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Lung cancer is the leading cause of death from cancer in the US and the world1. The high mortality rate (80–85% within 5 years)

results, in part, from a lack of effective tools to diagnose the disease at an early stage2–4. Given that cigarette smoke creates a

field of injury throughout the airway5–11, we sought to determine if gene expression in histologically normal large-airway epithelial

cells obtained at bronchoscopy from smokers with suspicion of lung cancer could be used as a lung cancer biomarker. Using a

training set (n ¼ 77) and gene-expression profiles from Affymetrix HG-U133A microarrays, we identified an 80-gene biomarker

that distinguishes smokers with and without lung cancer. We tested the biomarker on an independent test set (n ¼ 52), with an

accuracy of 83% (80% sensitive, 84% specific), and on an additional validation set independently obtained from five medical

centers (n ¼ 35). Our biomarker had B90% sensitivity for stage 1 cancer across all subjects. Combining cytopathology of lower

airway cells obtained at bronchoscopy with the biomarker yielded 95% sensitivity and a 95% negative predictive value. These

findings indicate that gene expression in cytologically normal large-airway epithelial cells can serve as a lung cancer biomarker,

potentially owing to a cancer-specific airway-wide response to cigarette smoke.

Physicians increasingly encounter current and former smokers with
clinical suspicion for lung cancer, on the basis of abnormal radio-
graphic imaging and/or symptoms. Flexible bronchoscopy is a rela-
tively noninvasive initial diagnostic test to use in this setting, involving
cytologic examination of materials obtained from endobronchial
brushings, bronchoalveolar lavage and endo- and transbronchial
biopsies of the suspect area12,13. The sensitivity of bronchoscopy for
lung cancer ranges from 30% for small peripheral lesions to 80% for
centrally located endobronchial disease14. As a result, most patients
require further invasive diagnostic tests, which delay treatment (med-
ian delay 3–7 months from first symptoms to diagnosis15) and
generate additional costs and risks for complications.

Cigarette smoke creates a field of injury in all airway epithelial cells
exposed to it. Previous studies have shown that noncancerous large-
airway epithelial cells of current and former smokers with and without
lung cancer exhibit allelic loss6,7, p53 mutations8, changes in promoter
methylation9 and increased telomerase activity10. Using DNA micro-
arrays, we recently described smoking-induced changes in the gene
expression of large-airway epithelial cells obtained during broncho-
scopy from nonsmokers and from current and former smokers with-
out lung cancer11. These studies led us to question whether profiles of
gene expression in large-airway epithelial cells could provide insights

into how individual smokers differ in their responses to cigarette
smoke and whether such profiling might detect smokers in whom the
mutagenic effects of cigarette smoke have resulted in lung cancer
(given that only 10–15% of smokers develop lung cancer). A lung
cancer diagnostic using this approach might eliminate the need for
additional diagnostic tests that are costly, incur risk and prolong the
diagnostic evaluation of suspect lung cancer patients.

