Human Immunodeficiency Virus Type 1 Infection of Alveolar Macrophages Impairs Their Innate Fungicidal Activity

MICHAEI H. IEONG, CHRISTINE CAMPBELL REARDON, STUART M. LEVITZ, and HARDY KORNFIELD

Pulmonary Center, Evans Memorial Department of Clinical Research, and the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts

Impaired adaptive immunity is the hallmark of AIDS, but the effects of human immunodeficiency virus type 1 (HIV-1) infection on innate immunity are less clear. Cryptococcus neoformans (CN) is a common AIDS-related fungal pathogen acquired by inhalation. Alveolar macrophages (AM\textsubscript{e}) comprise the initial host defense in cryptococcosis and they may arrest infection before dissemination occurs. We hypothesized that HIV-1 infection of AM\textsubscript{e} impairs their anti-cryptococcal activity. This was tested by infection of normal AM\textsubscript{e} with the M-tropic strain HIV-1\textsubscript{Bal}. Two weeks postinfection we measured fungistatic activity against CN by colony counting, binding, and internalization of CN by confocal microscopy and AM\textsubscript{e} cell viability by Alamar Blue assay. Uninfected AM\textsubscript{e} from most donors demonstrated innate fungicidal activity against CN. In HIV-1-infected AM\textsubscript{e}, there was a significant reduction, and in most cases loss, of fungicidal activity compared with the uninfected AM\textsubscript{e}. The reduced antifungal activity was not due to any cytotoxic effect of HIV-1, and HIV-1 infection did not impair binding or internalization of yeast by AM\textsubscript{e}. Thus, the innate fungicidal activity of primary human AM\textsubscript{e} is impaired after HIV-1 infection in vitro by a mechanism involving a defect of intracellular antimicrobial processing.

In the lung, the alveolar macrophage (AM\textsubscript{e}) is a key mediator of innate immunity and plays a central role in cell-mediated adaptive immunity. In contrast to the well studied deleterious effects on T cell numbers and function, the impact of acquired immunodeficiency syndrome (AIDS) on innate immunity mediated by monocytes/macrophages is unclear. A variety of monocyte/macrophage functional perturbations in human immunodeficiency virus type 1 (HIV-1)-infected persons have been reported, including augmented cytokine release (e.g., interleukin 1 [IL-1], IL-6, and tumor necrosis factor [TNF]) (1, 2) and impaired phagocytosis of certain AIDS copathogens including Pneumocystis carinii (3). Analysis of AM\textsubscript{e} function in the setting of AIDS is complicated by a plethora of uncontrolled clinical variables in addition to the well-recognized donor variability of many AM\textsubscript{e} responses measured in vitro or in vivo. For that reason, in vitro HIV-1 infection of AM\textsubscript{e} from healthy donors has been employed to investigate mechanisms of viral pathogenesis. Given the relatively low level of HIV-1 infection and expression in AM\textsubscript{e} from HIV-1-infected persons without clinical lung disease (4), the physiological relevance of in vitro studies has been questioned. However, studies by Koziel and coworkers (5), and others (6–8), suggest that pulmonary viral load and the proportion of AM\textsubscript{e} infected with HIV-1 may be greatly increased during coinfection with a variety of bacterial and fungal pathogens.

Cryptococcus neoformans (CN) is one of the most common causes of fatal fungal infection in AIDS (9). Cryptococcosis is acquired by inhalation, and AM\textsubscript{e} are the initial effector cells of host defense. The yeast bind to several different receptor types on AM\textsubscript{e}, and phagocytosis may be followed by growth suppression and killing of internalized yeast even in the absence of T lymphocytes (10, 11). Cryptococcosis is therefore a relevant infection for the investigation of HIV-1-mediated macrophage dysfunction, and one that may reflect AM\textsubscript{e} mechanisms directed at a variety of other pathogens. We investigated the antifungal performance of AM\textsubscript{e} infected with HIV-1\textsubscript{Bal} challenged with CN, and found evidence of a virus-mediated impairment of antimicrobial activity.

