis is true.

r2 Measure of the allele correlations between two SNPs.
Recessive trait Two copies of the mutated variant are necessary for

the trait to manifest. An X-linked trait is always
dominant in males.

SNP Single nucleotide polymorphisms: variation of a single
nucleotide.

Synonymous SNP SNP that do not change aminoacid.
Type I error Reject null hypothesis when null hypothesis is true.
X-linked The mutation is on the X chromosome.

Figure 1. Linkage disequilibrium (LD) map of the gene HAO2. The map was
generated using the program HaploView and genotype data of 58 SNPs from the
30 trios of the HapMap CEPH. The white bar on top shows the physical position
of the SNPs. Each square represents the correlation of two SNPs, and the shades
of red indicate the strength of the correlation ranging from no correlation (white) to
strong correlation (red). Blue squares represent uncertain situations. The correla-
tion analysis identifies three blocks of LD highlighted by the black outlines. The
variability of each of the three blocks can be captured by a small number of tag
SNPs: for example the larger block of 23 SNPs on the right can be described by
six SNPs.

Figure 2. Scatter plot of the first two principal components computed with
GWAS data from centenarians and controls of the New England Centenarian
Study and the Human Genome Diversity Panel. The principal component analysis
summarizes the genome wide genotype data into linear combinations that explain
the overall variability of the data and can be ranked by decreasing variability so
that the first two principal components explain the largest proportion of the data
variability. A plot of the first two principal components can give insight about the
level of genetic diversity between cases and controls and uncover possible stratifi-
cation. In this example, the x-axis reports the first principal component and the y-
axis reports the second principal component. Each point represents a subject and
is colored based on either the known geographic ancestry or the trait. Subjects
cluster in several groups that represent closed European populations such as Sar-
dinians or Adygeis and three major clusters of North Europeans, South Euro-
peans, and Ashkenazi Jewish that include NECS centenarians and controls. In
this example, the overlapping of the three clusters of centenarians and controls
suggests no substantial stratification.
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the phenotype of interest is known to manifest within a cer-
tain age, it is tempting to choose controls that are much
older than the cases to guarantee that they never develop
the phenotype. This choice for controls would introduce
confounding, and the discovered associations may be
related to aging rather than the trait of interest. In general,
matching controls on variables that are not of interest in the
study, such as exposure to some environmental conditions,
is important to avoid introducing spurious associations.
However, some caution is necessary to avoid overmatching
and losing of generality of the results or missing important
associations [49]. Controls selected from families of the
cases often offer protection against confounding by match-
ing exposures to risk factors, or genetic background when
controls are genetically related to the cases, this being the
rationale of family based association studies [50].
Referent cohort subjects used in other studies can also

be used as controls. This was the strategy used by the
Wellcome Trust Case–Control Consortium that used the
same pool of 3,000 controls chosen from the British popu-
lation to search for genetic modifiers of seven common
traits [6]. This strategy is becoming more and more feasible
with the increasing availability of GWAS data from dbGaP,
the database of genotype–phenotype associations (http://
www.ncbi.nlm.nih.gov/gap), and the Illumina control data-
base. However, this approach can introduce confounding
due to population stratification. Population stratification has
been a well known source of spurious associations [48]
and occurs when allele frequency differences in cases and
controls are due to differences in ancestry rather than
associations between genes and disease. Population strati-
fication is, however, easy to detect in GWAS using multivar-
iate statistical techniques implemented in popular programs
such as PLINK [51] and EIGENSOFT [52]. Figure 2 pro-
vides an example using data from the New England Cente-
narian Study [53] and the Human Genome Diversity Panel
[54]. The analysis can help to describe the genetic back-
ground of cases and controls when reference groups with
known ancestry are included in the analysis, and it can
identify different levels of genetic diversity between cases
and controls that need to be taken into account in subse-
quent statistical analysis.
When the trait of interest is a quantitative measure, such

as blood pressure or fetal hemoglobin concentration, the
inclusion criteria for subjects should ensure that sufficient
variability of the trait is represented by the sample. Other
covariates that could be associated with the trait should be
measured so that further analysis can be adjusted and the
genetic effect be distinguished from other factors.

Choice of genotyping platform and
resource allocation
Despite some different choices of SNPs to be typed—