Using Affymetrix HG-U133A microarrays, we performed gene-
expression profiling of large-airway epithelial cell brushings obtained
from current and former smokers who underwent flexible broncho-
scopy, as a diagnostic study for clinical suspicion of lung cancer,
between January 2003 and April 2005. Each individual was followed
after bronchoscopy until a final diagnosis of lung cancer or not lung
cancer was made. In our primary analysis, we included 129 subjects
(60 smokers with lung cancer and 69 smokers without lung cancer)
who had achieved final diagnoses as of May 2005 and had high-quality
microarray data (Supplementary Tables 1 and 2 online). Bronchial
brushings yielded 90% epithelial cells, with the majority being ciliated
or basal cells; no dysplastic or cancer cells were seen in representative
brushings and there was no difference in the proportion of inflam-
matory cells between smokers with and without lung cancer (data
not shown).
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To develop a gene-expression biomarker of lung cancer, 60% of
samples (n ¼ 77), representing a spectrum of clinical risk for lung
cancer, were randomly assigned to a training set (Supplementary
Methods online); the remaining 52 samples were used as an indepen-
dent test set. Using only the training set samples and a weighted-
voting algorithm16, we identified an 80-probeset biomarker that
distinguished smokers with and without lung cancer in the training
set (Fig. 1 and Supplementary Methods). The accuracy, sensitivity
and specificity of this biomarker on the independent test set samples
were 83% (43 of 52), 80% (16 of 20) and 84% (27 of 32), respectively.
The accuracy of the biomarker was independent of tumor location
within the lung relative to the site of bronchial brushing (data not
shown). Expression levels of the biomarker genes showed largely
consistent differences between individuals with and without lung
cancer (Fig. 2a and Supplementary Table 3 online). Principal
component analysis (PCA) of cancer samples according to the
expression of these 80 probesets did not reveal cell type–specific or
stage-specific gene-expression differences (data not shown). The
accuracy of this biomarker was similar when used with expression
levels derived from probe-level data using the MAS 5.0 algorithm (as
opposed to Robust Multichip Average (RMA) algorithm) or when the
Prediction Analysis for Microarrays (PAM) class prediction algo-
rithm17 was used (Supplementary Methods). The differential expres-
sion of seven genes in the biomarker was confirmed by RT-PCR
(Supplementary Fig. 1 online), and epithelial cell localization for two
biomarker genes (IL8 and CD55) was confirmed by immunohisto-
chemistry (Supplementary Fig. 2 online).

To evaluate the robustness of the biomarker, we compared the 80-
probeset classifier to three different types of randomized classifiers
(Supplementary Methods). The performance of the biomarker in
classifying test set samples was significantly better than that of
classifiers derived from training sets with randomized disease status

labels (P ¼ 0.004; Fig. 1b) or classifiers
composed of randomly selected probesets
(P ¼ 0.007; Supplementary Table 4 online).
In addition, gene-expression differences
related to differences in cumulative smoking
history between smokers with and without
lung cancer did not contribute to the bio-
marker’s accuracy (Supplementary Meth-
ods). Finally, biomarker performance was
insensitive to the particular composition of
the training or test set, as 1,000 different
training and test sets derived from the 129-
sample set produced biomarkers with similar
performance (Supplementary Table 4 and
Supplementary Fig. 3 online).

As the test set samples used to determine
biomarker accuracy were collected at the
same institutions and during the same time
period as the training samples used to derive
the biomarker, we tested the biomarker on an
independently collected prospective valida-
tion set (n ¼ 40). Five of these samples did
not pass our array quality filter and were
excluded from further analysis. In this valida-
tion set, there were no significant differences
in age or cumulative tobacco exposure
between smokers with and without cancer
(P 4 0.05; Supplementary Table 1), and the
set also included samples from an additional

medical center. The biomarker accurately classified 28 of 35 (80%)
samples from the validation set (83% sensitive and 76% specific), and
the expression of biomarker probesets in these samples was similar to
that in the original test set (Fig. 2b). We also determined the
biomarker’s diagnostic yield on all individuals recruited into the
prospective series regardless of the quality of samples obtained from
them (Supplementary Methods).

To investigate whether the biomarker genes identified in cytologi-
cally normal large-airway epithelial cells are differentially expressed in
actual lung cancer tissue, we evaluated the biomarker for its ability to
distinguish between normal and cancerous lung tissue in two pre-
viously published microarray datasets18,19. In one18, the airway bio-
marker classified normal lung tissue from smokers without cancer and
lung tumor tissue from smokers with 90% accuracy (Supplementary
Methods). PCA also revealed differences in gene expression across the
biomarker probesets between normal and tumor tissue in this dataset
(P ¼ 0.026; Fig. 3). In the other dataset, which contained samples of
lung tumors from smokers with squamous cell carcinoma and
histologically normal samples from lung tissue adjacent to these
tumors19, all samples were classified as being from smokers with
cancer; moreover, the expression of biomarker probesets was similar
between tumor and adjacent normal tissue samples (Supplementary
Methods). In addition, we tested our biomarker on two other large
U133A microarray datasets of lung cancer samples and correctly
classified 99% (129 of 130) of samples from one dataset20 and 90%
(178 of 198) from the other21.