METHODS

Reagents

Culture medium consisted of RPMI 1640 with penicillin (50 U/ml), streptomycin (50 µg/ml) (BioWhittaker, Walkersville, MD), and 10% fetal bovine serum (FBS; GIBCO, Grand Island, NY). Pooled human serum (PHS) was obtained by combining under ice-cold conditions serum from 10 healthy donors, and storing it at −70°C to preserve complement activity.

Bronchoalveolar Lavage Cells

Bronchoalveolar lavage (BAL) of nonsmoking healthy volunteers was performed by a standard protocol (12) approved by Institutional Review Board of Boston Medical Center. After informed written consent was obtained, 240 ml of sterile saline was instilled in 60-ml aliquots through a bronchoscope and recovered by gentle aspiration. BAL fluid was strained through a single layer of gauze, then centrifuged for 12 min at 300 × g. BAL cells (BALCs) were washed once in RPMI 1640. Differential counts were made on Diff-Quik- and non-specific esterase (Sigma, St. Louis, MO)-stained cell preparations. AM\textsubscript{e} were isolated by adherence. BALCs (5 × 105) were plated in 24-well cell culture plates (Corning, Corning, NY) in a final volume of 2 ml and incubated for 24 h at 37°C in humidified air supplemented with 5% CO\textsubscript{2}. Nonadherent cells were then removed by vigorous washing and the remaining adherent cells were, on average, >98% viable (trypan blue dye exclusion), >95% esterase positive, and >95% phagocytic (latex beads).

HIV-1 Infections

M-tropic HIV-1\textsubscript{Bal} was obtained from G. Viglianti (Boston University School of Medicine, Boston, MA) as cell-free supernatant of infected human peripheral blood mononuclear cell cultures. AM\textsubscript{e} were inoculated with 3 ng of p24 antigen/106 cells. Control AM\textsubscript{e} received only medium. Cells were plated on a rocker and incubated for 4 h at 37°C in humidified air supplemented with 5% CO\textsubscript{2}. The cells were then washed and cultured in fresh medium. Unless otherwise specified, all in vitro infections were conducted for 2 wk. Every 3 d, media were aspirated, filtered, and stored at −70°C for later analysis.
Antifungal Activities

Antifungal activities were measured on selected days in cultures of uninfected and HIV-1-infected AM₄ as previously described (15, 16). Briefly, culture medium was replaced with RPMI 1640 plus 10% PHS. AM₄ were infected with CN 145 (1:50 yeast:macrophage) and incubated at 37°C in humidified air supplemented with 5% CO₂. After 18 h cell cultures were lysed with 0.1% Triton X-100 (Fisher Scientific), diluted 1:20 in sterile water with chloramphenicol (50 mg/ml; Sigma), vortexed, and spread on Sabouraud dextrose agar plates. Plates were incubated for 3 d at room temperature and colonies were counted. Each condition was incubated in duplicate and subsequently plated in duplicate. For each experiment, two sets of cell wells containing *C. neoformans*, medium, and PHS, but no effector cells, were included. One set was incubated at 4°C, thereby inhibiting CN growth and representing the inoculum size; the second set was incubated at 37°C to determine unrestricted fungal growth. Both were processed and plated, and colony-forming units determined, as described for the cell cultures. The results of each experiment are expressed as percent growth according to the following formula: \[(\text{CFU}_{\text{experimental group}} / \text{CFU}_{C}) - 1\] × 100. Thus, a value of 0 indicates that the number of colony-forming units at the conclusion of incubation was the same as that at the start and that no net fungal growth occurred. Positive values denote fungal growth, with values of 100 and 300% indicating averages of one and two replications per fungal cell, respectively. Negative values mean a decrement in colony-forming units occurred during the course of incubation; therefore, fungal killing took place. It must be recognized, however, that during the incubation of fungi with effector cells, some fungi may be killed while others replicate. Therefore, fungal killing could still take place even if a positive value for percent growth is obtained.