either tag-SNPs chosen to capture substantial variability of
the common SNPs in the HapMap, or randomly selected
SNPs, or a combination of both strategies—all of the major
genotyping platforms that are currently available offer simi-
lar coverage of common variants in the HapMap [46,55].
The coverage ranges between 500,000 and 1,000,000
SNPs per sample, and these numbers continue to steadily
increase. Initial estimates suggested that, for example, the
Illumina humanhap 300 array captured 75% of HapMap
common SNPs with an allelic correlation of 80% in subjects
of European ancestry, but the coverage was only 28% in
subjects of African ancestry. The 80% allelic correlation is
a measure of the LD between two SNPs that is based on
the correlation coefficient r2 (see Table I) and measures the
correlation of two SNP alleles on the same chromosome
[56]. Equivalent arrays produced by Affymetrix had lower
coverage of common SNPs for Europeans but higher cov-
erage for Africans [55]. These figures are higher in denser
arrays, with a clear gain of coverage in African subjects, so
that for example the Illumina 610 provides approximately
60% coverage of the HapMap common SNPs with 80%
correlation, meaning that the SNPs in the array correlate
with 60% of HapMap common SNPs with r2 > 0.8. Recent
studies have suggested that the gain of coverage using
denser SNP arrays can almost be recovered by the imputa-
tion of untyped SNPs in Europeans and genotyping more
samples with less dense arrays may increase the power of
a GWAS [57]. Because imputation of untyped genotypes in
subjects of African or Asian ancestry is less accurate [58],
this strategy may not be useful in studies of non European
subjects. These analyses used the HapMap catalogue of
common SNPs as a gold standard. Estimates of the cover-
age of the full set of common and rare variants have been
recently reviewed using sequence data and suggest that
the initial calculations of the coverage of common platforms
were overoptimistic [59]. Larger coverage of the real var-
iants rather than those reported in the HapMap will require
additional SNP discovery [60]. It is also important to
emphasize that the majority of SNPs in commercially avail-
able arrays do not affect protein structure and appear
unlikely to affect gene expression so that this design choice
limits the discovery power of GWAS to locating chromo-
somal regions rather than the genetic variants that are re-
sponsible for the trait. This initial discovery may be suffi-
cient for prognostic modeling, but understanding the mech-
anism that leads to the trait of interest will require more

TABLE II. GWAS in Hematological Disease

Study Year Phenotype Comment Ref.

Yang et al. 2007 Multiple including plasma factor
levels, hematocrit, viscosity.

Used GWA and linkage studies to analyze multiple-linked
phenotypes dealing with hemostasis and hemodynamics.

[35]

Ouwehand 2007 Platelet function. Mixed candidate gene and GWAS approaches to examine
phenotypes in the Wellcome Trust Case Control Consortium.

[36]

Huang et al. 2007, 2008 Cytotoxicity of etoposide and
daunorubicin.

Integrated genotype and expression data to study drug toxicity for
common treatments of leukemia and lymphoma.

[37,38]

Di Bernardo et al. 2008 Chronic lymphocytic leukemia. First evidence for the existence of common, low-penetrance
susceptibility to a hematological malignancy.

[39]

Sarasquete et al. 2008 Osteonecrosis of the jaw secondary
to bisposphonate therapy.

Discovered significant SNPs in CYP2C8 in one population of
patients with multiple myeloma on bispohosphonate.

[40]

Cooper et al. 2008 Warfarin maintenance dose. Found multiple associations in a single population, validated
known genetic association with VKORC1 and CYP2C9 in two
populations.

[41]

Menzel et al.,
Uda et al.,
Sedgewick et al.

2007,
2008, 2008

Fetal hemoglobin levels. Association of SNP in BCL11A with fetal hemoglobin levels in
healthy northern Europeans, Sardinians with thalassemia and
African Americans with sickle cell anemia.

[33,42,43]
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intensive studies such as fine mapping or sequencing for
the discovery of functional variants [60].

Quality control
Once the DNA samples are hybridized to the arrays and

the arrays are read and quantified using some detection
method [61], genotypes are called using algorithms that are
specific to the different arrays. Some decisions must be
made during this phase to trade off sensitivity for specificity
and may lead to missing data if the algorithm cannot distin-
guish among the three genotypes with certainty. Interest-
ingly, it has been noted that excessively stringent conditions
on acceptable genotype calls may introduce bias and inflate
the false positive rate because the pattern of missing data
may be informative rather than random. For example, rare
genotypes may be more likely to be missing than common
genotypes [46]. On the other hand, excessively relaxed
conditions on acceptable genotype calls may introduce er-
roneous genotypes in the data to be analyzed and cause
spurious associations due to technical errors. A good heu-
ristic seems to opt for more relaxed thresholds on genotype
calling to maximize the power of the study followed by
careful assessment of the quality of the genotype calls of
those SNPs identified in the analysis. Inspection of the

plots showing the clusters of genotypes can help to detect
these technical errors.
Issues with sample quality can be easily identified by the

proportion of SNPs that fail to have their genotype called,
and samples with a low call rate (usually more than 7%
SNP genotypes missing) should be disregarded from the
analysis. There are other sources of errors that may impact
the analysis and are less evident. Experience shows that
inefficient sample tracking—for example not using bar code

Figure 3. Examples of 0, 1, and 2 alleles that are shared IBD. The pedigree dis-
plays two parents who carry the alleles A and B (father) and C and D (mother) of
a genetic locus. The four children inherit the allele A from the father and C from
the mother (child 1), the allele A from the father and D from the mother (child 2)
and the allele B from the father and D from the mother (child 3 and 4). If we com-
pare children 1 and 2, they share the allele A from the father, and hence one allele
is shared IBD. If we compare the child 1 and 3 they do not share any allele, and
hence zero alleles are shared IBD, while children 3 and 4 share the same allele B
from the father and the same allele D from the mother and so two alleles are
shared IBD.

