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Very little is known regarding the function, origin, and turnover of
airway smooth muscle (ASM). In this article, we discuss the embry-
ological development of ASM, and provide information regarding
candidate mesenchymal ASM progenitor cell populations specifi-
cally in relation to airway remodeling. This review also highlights the
current limitations in studying ASM biology, and underscores the
need for novel molecular tools and markers that will refine our
understanding of this cell type in lung homeostasis and disease.
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OVERVIEW

Very little is known regarding the role of stem cells in airway
smooth muscle (ASM). While there has been considerable re-
search on the contributions of local proliferation and circulating
mesenchymal stem cells to hyperplasia of vascular smooth muscle
(VSM) in both pulmonary hypertension and arthrosclerosis, there
is no comparable body of work for ASM in diseases such as
asthma. One of the greatest difficulties in understanding the role, if
any, of stem cells in ASM is the role of ASM itself. To date there is
no known ‘‘beneficial’’ or physiologic function to ASM (1).

There are several theories as to the possible ontology of ASM
muscle. (1) The rhythmic peristalsis of ASM, in the developing
fetal lung generates distending pressures, which promote de-
velopment and maturation of airways and alveoli (2). (2) ASM
may change the resistance of airways in parallel circuits to
improve V̇/Q̇ matching and or decrease dead space (3). (3)
ASM may increase the velocity of gas movement during cough to
promote expellation of foreign bodies (4). (4) ASM may serve to
balance hysteresis between small airways and alveolar units (5).
(5) ASM may simply be an ‘‘evolutionary oversight,’’ that is,
a vestige of the lung’s origin from an organ, the foregut, already
programmed to develop smooth muscle, with no true physiologic
purpose.

When one attempts to study such a system, one usually begins
teleologically, by working backward from its function, to un-
derstand the source; in this case, however, this approach is
limited. This is further confounded by the lack of specific markers
to distinguish ASM from VSM in the lung. While there has been
considerable research into the role of stem cells in VSM, when
one looks for similar progenitors in ASM, it becomes difficult to
tease out whether or not what you are looking at is truly an
airway or vascular cell. With these caveats in mind, we can
proceed with some basic principles. (1) There is now an emerging

understanding of the source and maturation of both local and
circulating mesenchymal stem/progenitors cells with the capacity
and or proclivity to mature into smooth muscle in vitro (6–10).
(2) Asthma is a disease of increased ASM mass, due to both (in
varying degrees) hypertrophy and hyperplasia (11–16). (3) In
disease states, circulating and local mesenchymal/progenitor cells
play a role in VSM accumulation, but related data in the case of
asthma is not as forthcoming (10, 17–19).

EMBRYOLOGY

The precise origin of ASM in the developing lung is not known;
accumulated data suggest, however, that these cells originate
from the primitive embryonic lung mesenchyme. In the mouse,
smooth muscle actin–positive cells associated circumferentially
with the early trachea and mainstem bronchi can be observed at
the earliest stages of lung development (20). This nascent
smooth muscle cell compartment is likely already enervated,
consistent with observations demonstrating the presence of
pulsatile airway contractions in the early fetus (2, 20, 21).

The lack of distinguishing markers has hampered efforts to
absolutely clarify the ontological relationship between VSM and
ASM, and to elucidate whether these cell types have distinct
differentiation programs. Interestingly, the transcription factor
GATA-5 is selectively expressed in ASM during late gestation;
the significance of this observation has not been further explored
(22). Distinct cell differentiation programs and/or cell origins are
inferred by the phenotypes of mice that carry select mutations in
growth factor signaling molecules. In this regard, hypomorphic
FGF-10 mice display selective loss of ASM mass. On the other
hand, deletion of Wnt-7b appears to selectively disrupt de-
velopment of VSM in pulmonary arteries (23, 24).

Since ASM accumulation is ongoing and coupled to branch-
ing morphogenesis, it has been suggested that signals originating
in the airway epithelium regulate smooth muscle cell recruit-
ment, differentiation, and organization. Consistent with this
speculation, deletion of epithelial derived sonic hedgehog is
associated with reduced ASM mass (25). Several studies have
shown that components of the epithelial basement membrane,
particularly laminin-2, may play a role in controlling ASM dif-
ferentiation by facilitating attachment and spreading of primitive
mesenchymal cells (22, 26). These changes in cell shape induce
translocation of serum-response factor (SRF) from the cyto-
plasm to the nucleus (27). Changes in SRF localization have
important functional consequences, since SRF is one of the key
transcription factors involved in up-regulating expression of
smooth muscle–related genes (27). Stretch has also been shown
to promote bronchial smooth muscle differentiation by activat-
ing an SRF-dependent pathway (27, 28).