Binding and Internalization Assays

BALCs (5 × 10⁵) were placed in each well of a two-well Lab-Tek chamber slide (Nunc, Naperville, IL) in serum-free culture medium for 24 h and then infected *in vitro* with HIV-1 or left uninfected as described earlier. Chamber slides were then incubated for 14 d (37°C, 5% CO₂) with periodic aspiration of supernatants as described. Rhodamine B isothiocyanate (RITC; Sigma)-labeled heat-inactivated CN prepared as described (15) was then added to each well at a macrophage:yeast ratio of 1:10 in 1.0 ml of medium with PHS. Cultures were incubated for 30 min for the binding assay or for 1 h for the internalization assay. After incubation, AM₄ were washed three times in PBS to remove unbound fungi. The AM₄ were then fixed, permeabilized, and stained with fluorescent phalloidin (Molecular Probes, Eugene, OR) for 30 min. Confocal laser scanning microscopy (Leica, Deerfield, IL) was utilized to count bound and internalized yeast. Binding was measured by counting the number of yeast adhering to 200 macrophages, excluding internalized yeast. Adherent yeast are discriminated from internalized yeast by examining incremental 1-μm optical sections through each macrophage. The binding index was calculated as the number of bound yeast divided by the total number of macrophages counted. To measure internalization, 100 macrophages and any associated intracellular yeast were counted by examining incremental 1-μm optical sections through each macrophage by confocal microscopy. The internalization index was calculated as the number of internalized yeast divided by the total number of macrophages counted.

Macrophage Viability Assay

The viability of HIV-1-infected and uninfected AM₄ was measured on Day 14 by colorimetric Alamar Blue assay. Alamar Blue dye undergoes a colorimetric change from blue to red when exposed to viable cells (17). Uninfected and HIV-infected cell cultures were exposed for 4 h to Alamar Blue dye. Absorbance at wavelength 570 and 600 nm was determined with an optical density colorimeter plate reader (Molecular Devices, Menlo Park, CA). Specific absorbance was determined by subtracting the latter value from the former.

Statistical Analysis

Results of experiments comparing uninfected and HIV-1-infected AM₄ were analyzed by paired, Wilcoxon signed rank test, using Graphpad (San Diego, CA) Instat statistical software.

RESULTS

Infection of Human Alveolar Macrophages with HIV-1_{bal} In Vitro

To investigate the effect of HIV-1 on the fungistatic capacity of human macrophages, AM₄ were infected with HIV-1_{bal} as described in Methods. The extent of virus replication in these cultures was determined by measurement of p24 antigen in culture supernatant on Day 14. The level of p24 antigen in supernatant of Day 14-infected AM₄ ranged from 1.0 × 10⁴ to 9.4 × 10⁴ pg/ml (mean ± SD, 4.4 × 10⁴ ± 1.6 × 10⁴ pg/ml). No
p24 antigen was detected in any of the uninfected AMφ cultures. The proportion of HIV-1-infected AMφ from six donors was determined by flow cytometry after permeabilization and staining for intracellular p24 (Figure 1). At 14 d postinfection, the majority of AMφ were p24 antigen positive (mean percent p24-positive cells ± SD, 79 ± 15%).

Effect of HIV-1 Infection on Alveolar Macrophage Fungistatic Activity

To measure fungistatic activity, control AMφ cultures and HIV-1-infected AMφ cultures were challenged with CN on Day 14 postinfection. Each experiment used AMφ from a single donor. The AMφ from 7 of 10 donors exhibited fungicidal activity against CN as demonstrated by a reduction in colony-forming units below the infecting dose (negative percent CN growth; Figure 2). Infection with HIV-1 reduced fungicidal or fungistatic activity mediated by AMφ from all 10 donors, causing a switch from negative percent CN growth to positive percent CN growth in six cases. By combining all experiments, there was a significant decrease of fungistatic activity in the HIV-1-infected AMφ when compared with the uninfected AMφ (mean percent fungistatic growth ± SD, −9 ± 70% for uninfected cells versus 79 ± 75% for HIV-1-infected cells; p = 0.0020). There was no evident correlation between the peak p24 antigen level and the measured impairment in fungistatic activity (data not shown).