Figure 4. (a) Error rate (y-axis) of different Bayes rules for detecting allelic asso-
ciation in an unbalanced design with 250 cases and 750 controls. Each line repre-
sents the error rate as a function of the minor allele frequency (MAF) displayed on
the x-axis and different colors represent different decision rules (red: posterior
probability of the null hypothesis P(H0) < 0.05; green: P(H0) < 0.02; blue: P(H0) <
0.01; and blue: P(H0) < 0.002). (b) Same analysis with a balanced design of 500
cases and an equal number of controls. (c) Power (y-axis) of the different decision
rules for different effects (see legend) and different MAF in cases (x-axis) with the
unbalanced design. (d) Same analysis as in (c) for the balanced design. All analy-
ses were based on simulating 50,000 data sets for each combination of sample
size, threshold on the posterior probability of association, MAF and effect size.
The analysis shows that the error rate tends to increase with the rarity of alleles
so that the threshold on the posterior probability can be adjusted to the MAF of
cases to optimize the power. For example, to test the association of a common
variant, a Bayesian rule that rejects the null hypothesis when P(H0) < 0.05 has an
error rate of approximately 6 3 1024 and a power ranging between 70% in the
unbalanced design and 85% in the balanced design. This large power is achieved
with half the sample size suggested in other studies that use frequentist methods.

TABLE III. Relation Between Probabilities of Genome-Wide

Alleles Shared IBD and Relatedness

IBD probabilities

Relative pair 0 1 2 P(IBD)

MZ twins 0 0 1 1
Full sibs 0.25 0.5 0.25 0.5
Parent-offspring 0 1 0 0.5
Grandparent-grandchild 0.5 0.5 0 0.25
Half-sibs 0.5 0.5 0 0.25
Avuncular 0.5 0.5 0 0.25
First cousin 0.75 0.25 0 0.125
Unrelated 1 0 0 0

Column 1 describes the type of relation, columns 2–4 report the genome-wide
proportion of alleles shared by IBD that can be 0 (column 2), 1 (column 3), and 2
(column 3). The last column indicates the expected probability of alleles shared by
IBD for various relations. For example, monozygotic twin (row one) should share
the same DNA, and therefore, the probability of any two alleles shared IBD is 1.
Unrelated samples with a probability 1 of any two alleles shared IBD can point to
sample swaps.

Figure 5. Manhattan plot displaying the 2log10(P-value) of the association of
approximately 270,000 SNPs with response to hydroxyurea in 123 sickle cell ane-
mia patients. The association was tested using linear regression with an additive
genetic effect in PLINK. To bound the overall false positive rate to 5%, the Bonfer-
roni correction would require a P-value < 1027 and hence 2log10(P-value) > 7. In
this analysis, none of the SNPs reaches genome-wide significance, but there are
clearly several regions in the genome that show significant associations. The
stringent condition on the significance levels seriously inflates the false negative
rate.
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reading systems to track samples—or sample swaps is
unfortunately more frequent than lab technicians would like
to admit [62]. There are at least two analyses that can be
easily conducted to point to possible errors. The first analy-
sis examines the agreement between gender specification
in the phenotypic data and the gender inferred by hetero-
zygosity of the SNPs on chromosome X. The second anal-
ysis consists of scoring the genetic similarity between every
pair of subjects in the study using estimates of the alleles
that are shared identity by descent (IBD). Two alleles are
shared IBD when they are identical copies of the same an-
cestral allele. Mendel’s laws of inheritance can be used to
estimate the probability that two family members share 0,
1, or 2 alleles IBD. For example, monozygotic twins will
always share two alleles IBD with probability 1, whereas
siblings will share 0 alleles with probability [1/4], one allele
with probability [1/2], and two alleles with probability [1/4]
(see examples in Fig. 3). This estimation can be general-
ized to any relatives [63] and to genome wide alleles that
are IBD. The analysis is computationally very intensive and
estimates the proportion of alleles that are IBD using fre-
quencies of alleles that are the same, also known as alleles
identity by state or IBS [63]. The estimates can be used to
quantify the degree of relatedness among subjects in the
study as shown in Table III [64], and can identify repeated
samples, as well as unknown relations. If the study includes
subjects with known familial relations, the analysis can
compare expected and observed relations in the sample as
a quality control metric. The popular software PLINK for the
analysis of GWAS has a module for the estimation of IBS
and IBD [51].
Other SNP-specific analyses are often carried out to

remove low quality or unreliable data. For example, some
groups remove SNPs with a minor allele frequency (MAF)
below a fixed threshold or not in Hardy Weinberg Equilib-
rium before conducting the statistical analysis. Although
SNPs with low MAF can inflate the false positive rate (see
Discussion below), departure from Hardy Weinberg Equilib-
rium in cases may actually be consistent with significant
associations [46] and these SNPs should be flagged for
further inspection but analyzed nevertheless.

Statistical analysis
The core of the analysis is typically a statistical test con-

ducted for each individual SNP in the array with the objec-
tive of selecting those SNPs that exhibit a significant asso-
ciation with the trait. Formally, the procedure consists of
testing, for each SNP, the null hypothesis that there is no
association between the SNP and the phenotype against
the alternative hypothesis that there is an association.
Frequentist approaches. The frequentist approach is

most commonly used to test these hypotheses and weighs
the evidence against the null hypothesis by the P-value that
is defined as the probability of observing a stronger associ-
ation than that estimated from the data, when there is
indeed no association. For example, if the association is
measured by the odds ratio for the disease between
exposed (in this case carriers of the risk allele) and unex-
posed subjects, the P-value is the probability of observing
an odds ratio more extreme than that estimated from the
data, assuming that there is no association. If there is
association, the P-value should be very small because esti-
mating a large odds ratio would be unlikely to happen.
Therefore, a small P-value is taken as evidence against the
null hypothesis, or evidence of a significant association,
and this is the rationale for the decision rule to reject the
null hypothesis when the P-value is smaller than a fixed
threshold. The fixed threshold is called the significance
level. This decision rule is not error free and rejecting the