To determine whether the large-airway gene-expression biomarker
offers a diagnostic advantage over traditional cytopathology of cells
obtained at bronchoscopy, we compared the accuracy of these tests
and also investigated the accuracy of a diagnostic that combines the
results from both tests. Bronchoscopy, in which the cytopathology of
cells obtained from endoscopic brushing, washings or biopsy of the
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Figure 1 Development and performance of an airway biomarker for lung cancer. (a) Class prediction

methodology. A total of 129 samples were separated into a training set and a test set. For the final

gene committee, the most frequently chosen 40 upregulated and 40 downregulated probesets were

selected by internal cross-validation using the training set samples. The weighted-voting algorithm

using this committee was then used to predict the cancer status of independent test set samples

that were not used for any part of the predictor discovery process. (b) Biomarker performance. The

biomarker’s sensitivity was determined as a function of specificity. For this analysis, noncancer

predictions were multiplied by –1 to create a continuous scale. The solid black line represents the

performance of the airway gene-expression biomarker on the test samples. The dotted black line

represents the average performance of 1,000 biomarkers derived from training sets in which we

randomized the cancer status of the samples. The upper and lower bounds of the shaded region

represent the average performance for the top and bottom half of random biomarkers (based on area

under the curve, AUC). There was a significant difference between the AUC of the actual biomarker

and that of the random biomarkers (P ¼ 0.004).
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affected region was assessed, diagnosed can-
cer in 32 of 60 (53%) subjects with lung
cancer in the primary dataset and yielded a
definitive diagnosis of a noncancer pathology
(for example, tuberculosis) in 5 of 69 smo-
kers without lung cancer—meaning that the
results of bronchoscopy were not diagnostic
of either cancer or a noncancer pathology in
92 samples. Among nondiagnostic bronchos-
copies (n ¼ 92), the gene-expression biomar-
ker’s accuracy was 85% (89% sensitive, 83%
specific). By combining the tests such that a
diagnosis of lung cancer from either cyto-
pathology or the biomarker indicated lung
cancer, we achieved 95% diagnostic sensiti-
vity (57 of 60) across all cancer subjects in
the training and test sets. With a disease
prevalence of B50% in this cohort, negative
cytopathology and a negative biomarker
prediction resulted in a 95% negative pre-
dictive value for disease (Fig. 4a,b). In the
prospective validation samples (n ¼ 35),
bronchoscopy was 44% sensitive. Combining
bronchoscopy with the gene-expression bio-
marker in the prospective validation set sam-
ples resulted in 94% (17 of 18) sensitivity, a 93% negative predictive
value and an 81% positive predictive value (Fig. 4c,d).

As the high mortality rate for lung cancer stems at least in part from
the failure to achieve early diagnosis, we examined the performance of
the biomarker in early-stage disease. In our primary dataset, we found
that the biomarker was B90% sensitive for stage 1 lung cancer
whereas the sensitivity of routine bronchoscopic studies was B35%
(Supplementary Fig. 4 online). In the prospective validation set, the
biomarker correctly classified each of seven samples from smokers
with stage 1 or stage 2 lung cancer.

In addition to serving as a diagnostic biomarker, airway gene
expression in smokers with and without lung cancer can provide
insight into the nature of the airway pathophysiology in smokers with
lung cancer. The airway biomarker contains genes that are also
differentially expressed in lung cancer tissue (Fig. 3), even though
the predominant epithelial cells of upper airways being sampled in this
study (ciliated cells) differ from those in which most lung cancers

occur (glandular, squamous and neuroendocrine cells). This suggests
that the biomarker measures a common cancer-specific gene-expres-
sion pattern that occurs throughout the respiratory tract epithelium.
Our finding that tumor location relative to the site of bronchial
brushing had no effect on classifier accuracy suggests that the changes
in airway gene expression between smokers with and without lung
cancer are unlikely to be caused directly by the tumor itself. It is
therefore possible that airway cancer-specific gene-expression changes
may occur prior to the appearance of frank malignancy.

