Role of PET/CT in differentiation between benign and malignant parotid gland tumors

David Hadiprodjo,
Rathan Subramaniam, MD, PhD.

Department of Nuclear Medicine and Neuroradiology, Boston University School of Medicine.

1. Introduction

Salivary gland tumors comprise:
- 3% of all head and neck cancers and less than 5% of all malignancies
- Positron emission tomography (PET) with 2-fluorine-18 fluoro-2-deoxy-D-glucose (FDG) allows detection of tumor cells due to their hypermetabolic activities.
- FDG PET has been reported to be more accurate in detecting head and neck malignancies than CT or MRI.
- PET/CT imaging - metabolic and anatomical characteristics of the tumor.
- A standardized uptake value (SUV) can be measured to quantify the tumor FDG uptake.

1.1. List of 2319 patients

1.2. Inclusion/Exclusion Criteria:
- Patients ≥18 years of age.
- No prior history of head or neck malignancies.
- Patients with baseline PET/CT at BMC.
- Patients who show increased diffuse uptake in the parotid gland.

2. Methods

2.1. Data Collection:
- Patient demographics: age, sex, ethnicity
- Risk factors: smoking
- Collect pathological data and outcome data for all patients
- Collect SUV measurements of:
 - SUV max of the affected parotid gland
 - SUV mean normalized to liver SUV mean (SUV Parotid gland or tumor SUV max / liver SUV mean).

2.2. Analysis

2.2.1. SUV measurement

2.2.2. Statistical Analysis

3. Results

3.1. Data Analysis

Figure 1: Figure shows the median parotid gland SUV max between:
- A) Control group and study group
- B) Increased diffuse uptake and tumor uptake
- C) Benign tumor and malignant tumor groups

3.2. Patient Demographics

3.3. Conclusion

4. Discussion

5. References