null hypotheses when it is true is known as type I error.
Type II error is defined as accepting the null hypothesis
when the alternative hypothesis is true and it is related to
the power of the test [65]. This approach requires a method
to estimate the association and a significance level used as
the threshold for the P-value. We will discuss the former
here, and address the latter issue in the section about
multiple comparisons.
The methods to estimate the association can be catego-

rized into two groups based on whether the trait is continu-
ous or categorical. A continuous trait following a normal
distribution is modeled as a function of the genetic effect
using linear regression. General genotype association is
tested using an analysis of variance that compares the dis-
tribution of the trait in the three genotypes MM, Mm, and
mm [65]. A popular alternative is to represent the three ge-
notypes by the variable X taking values 0 5 MM, 1 5 Mm,
and 2 5 mm and use this variable in linear regression. The
parameterization is known as the additive genetic model,
and the regression coefficient of the variable X represents
the average change in the trait for each extra copy of the
allele m, with a significant regression coefficient denoting a
significant association. The additive model is easy to inter-
pret and therefore the most commonly used. However, note
that a lack of association in the additive model does not
imply no association between the SNP and the trait. The
genetic association can be adjusted for other covariates by
adding them in the regression equation, or by modeling the
residuals from the regression model that includes only the
covariates. Adjustment should be done only for covariates
that are significantly associated with the trait to avoid
unnecessary loss of power. If the trait does not follow a
normal distribution, the P-value can be computed using
permutation methods, but the computational burden can be
very high. Also, permutation methods usually tend to be
less powerful [66].
When the trait is categorical and subjects are grouped as

cases and controls, there are several association tests that
one can use. General genotype association can be tested
using the traditional v2 test of independence in a 2 3 3
contingency table. More parsimonious procedures include
the Armitage trend test in which genotypes are recoded to
model a linear increase in the odds of the disease on the
logarithmic scale for each different genotype, or associa-
tions of dominant or recessive models in which genotypes
are aggregated in two groups [48]. The dominant model for
the allele M, tests the associations of genotypes grouped
as MM and Mm versus mm, whereas the recessive model
for the allele M uses the grouping MM versus Mm and mm.
Allelic association can be tested by recoding the data from
genotypes into alleles. However, the association is difficult
to interpret at the level of individuals. Some care is neces-
sary when testing the associations of rare variants. In this
case, the frequency of some genotypes may be too small
(<5) for the v2 test to be valid and the Fisher exact test
should be used. A limitation of these different tests for cate-
gorical traits is that they cannot include the effects of cova-
riates. Logistic regression can be used as an alternative by
modeling the odds for association in the logarithmic scale
using regression. The regression equation can include the
genetic effect but also covariates and can be extended to
include multiple interacting SNPs as well as gene-environ-
ment interactions. Additionally, these common statistical
methods rely on large sample approximation, and therefore
care is needed when testing the association of rare var-
iants.
Bayesian approaches. Bayesian methods are grounded

in a very different conceptual framework and are becoming
more popular in genetic epidemiology [67]. The principle of
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Bayesian tests of association is to first assume prior proba-
bilities on the two hypotheses of no association and associ-
ation, then use the data to update the prior probabilities of
the two hypotheses into their posterior probabilities. The
decision to reject the null hypothesis is then based on
appropriate thresholds on the odds of the posterior proba-
bilities or, equivalently, on the posterior probability of the
null hypothesis. The choice of the best threshold can be
based on trading off sensitivity and specificity of the Bayes-
ian decision rule (see Fig. 4 for an example). The posterior
odds are computed by multiplying the prior odds by the
Bayes factor that can be calculated in closed form for some
of the models described earlier [65]. Nonlinear models usu-
ally require sophisticated computational procedures and
stochastic computations known as Markov Chain Monte
Carlo methods [67]. These methods are very powerful and
are commonly used in genetics as they are the engine of
very accurate procedures for haplotype reconstruction from
unphased data [68] and different imputation methods
[69,70]. A Bayesian method has also been proposed to dis-
cover the most likely set of functional SNPs in fine mapping
or sequence data. This method, known as Bayesian quanti-
tative trait nucleotide (BQTN) analysis, uses Bayesian
model selection to test the associations of all possible sets
of SNPs with a trait. Recently, it was used to identify four to
seven variants that explain the total variability of plasma
levels of clotting factor VII (FVII), a risk factor for cardiovas-
cular disease [71].
It is important to emphasize the major theoretical differ-

ence between the frequentist and the Bayesian approaches
to hypothesis testing. In the frequentist approach, the deci-
sion to reject the null hypothesis of no association is typi-
cally based on controlling the probability of the type I error
and this is done by imposing a threshold on the P-value.
This procedure does not assess per se whether the null hy-
pothesis is true or false. In the Bayesian approach, the de-
cision to reject the null hypothesis is based directly on the
probability that the null hypothesis is false, given the evi-
dence provided by the data. Only Bayesian procedures
allow for an explicit assessment of the likelihood of parame-
ters and hypotheses [72].
Family-based studies. The analyses described so far