The notion of a cancer-specific airway-wide response to tobacco
smoke is strengthened by the types of genes that comprise the
biomarker (Supplementary Table 3). Genes functioning in inflam-
mation, cell cycle progression and signaling predominated among
those that were upregulated in smokers with cancer, whereas genes
involved in antioxidant defense, ubiquitination and DNA repair
predominated among those that were downregulated. A number of
genes associated with the RAS oncogene pathway, including RAB1A
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Figure 2 Hierarchical clustering of biomarker

probeset expression in two independent test sets.

(a,b) Expression levels of the biomarker probesets

in the 52 test set samples and the 35

prospective validation set samples were

normalized by z-score and are organized from

top to bottom by hierarchical clustering. The

Affymetrix HG-U133A probeset ID and HUGO

symbol are given to the right of each gene along

with functional annotation of select genes (cross-

hatched boxes). The samples are organized from

left to right by diagnosis (that is, whether the

patient had a clinical diagnosis of cancer). Within

these two groups, the samples are organized by

the accuracy of the class prediction (samples
classified incorrectly are on the right for each

group of patients, shown in light green).

Classification was correct for 43 of 52 (83%)

test samples and 27 of 35 (80%) prospective

validation set samples.
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and FOS (both implicated in tumorgenesis22,23), were upregulated. We
found that a number of key antioxidant defense genes were decreased
in airway epithelium of smokers with lung cancer, including BACH2,
which encodes a transcription factor that promotes cell apoptosis in
response to oxidative stress24, and the genes encoding dual oxidase-1
and a DNA repair enzyme, DNA repair protein 1C. The classifier also
contained several proinflammatory genes, including those encoding
interleukin-8 and b-defensin 1 (both implicated in lung cancer25,26),
which were upregulated in smokers with lung cancer. Higher levels of
these chronic inflammatory mediators may result in increased oxida-
tive stress and contribute to lung tumor promotion and progression27.

Whereas the biomarker contains a number of inflammatory genes,
several lines of evidence suggest that that the biomarker detects
cancer-specific gene-expression differences in epithelial cells. Cytologic
review of select airway brushings revealed that greater than 90% of
cells were epithelial in origin and that there was no difference in the
proportion of inflammatory cells between smokers with and without

lung cancer. Further, we found that expression levels of inflammatory
cell–specific genes did not make a distinction between samples from
smokers with and without cancer (Supplementary Fig. 2). Finally,
previous studies28 have shown that many of the inflammatory genes in
our biomarker are expressed in airway epithelium, and the Human
Gene Atlas study29 has shown that several have relatively high
expression levels in bronchial epithelial cells (Supplementary
Methods). Immunohistochemistry for two of the inflammatory
genes in our biomarker demonstrated that they are expressed in
airway epithelial cells (Supplementary Fig. 2).

In summary, our study has identified an airway gene-expression
biomarker that has the potential to have an impact on the diagnostic
evaluation of smokers with suspect lung cancer. These individuals
often undergo flexible bronchoscopy as an initial diagnostic test, in
which the cytopathology of cells obtained from the lower airway is
examined. Gene-expression profiling can be performed on histologi-
cally normal upper airway epithelial cells obtained at the time of the
bronchoscopy in a simple and noninvasive fashion, prolonging the
procedure by only 3–5 min. Our data suggest that combining
cytopathology with the gene-expression biomarker improves the
diagnostic sensitivity of the overall bronchoscopy procedure (from
53% to 95%). In the setting of our study, where disease prevalence was
50%, a negative bronchoscopy and negative biomarker for lung cancer
resulted in a 95% negative predictive value, potentially allowing these
individuals to be followed nonaggressively with serial imaging studies.
For individuals with a negative bronchoscopy and positive gene-
expression signature, the positive predictive value was B70%; these
individuals would probably require further invasive testing to confirm
the presumptive lung cancer diagnosis. However, compared to
bronchoscopy alone, the strong negative predictive value of the
combined cytopathology and gene-expression biomarker test should
substantially reduce the number of individuals requiring further
invasive diagnostic testing.