A time-course experiment was conducted to determine the kinetics of impaired fungistatic activity in HIV-1-infected AMφ cultures. Antifungal assays were performed on HIV-1-infected and uninfected AMφ from a single donor on Days 4, 7, 11, and 13 after HIV-1 infection (Figure 3). On Day 4 there was no difference in percent CN growth in comparing control and HIV-1-infected AMφ, with both cultures demonstrating fungicidal activity. Although maximal impairment of antifungal activity was not observed in the HIV-1-infected AMφ until Day 13, there was a degree of impairment noted by Day 7, at which time 34% of the AMφ exhibited intracytoplasmic p24 by flow cytometry. The development of reduced fungistatic activity correlated with the spread of virus through the culture, but it cannot be determined from these data whether the effect of HIV-1 on AMφ function is a direct consequence of infection or if it is caused by a soluble factor released from infected cells that also acts on the uninfected AMφ population. While the HIV-1-infected AMφ had reduced anticytotoxic activity compared with control AMφ, CN growth was still restricted by the HIV-1-infected cells as compared with CN growth in medium alone (data not shown).

The antifungal assay measures the performance of the entire cell culture on the basis of the number of macrophages initially plated. By light microscopy there were no gross cytopathic effects or cell dropout in the HIV-1-infected AMφ cultures. Nonetheless, the observed loss of macrophage fungicidal activity could have resulted from cytotoxicity rather than a specific functional derangement induced by virus infection. We therefore examined the viability of uninfected AMφ and HIV-1-infected AMφ by means of the Alamar Blue assay. No significant difference in AMφ viability was observed on comparing uninfected and HIV-1-infected cells (mean optical density [OD] ± SD, 0.23 ± 0.13 for uninfected cells versus 0.24 ± 0.01 for HIV-1-infected cells; p = 0.63). Qualitatively similar results were obtained by trypan blue dye staining (data not shown). Therefore, the effect of HIV-1 to inhibit AMφ fungicidal activity is not a consequence of reduced macrophage viability.

Effect of HIV-1 Infection on Alveolar Macrophage Binding and Internalization of Cryptococcus neoformans

Our experiments demonstrate that HIV-1 impairs fungicidal activity without reducing AMφ viability. This functional derangement could be caused by reduced binding or internalization of yeast. Alternatively, reduced fungicidal activity with intact phagocytosis would suggest a defect of intracellular antimicrobial processing. To examine the first possibility, we challenged control AMφ and HIV-1-infected AMφ with CN that was labeled with rhodamine B isothiocyanate. Macrophages were incubated with labeled CN for 30 min to measure binding, and for 60 min to measure internalization. After counterstaining with phalloidin, slides were analyzed by confocal microscopy. By examining optical sections through cells, this method permits clear discrimination between extracellular cell-associated CN versus intracellular CN. No significant difference in either binding or internalization was found between HIV-1-infected AMφ and uninfected AMφ (Table 1).

DISCUSSION

We investigated whether in vitro HIV-1 infection could influence the capacity of human AMφ to bind, internalize, and kill CN yeast. Our data demonstrate that HIV-1 infection of AMφ impairs the normal ability of these cells to kill CN. This effect
TABLE 1
BINDING AND INTERNALIZATION OF Cryptococcus neoformans BY HIV-1-INFECTED ALVEOLAR MACROPHAGES*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Binding Index*†</th>
<th>Internalization Index*‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected AM<sub>w</sub></td>
<td>2.27 ± 1.14</td>
<td>2.20 ± 1.16</td>
</tr>
<tr>
<td>HIV-1-infected AM<sub>w</sub></td>
<td>1.83 ± 0.64</td>
<td>2.70 ± 1.29</td>
</tr>
</tbody>
</table>

*Definition of abbreviation: AM_w = alveolar macrophage.
† Results represent means ± the standard deviation of six experiments.
‡ p = 0.22 uninfected versus infected AM_w.

does not result from virus-mediated cytotoxicity, or from altered ability of AM_w to bind or internalize yeast.