assume that subjects are unrelated. If the study is family
based, the analysis has to take into account the correla-
tion between relatives due to their common genetic back-
ground. Different approaches have been proposed to
account for the family structure. A class of methods
known as family based association tests (FBAT) is com-
monly used in GWAS and reviewed in detail in [50]. The
FBAT generalizes the transmission disequilibrium test
(TDT) that was introduced in [73] to test for linkage and
association in family trios (two parents and an affected
child). The intuition of the TDT is to compare the number
of alleles that are transmitted to affected offspring from
unaffected parents with those expected under the null hy-
pothesis of no association between genotype and pheno-
type. The method was generalized to accommodate sib-
ships [74], missing genotypes [75], and to include both
related and unrelated subjects [76–78]. The FBAT gener-
alizes the TDT by computing the covariance between ge-
notype and phenotype that are centered in such a way to
accommodate different sampling designs. The method
can be used to study survival traits [79] in addition to
qualitative and quantitative phenotypes [80] and general
pedigrees. The FBAT is robust to population stratification
because of the use of controls within family members
who share the same genetic background. Extensions of
the TDT that include the founder genotypes to increase
the power of the study have been proposed but do not

protect against population stratification [81]. The FBAT
does not require any parametric assumption about the
phenotype, and the null hypothesis of no association can
be tested using large sample approximations that appear
to work well with at least 10 informative families [50].
Although this model-free feature makes the test robust to
model misspecifications, it limits its use to test for associ-
ations that can be at most adjusted for the effect of other
covariates such as gender or environmental effects, but
neither gene–gene interactions nor gene-environment
interactions can be tested. Model-based approaches over-
come these limitations by directly modeling the effect of
the genotype on the phenotype using regression and
including extra terms that model explicitly the within family
correlation. Examples are the variance component model
proposed in [82] and implemented in the package QTDT,
its recently proposed extension that uses the family struc-
ture to limit the genotyping effort to necessary family
members [83], and generalized estimating equations
(GEE) that model the variance covariance matrix of the
observations by taking into account the family structure
[84]. Hybrid approaches that combine family based tests
from extended pedigrees with association tests in unre-
lated individuals can be very powerful and leverage the
strengths of both approaches [85]. For example, Uda et
al. [42] used a combination of variance components mod-
els in extended pedigrees of Sardinians and analysis in
unrelated subjects to confirm associations of SNPs in
BCL11A with fetal hemoglobin expression in b-thalasse-
mia carriers and sickle cell anemia patients. In general,
positive associations from both linkage and association
studies strengthen the evidence for true positive findings
[85].

Power and multiple comparisons
Several articles report the power analysis of GWAS for

given sample sizes and effect sizes. For example, Wang
and colleagues showed that a sample size of 1,000
cases and 1,000 controls allows for estimation of an
allelic odds ratio of 1.5 with 80% power when the disease
allele is common, with a frequency between 0.4 and 0.5
[86]. The sample size necessary to detect the same
effect when the disease allele is less common, for exam-
ple, a frequency of about 10%, is 2,000 cases and 2,000
controls and increases almost exponentially with smaller
disease allele frequencies [8]. These calculations make
two assumptions: (1) they assume stringent conditions on
the P-value to control the overall probability of type I
error, and (2) they assume that the analysis is conducted
using standard logistic regression. The two assumptions
are not independent, because both the P-value and
power are relative to the statistical method used for the
analysis and not only to the sample size. Imposing strin-
gent conditions on the significance of individual tests has
become the popular approach to control the global signifi-
cance of multiple tests. This number is related to the so
called ‘‘family-wise error rate’’ that represents the proba-
bility of one or more type I errors in testing multiple
hypotheses. The rationale is that, if the standard thresh-
old a is adopted to accept a significant association when
testing one single hypothesis, then the probability of one
or more type I errors in testing N hypotheses is given by
the formula

probability ðnumber Type I error > 0Þ ¼ 1� ð1� aÞN

This probability is essentially 1 when more than 100 tests
are conducted with an individual significance level of 0.05.
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An equivalent way of assessing the magnitude of the prob-
lem is that the number of false positive associations that
are expected by chance when testing 500,000 null hypothe-
ses, assuming all of the null hypotheses are true, is a 3
500,000. For example, this number is 25,000 when a 5
0.05. The Bonferroni correction attempts to limit this num-
ber by reducing the individual significance of each test so
that the overall number of expected false positive associa-
tions is 5% of the number of tests that are conducted [48].
In practice, the Bonferroni correction consists of dividing
the usual significance level by the number of tests that are
conducted and requires dramatic P-values < 1026 or
smaller to meet genome-wide significance [47]. Figure 5
shows an example taken from a study of the response of
fetal hemoglobin to treatment with hydroxyurea in patients
with in sickle cell anemia [87].
It is well known that this correction is too conservative

and reduces the power dramatically and unnecessarily [88].
Controlling the false discovery rate rather than the overall
false positive rate has been proposed as a less conserva-
tive method. The false discovery rate is the proportion of
false positive associations among the detected significant
associations and can be controlled for using a simple algo-
rithm [89]. Work conducted in the past few years to reduce
the number of falsely significant associations in microarray
data analysis also provides a variety of solutions even in
small samples with correlated data [88,90–92]. Neither pro-
cedure changes the rank of the P-values, but simply pro-
vides additional guidance as to which associations are
most significant across the entire study. Some statistical
methods are more powerful than others and often a sub-
stantial increase in power can be accomplished by adopting
more sophisticated statistical analyses without needing to
increase sample size.
When using a frequentist approach to control the type I