The notion of a cancer-specific airway-wide injury suggests that
cancer-specific alterations in gene expression that occur as a result of
smoking might precede the development of lung cancer. If this is true,
the lag between alterations in gene expression and the appearance of

0–5

–5

5

0

5

PC-1 (15.0%)

P
C

-2
 (

10
.2

%
)

Normal lung
Lung tumor

Figure 3 Principal component analysis (PCA) of airway biomarker gene
expression in lung tissue samples. The 80 biomarker probesets were

mapped to 64 probesets in a HG-U95Av2 microarray dataset of lung cancer

and normal lung tissue18. The normal lung samples separate from lung

cancer samples along the first principal component (t-test, P-value ¼
0.026), indicating that cancer status is a major source of variation in the

expression of biomarker probesets.
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Figure 4 Diagnostic utility of bronchoscopy and the gene-expression

biomarker. (a) Bronchoscopy results for the individuals in the primary

dataset. Only 32 of 60 smokers with lung cancer had bronchoscopies

that diagnosed lung cancer. Bronchoscopy resulted in the diagnosis of a

noncancer pathology in five samples (excluded from the boxes labeled with

an asterisk but included in the calculation of negative predictive value),

and was nondiagnostic in the remaining 92 samples. This resulted in 92

smokers for whom further diagnostic tests were required in order to rule in

or rule out the presence of lung cancer. (b) Combined test results for the

primary dataset. A combined test where a cancer diagnosis from either
bronchoscopy or gene expression is considered diagnostic of lung cancer

achieved a sensitivity of 95% (57 of 60 cancer subjects) with only a 17%

false-positive rate (11 of the 64 noncancer subjects). (c) Bronchoscopy

results for the 35 individuals in the prospective study. Of 18 with lung

cancer, 8 had bronchoscopies that were diagnostic of lung cancer. The

remaining 27 samples had bronchoscopies that were negative for lung

cancer and all other noncancer pathologies. (d) Combined test results for

the 35 prospective study subjects. Combining bronchoscopy with gene

expression resulted in a sensitivity of 94% (17 of 18 cancer subjects). The

shading of the contingency table boxes reflects the fraction of each sample

type in each quadrant. ‘Cancer’ and ‘Non’ headings indicate patients with

and without cancer, respectively. Bronch+ and Bronch–, diagnosed as having

or not having cancer, respectively, by cytopathology of bronchoscopic

material; GE+ and GE–, diagnosed as having or not having cancer,

respectively, by the gene-expression biomarker; NPV, negative predictive

value; PPV, positive predictive value; Sens, sensitivity; Spec, specificity.
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lung cancer could contribute to the biomarker’s false-positive rate in
our cross-sectional study. A longitudinal study will be needed to assess
whether false-positive biomarker diagnoses represent smokers at
higher risk for developing lung cancer. If this is the case, our
biomarker might be useful as a screening tool for lung cancer
among healthy smokers and may have the potential to identify
high-risk smokers who would derive the most benefit from chemo-
prophylaxis.

METHODS
Patient population. We recruited current and former smokers (n ¼ 208)

undergoing flexible bronchoscopy (as a diagnostic study for clinical suspicion

of lung cancer) between January 2003 and April 2005 at four institutions:

Boston University Medical Center, Boston Veterans Administration, Lahey

Clinic and St. James’s Hospital (Supplementary Methods). We classified

subjects as having lung cancer if their bronchoscopy or subsequent lung biopsy

yielded lung tumor cells. Subjects were classified to the noncancer group if the

bronchoscopy or subsequent lung biopsy yielded a non-lung-cancer pathology

or if their radiographic abnormality resolved on follow-up chest imaging.

Individuals without final diagnoses as of May 2005 were excluded from this

primary dataset. The study was approved by the Institutional Review Boards of

all medical centers, and all participants provided written informed consent.