Cameron and coworkers (18) reported that in vitro HIV-1 infection inhibits the antifungal activity of human monocyte-derived macrophages and peritoneal macrophages, but not that of AM_w. Preservation of AM_w function in that study may have been due to lower rates of viral replication in AM_w than in other macrophage types. The antifungal assay measures the combined performance of all AM_w in culture. To observe a change in this parameter, a large proportion of the AM_w must be affected. Both studies employed the same M-tropic HIV-1 isolate, but the spread of infection and the level of viral replication may have differed significantly. A high proportion of AM_w were infected in the current study, whereas Cameron and coworkers did not directly measure the proportion of infected cells.

Another variable that may have compromised detection of significant differences in the HIV-1 infected AM_w in the study by Cameron and coworkers concerns the level of complement in human serum; complement is an important CN opsonin necessary for the fungicidal activity of AM_w (10). The level of complement activity in the serum used in our study, compared with that used by Cameron and coworkers, may have contributed to the differing results. Finally, we used a virulent cryptococcal strain, whereas Cameron and coworkers used a hypovirulent strain that was deficient in its ability to make capsule under physiologic conditions.

The reduction in fungicidal activity that we observed does not manifest until at least 1 wk after HIV-1 infection. The influence of HIV-1 infection on AM_w function correlates with the fraction of infected cells as measured by intracellular p24 staining but is not the result of a cytolytic effect of the virus. While the impairment of antifungal activity was maximal 14 d after virus infection, there was evidence of HIV-1 infection as early as 4 d postinoculation. The delayed kinetics of this pathological effect of HIV-1 may be due to the time required for a critical proportion of AM_w to become infected. However, our data do not exclude a mechanism involving some cumulative effect of virus infection on intracellular processes.

Binding and phagocytosis of CN is a prerequisite step in the fungicidal activity of AM_w. Reduced phagocytic activity of macrophages for Pneumocystis carinii and Staphylococcus aureus after in vitro HIV-1 infection, or of macrophages of HIV-1-infected donors with and without pneumonia, has been reported by others (19, 20). Denis and Ghadarian reported that phagocytic activity for Mycobacterium avium of AM_w from HIV-1-seropositive donors was no different from that of control subjects (21). We previously reported that treatment of AM_w with HIV-1 envelope protein gp120 inhibited antifungal activity and reduced phagocytosis, but not surface binding of CN (11). To evaluate this function we used confocal microscopy to examine optical sections through HIV-1-infected AM_w and uninfected control AM_w incubated with FITC-conjugated CN. We found no difference between these conditions for either binding or internalization of yeast, indicating that productive HIV-1 infection affects macrophage antifungal activity at a postphagocytic step.

The effects of HIV-1 infection on CD4⁺ T cell survival and adaptive immunity are well recognized. Our data presented here suggest that a parallel mechanism to incapacitate innate immune function may also be operating in the lung. Our data also support an intracellular viral effect, although what the mechanism of impairment is remains unclear. Important AM_w responses involved in the handling of CN include phagosome-lysosome fusion, generation of reactive oxygen and nitrogen intermediates, and production of cytokines (22–25). Investigation of these functions in AM_w infected with HIV-1 in vitro may reveal the mechanism(s) of reduced antifungal activity and identify potential sites for therapeutic interventions in AIDS-related lung disease.

Acknowledgment: The authors thank Dr. Jussi Saukkonen for technical advice on flow cytometry and Drs. Saukkonen and Joseph Keane for assistance with bronchoscopy.

References