error or the family wise error rates in multiple testing, one
can increase the power only by increasing the sample size.
This is not the case with Bayesian procedures. Bayesian
hypothesis testing does not base the decision to reject the
null hypothesis on the significance level and every hypothe-
sis is tested independently from the others. However, the
threshold used on the posterior probability of the hypothe-
ses implies that every time a null hypothesis is rejected
because the posterior probability of the null hypothesis
P(H0) is smaller than a chosen threshold, there is a proba-
bility P(H0) of error. One can use this number to compute
the probability of one or more errors, and assess the global
error rates through simulations. Figure 4 shows examples
of different Bayesian decision rules to genome-wide hypoth-
esis testing and their sensitivity and specificity in a small
sample study. The prior probability of the hypotheses can
also incorporate information about the number of hypothe-
ses that are expected to be true [93,94].
Besides philosophical differences and some gain in

power of Bayesian procedures, testing many hypotheses
will inevitably increase the probability of errors, both type I
and II, and relying solely on statistical methods is not suffi-
cient. It is becoming clear that by controlling the probability
of the type I error we may be ignoring the majority of the
biologically important findings [95] and we need methods to
be able to look at associations with less stringent P-values
or posterior probabilities. To this end, we introduced a
Bayesian procedure for analysis of GWAS that uses a hier-
archical set of filters to reduce the false positive rate with-
out imposing unnecessary stringent thresholds [96]. This
procedure leverages the patterns of linkage disequilibrium
in the human genome to accept as significant only those
associations that are supported by associations of SNPs in
the same LD blocks, and our experimental evaluation sug-

gests that these filters help reducing the false positive rate
by 50% [96]. Several authors have proposed strategies that
leverage properties of the human genome or knowledge of
disease mechanisms and pathways more likely to be
involved in the disease to prioritized genes [97].

Validation and replication
The inflated false positive rate due to multiple testing, the

issue of population stratification that can confound associa-
tions and technical errors that can be committed during the
collection of DNA samples, and the analysis require the
replication of the results from GWAS in at least one inde-
pendent study to guarantee their validity [98]. Replication
should not be confused with technical validation of the ge-
notype data that requires genotyping a small set of SNPs
with a different technology. This strategy is highly recom-
mended in [98] but not very often adopted or reported. It
has been suggested that a convincing replication should
use a larger sample from an independent study population,
with the same genetic background of the primary study
population, the same definition of the phenotype, and
should report the association of the same SNPs with the
same genetic model and show the same genetic effect.
Inclusion of proxy SNPs that are in high LD is still an open
issue: some authors recommend this practice as further
evidence of a real association [98] while others recommend
against it because it is unnecessary [46]. Replication of
findings in a population with different genetic backgrounds
can strengthen the evidence of true associations and iden-
tify variants that are robust to different genetic background
and environmental exposures [43]. However, failure to
reproduce an association in a genetically different popula-
tion should not be taken as evidence of a false positive.
Also the requirement of a larger size sample for the replica-
tion study when compared with the primary study is argu-
able. The large sample size of the primary population is
necessary to achieve sufficient power with genome-wide
significance levels. However, replication usually is limited to
a small selection of SNPs in which case there is no multi-
ple testing problem and traditional significance levels
should be acceptable.
Another emerging approach to replication of GWAS is

the use of meta-analysis. By combining the results of differ-
ent studies, statistical meta-analysis can also provide addi-
tional power for the discovery of new associations. For
example, meta-analysis has recently produced the discov-
ery of additional loci associated with BMI [99], lipid traits
[100,101], and was crucial for the discovery of robust asso-
ciations with diabetes [102]. Recent papers that assemble
the results from different GWAS using meta-analysis often
rely on imputation-based analyses because the original
studies used different genotyping platforms with different
SNPs [99–101]. Imputation of untyped SNPs is a conven-
ient and often accurate procedure to synchronize genotype
data of different arrays [58], and the accuracy can be very
high in studies of populations that are well represented in
the HapMap project. However, because imputation of data
in different cohorts is based on the same reference haplo-
types from the HapMap projects, there could be an intrinsic
bias toward positive replications and initial results based on
imputed data should be followed by actual genotyping of
the missing data to confirm real effects. The efficacy of im-
putation of data from populations that are not well repre-
sented in the HapMap project, such as African Americans,
is still an open question [58], and similar caution should be
used when imputed data of these populations are used for
meta-analysis.
Replication of findings in different studies can strengthen

the evidence for a real association. However, this practice
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appears to be overrated. The majority of SNPs in the com-
mercially available arrays are chosen to conveniently tag
regions of the human genome with the consequence that
very few SNP determine changes of aminoacids, and very
few are located in known regulatory regions of the genome.
Therefore, associations discovered through GWAS identify
chromosomal regions that need finer mapping or sequenc-
ing studies to find the functional variants responsible for
the disease. This intrinsic limitation of GWAS should imply
that the identification of the same chromosomal region in
independent studies is sufficient to move from statistical
association of convenient SNPs to the discovery of the true
variants or other regulatory elements that can lead to novel
biological insights.