Airway epithelial cell collection. Following routine diagnostic bronchoscopy

studies, we obtained bronchial airway epithelial cells from the uninvolved right

mainstem bronchus with an endoscopic cytobrush (Cellebrity Endoscopic

Cytobrush, Boston Scientific). If a suspicious lesion (endobronchial or sub-

mucosal) was seen in the right mainstem bronchus, brushings were obtained

from the uninvolved left mainstem bronchus. The brushes were immediately

placed in TRIzol reagent (Invitrogen) and stored at –80 1C. RNA was extracted

from the brushes using TRIzol per the manufacturer’s protocol; RNA yields

were 8–15 mg. We confirmed RNA integrity by performing a denaturing gel

electrophoresis. We determined the epithelial cell content and morphology of

representative samples by cytocentrifugation (ThermoShandon Cytospin) of

the cell pellet and cytokeratin antibody staining (Signet); these results were

reviewed by a pathologist.

Microarray data acquisition and preprocessing. We processed, labeled and

hybridized 6–8 mg of total RNA to Affymetrix HG-U133A GeneChips contain-

ing 22,215 probesets as described previously11. We obtained sufficient quan-

tities of high-quality RNA for microarray studies from 152 of 208 samples. The

quantity of RNA obtained per sample increased during the course of the study

(because of an increase in the number of airway brushings performed); 90% of

samples from the latter half of the study were included in the microarray

analysis. We obtained probe-level data using the Robust Multichip Average

(RMA) algorithm30 to maximize correlation between technical replicates

(Supplementary Methods). We used a z-score metric, which correlates with

the percent probesets present metric, to filter out arrays of poor quality

(Supplementary Methods), leaving 129 samples available for analysis.

Microarray data class prediction analysis. We separated 129 samples (69 from

smokers without cancer, 60 from smokers with lung cancer) into a training

(n ¼ 77) and a test set (n ¼ 52) (Supplementary Methods). Using only the

training set, we identified genes that were differentially expressed in smokers

with cancer, using pack-years of cigarette smoke exposure as a covariate to

control for differences in cumulative tobacco exposure in smokers with cancer.

Genes that were differentially expressed in cancer samples (P o 0.05) were

selected by internal cross-validation within the training set using the signal-to-

noise metric16. Internal cross-validation was repeated 50 times, and the most

frequently chosen 40 upregulated and 40 downregulated probesets were selected

as the final gene committee (Supplementary Methods). This committee of 80

probesets was then used to predict the cancer status of independent samples

using the weighted-voting algorithm.

Quantitative PCR validation. We used real-time PCR to confirm the differ-

ential expression of select biomarker genes (Supplementary Methods and

Supplementary Table 5 online).

Immunohistochemistry. Using immunofluorescence, we investigated the cell

of origin for two of the biomarker genes, CD55 and IL8. Bronchial brushings

from smokers with and without lung cancer were fixed and assayed by indirect

immunofluorescence with polyclonal antibodies to human CD55 and IL8

(Supplementary Methods).

Prospective validation set. We assembled a second set of samples (n ¼ 40)

from additional individuals recruited between May 2005 and December 2005

and from individuals whose diagnoses were pending as of May 2005 but

became final after that date.

Predictor gene expression in lung tumor tissue. We evaluated the ability of

the 80-gene lung-cancer biomarker to distinguish between normal and cancer-

ous lung tissue from smokers, using an Affymetrix HG-U95Av2 dataset18. We

identified 64 HG-U95Av2 probesets that corresponded to the 80 probesets in

our biomarker and used the expression of these probesets to classify the tumor

and normal lung samples (Supplementary Methods). We also used the 80-gene

biomarker to classify samples in a HG-U133A microarray dataset of squamous

cell carcinoma lung tumor samples and matching adjacent histologically

normal lung from smokers19. Finally, we evaluated the ability of the 80-gene

biomarker to predict lung cancer in two large HG-U133A microarray datasets

containing only lung cancer tissue samples20,21.

Statistical analysis. All data preprocessing, class prediction and statistical

analyses were accomplished using R and BioConductor packages.

Additional information. Probe-level expression data (CEL files) from all

microarray samples, probeset expression levels, additional analyses and

anonymized patient clinical data (including results from other diagnostic

tests) are available at http://pulm.bumc.bu.edu/CancerDx with tools for fur-

ther analysis.

Accession codes. All microarray data have been submitted to the Gene

Expression Omnibus (GEO) under accession number GSE4115.

Note: Supplementary information is available on the Nature Medicine website.
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