Looking Ahead
In February 2009, the catalogue of genome-wide associ-

ation studies at the NHGRI listed more than 250 publica-
tions with results of GWAS and more than 1,000 SNPs that
were discovered as associated with a variety of traits and
disease [44]. This large number proves that the GWAS
approach works and can indeed discover common variants
related to common diseases, but it is much smaller than
expected. Several issues have become apparent [8,95] and
will have a substantial impact on the best way to follow up
these initial GWAS.

Are common variants sufficient to discover
the genetic bases of many complex traits?
Most common variants that have been found associated

with disease through GWAS typically have very small
effects on the variability of the trait and explain a rather
small portion of the heritability [8]. These initial findings
suggested that many GWAS may have not been sufficiently
powered to discover associations with such small effects
and therefore stimulated the creation of consortia to merge
results from several GWAS [99–101,103,104] in order to
reach sufficient statistical power to identify smaller and
smaller genetic effects. Increasing sample size indeed pro-
vides the required power, but the clinical significance of
these findings remains an open question.
It is expected that functional variants discovered through

resequencing of regions implicated by tag SNPs will
uncover larger genetic effects [95]. Another conjecture that
is finding increasing support is that rare rather than com-
mon variants, or a combination of both, might account for
the unexplained variability of complex traits [105]. This con-
jecture could reinvigorate interest in family based studies,
which are more powerful to detect rare variants with high
penetrance [50]. Because most of the rare variants are
probably unknown and the SNP arrays that are available
are mainly designed to capture common variants cata-
logued through the HapMap project, only further SNP dis-
covery through fine mapping and deep sequencing will
unveil the truth [106].
Recently, several GWAS have begun to consider

genomic copy number variations (CNVs) in addition to
SNPs as possible targets for association with a phenotype
[107,108]. CNVs are defined as inherited duplications and
deletions of kilo- to mega-base lengths of DNA and they
have been shown to be present in various numbers in all
individuals. CNVs have been detected in locations covering
�12% of the genome [109,110]. On a nucleotide by nucle-
otide basis, CNVs have therefore a higher polymorphic
yield than the set of SNPs. Recent technological advances
in both the hardware and software required to detect and
analyze CNVs have begun to make the consideration of
CNVs by a GWAS significantly more mainstream
[107,111,112]. First round studies have shown CNVs to be

associated with various phenotypes and disease states,
including glomerulonephritis [108,113], sub-arachnoid hem-
orrhage [108], BMI [99], and even cultural dietary preferen-
ces [114]. These associations, if causative, may be due to
the effects of CNVs on gene dosing, or due to their possi-
ble disruption or alteration of transcription factor binding
sites, micro-RNAs, or local chromatin architecture. Addition-
ally, several authors have commented on the importance of
identifying areas of CNV for proper genotyping of a SNP in
the context of a GWAS [115]. As the technology and theory
surrounding CNVs continue to improve, and as higher-den-
sity, more reliable maps of the frequencies of CNVs in vari-
ous populations become available, CNVs may take an
increasingly prominent role alongside SNPs as targets of a
GWAS.

Can the results of GWAS be translated into
personalized medicine?
Many complex traits should be predictable once the

genes that modulate their course are known and one of the
promises of GWAS is to provide the decoder of these com-
plex genetic diseases that, when coupled with information
about environmental exposure, can be used to compute
individual risk for a disease and to suggest appropriate pro-
phylactic treatments or lifestyle changes. We share with
multiple other investigators the belief that data from GWAS
are largely unexploited [46,95], and may contain the infor-
mation to decipher the genetics of complex diseases. How-
ever, building models that predict the outcome of individual
patients based on their genetic profile challenges investiga-
tors with a plethora of computational issues.
The majority of papers reporting findings from GWAS list

SNPs that are significantly associated with a trait, when an-
alyzed one at a time, and do not attempt to integrate them
into a risk prediction model [5,6,26,27,116]. Exceptions are
the few efforts to develop risk scores that are based on
simple linear functions of the genetic profiles [100].
Although several investigators see this initial selection as
the first step to prognostic modeling [102], the reductionist
approach has two limitations: it may identify too many asso-
ciations because of dependencies between genetic variants
that are the results of evolution [117] and it is unable to dis-
cover associations that are due to interdependent multiple
genotypes [118]. For example, Hoh and Ott [118] describe
a situation in which the simultaneous presence of three ge-
notypes at different loci leads to a disease. The three geno-
types have the same marginal penetrance and would not
be found associated with the disease in a one-at-a-time
search but only when examined simultaneously. Multivariate
statistical models, such as linear or logistic regression, can
circumvent these limitations by examining the overall de-
pendency structure between genotypes, phenotype, envi-
ronmental, and clinical variables. However, traditional
regression models require large sample sizes and/or exper-
imental and control samples that are sufficiently different in
terms of the phenotype of interest to confer significant
power [46]. The amount of data produced by the new geno-
typing technology requires novel techniques that go beyond
‘‘traditional statistical thinking’’ in order to accommodate the
potential complexity of genetic models.
Several machine learning methods used in data mining

may be more appropriate to discover and describe the
genetic base of complex traits [119]. Classification and
regression trees (CART) [120], random forests [121], and
Bayesian networks [122] have been proposed for modeling
complex gene-environment interactions when the pheno-
type is a well defined variable [123,124]. CART is a multi-
variate statistical technique that creates a set of if-then
rules linking combinations of genotypes and environmental
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exposures to the phenotypes. The if-then rules are created
with a recursive procedure that groups data into sets to
maximize the overall information. Random forests are an
expansion of CART that have shown particular promise for
the analysis of genotype–phenotype correlations, taking
into account gene–gene interactions. The intuition is to use
permutation methods and bootstrapping techniques to cre-
ate thousands of CART models. From the analysis of these
models, one can produce an importance measure for each
SNP that takes into account interactions with other SNPs
that affect the phenotype [125]. It has been shown that
when unknown interactions among SNPs and genetic het-
erogeneity exist, random forest analysis can be substan-
tially more powerful than standard univariate screening
methods [126].
Bayesian networks represent the association between

many variables using conditional probability distributions
and rely on Bayes’ theorem to show how changes in one or
more variables in the networks affect other variables [127].
In this way, they can be used prognostically to compute the
probability of the outcome (say a specific fetal hemoglobin
range) of an individual given his genetic profile. They can
also be used diagnostically, to discover the genetic profiles
that maximize the probability of a particular outcome, and
therefore be used to study how patterns of behavior can
interact with the genetic profiles to shape the phenotype
[128]. In this way, they appear to be able to simultaneously
cast light on novel biological findings and be a prognostic
tool for personalized medicine [46]. The Bayesian network
that we developed for the genetic dissection of stroke in
sickle cell anemia (see Fig. 6) offers an example of the
power of these models. The network captures the interac-
tion between 31 SNPs in 12 genes that, together with fetal
hemoglobin, modulate the risk for stroke. We showed the
prognostic accuracy of this model by predicting with 98.2%
accuracy the occurrence of stroke in 114 subjects not
included in the primary analysis and showed that this
approach outperformed statistical models based on logistic
regression [122]. We used the same approach to develop a
model of severity of sickle cell disease defined by survival.
Phenotypic heterogeneity is a well known characteristic of

this disease. Patients have different rates of complications,
such as pulmonary hypertension, painful episodes, acute
chest syndrome, and osteonecrosis, as well as variations in
levels of laboratory variables. To integrate individual dis-
ease variables into a global measure of severity, we devel-
oped a network that describes the complex associations of
25 clinical and laboratory variables, deriving a score that
we used to define disease severity (0, least severe to 1,
most severe) as the risk of death within 5 years [129]. This
initial network was validated in 140 patients whose disease
severity was assessed by expert clinicians and 210 adults
where severity was also assessed by the echocardio-
graphic diagnosis of pulmonary hypertension and death.
We implemented a version of this calculator of disease se-
verity on the internet using Java (http://www.bu.edu/sickle-
cell/downloads/Projects/). Although Bayesian networks are
more difficult to generate and more challenging to commu-
nicate than traditional regression models, they are slowly
becoming more accepted in the genetic community
[130,131].

Is pleiotropy the explanation?
One of the interesting findings from the first series of

results of GWAS is that several genes, and often the same
SNPs, are associated with multiple traits. Some make im-
mediate, intuitive sense, such as the associations of the
SNP rs1051730 in CHRNA3 with both lung cancer [132]
and nicotine dependence [133], while others are less
obvious. For example rs10484554 in HLA-C was found
associated with AIDS nonprogression [134] and susceptibil-
ity to early onset psoriasis [135]. The SNP rs2476601 in
PTPN22 was found associated with Crohn’s disease [30],
rheumatoid arthritis [136], and type 1 diabetes [4,32]. LDL
cholesterol, triglycerides, and Alzheimer’s disease are
another set of traits that were found associated with
rs4420638 in APOE in independent studies [101,137,138].
These associations suggest a pleiotropic effect of the
genes involved that may affect many different traits. An al-
ternative explanation is that the different phenotypes asso-
ciated with the same gene may be the endpoints of disease
progression sharing a common mechanism that is regu-
lated by the gene. For example, we observed that several
well known aging genes, including Klotho, were associated
with vasoocclusive complications of sickle cell anemia
[139,140]. Based on this observation, we searched for com-
mon genes that simultaneously affect the overall severity of
sickle cell anemia and aging in GWAS of sickle cell anemia
phenotypes and exceptional longevity. Preliminary findings
show that both traits are associated with the same several
SNPs and these association would not be detected by
studying the two traits alone [141]. It may be valuable to
study different phenotypes not in a vacuum but transversely
to increase the chance of identifying biologically important
genes [142]. Tools developed to describe phenome-ge-
nome networks may be valuable to link phenotypes through
common physiological mechanisms [143,144].

Conclusions
Four years after the publication of the first article report-

ing a positive finding from a GWAS, we have learned that
GWAS can be effective to discover novel genetic modifiers
of common diseases. However, much work remains to be
done to fully extract information from the massive amount
of data produced by these studies. Integration of genetic
with other gene product data, follow up of preliminary
results through informative experiments, and deep model-
ing of data can help translate GWAS and other genomic
data into better understanding of the mechanism leading to
disease and tools for disease prevention.

Figure 6. Illustration of the use of a Bayesian network model for risk prediction.
The model in the middle is the Bayesian network that describes the interrelation-
ships between genetic variants, clinical variables and stroke in sickle cell anemia.
Given the genetic profile of a patient with sickle cell anemia, the network can be
used to compute the risk for stroke. We applied this model to compute the risk for
stroke in 114 subjects and the boxplots show in blue the predicted risk of the
107 disease free subjects, and in red the predicted risk of the seven stroke cases.
[Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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