ORIGIN OF SMOOTH MUSCLE DURING
AIRWAY REMODELING

Asthma is a disease estimated to affect 10% of people in the
United States, causing considerable morbidity and mortality.
Although inflammation is undoubtedly a cornerstone of the dis-
ease, it is clear that structural changes referred to cumulatively
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as ‘‘airway remodeling’’ contribute to the asthmatic diathesis.
This airway remodeling consists of thickening of the airway
wall, subepithelial fibrosis, smooth muscle myocyte hyperplasia
and hypertrophy, and myofibroblast hyperplasia (29). These
processes contribute to airway hyperresponsiveness and are
associated with disease severity and decline of lung function
(FEV1) (29). The origin of smooth muscle and fibrogenic cells
responsible for this pathology is not currently known. In 2001
Johnson and coworkers showed that ASM obtained from endo-
bronchial biopsies in individuals with asthma proliferated much
more quickly (z300%) than did those from healthy control sub-
jects; these findings could be accounted for by expansion of
local ASM progenitors or hyperplasia of already differentiated
cells (16).

One potential progenitor for ASM is a circulating mesen-
chymal stem cell (MSC), first identified in outgrowths of adult
murine bone marrow in 1976 (30). These cells have historically
been isolated by in vitro culturing and expansion on plastic.
They are characterized by expression of select surface markers
such as Sca-1 (stem cell antigen 1) and by the lack of hemato-
poietic markers. When placed in appropriate media MSCs can
differentiate into cartilage, bone, fat, or smooth muscle (6, 8,
31). In models of skeletal and cardiac injury, such marrow-
derived cells have been found to contribute to the reconstitution
of damaged muscle (32–34). Myofibroblasts, a cell type that ac-
tively produces connective tissue, have also been shown to be
marrow derived, in part, in organ injury (35–37). Further, a cir-
culating cell may contribute to smooth muscle cells during the
healing phase of vascular wall injury (38).

To date, the study of circulating mesenchymal progenitors
has been hampered by the lack of an effective surface marker
for their isolation and characterization in the blood and marrow
directly, forcing investigators to rely on less reliable techniques
such as staining for internal markers and selection of cell types
after culturing. A recent publication by Gang and colleagues
has shown that the stage-specific early embryonic antigen 4
(SSEA-4) may serve as an effective and easily applied surface
marker for MSCs obtained from both human and mouse bone
marrow (8). Clonal analysis of CD452 SSEA-41 cells showed
that the majority (z70%) of these cells had the capacity to
differentiate into bone, fat, and cartilage cell types (8). While
the authors did not specifically look at the ability of these cells
to differentiate into smooth muscle, or characterize them in the
peripheral circulation, this begs the question of their potential
contribution to ASM accumulation in asthma.

Another potential source of ASM is the circulating fibrocyte,
first described in 1994 in an article by Bucala and coworkers
wherein they identified a circulating mesenchymal cell that
could be cultured from the blood of mice and humans (39).
These cells are isolated by plastic-adherent culture of peripheral
blood mononuclear cells, express the panhematopoietic marker
CD45 and the hematopoietic stem cell antigen CD34, and

synthesize collagen-I (39–44). Fibrocytes enter sites of injury
localizing to areas of matrix formation in vivo (44). A pro-
genitor phenotype is suggested by their ability to proliferate in
culture and to differentiate after injection, or under specific
culturing conditions, into a-smooth muscle actin1 (SMA) cells
that secrete matrix proteins (40, 45, 46). Whether or not the
fibrocyte is the definitive circulating progenitor cell or is merely
a subtype of a broader category of mesenchymal progenitor
cells is not yet clear. It is important to note, however, that
classical mesenchymal progenitor cells do not express hema-
topoeitic markers.

The fibrogenic potential of fibrocytes and the mechanisms
responsible for their recruitment to lung tissue are of interest.
One study showed that circulating fibrocytes from humans and
mice express the chemokine receptor CXCR4 and migrated
in response to its cognate ligand, CXCL12 (47). Notably,
CXCR41 fibrocytes traffic into murine lungs during bleomycin
challenge; maximal recruitment directly correlated with in-
creased collagen deposition. Furthermore, a CXCL12-neutral-
izing antibody inhibited recruitment of fibrocytes and attenu-
ated pulmonary fibrosis, suggesting a pivotal role in the fibrotic
response. Further, in an ovalbumin murine model of asthma,
infused fibrocytes differentiated into lung myofibroblasts and
smooth muscle cells beneath the bronchial epithelium (45).
These cells were rapidly recruited to bronchial tissue after
allergen exposure and could be re-isolated. Although freshly
purified circulating fibrocytes do not express SMA, expression
of SMA was induced in cells that engrafted in the bronchial
wall. Interestingly, SMA is induced in human fibrocytes when
cultured with endothelin-1 (ET-1) and transforming growth
factor–b (TGF-B)—two fibrogenic cytokines up-regulated in
the airways of patients with asthma (45).

In our own lab we have made use of the vital dye Hoechst
33342, which is preferentially effluxed out of stem cells by the
action of the ABC transporter BCRP-1 (breast cancer resis-
tance protein 1) (6, 48–50). When performing flow cytometry on
cells stained with Hoechst, one finds a population with little or
no dye that has a characteristic fluorescence pattern off to the
side (so called side population or SP cells). We found that the
lung SP is composed of a heterogeneous population that can be
distinguished by the presence or absence of the panhemato-
poietic marker CD45. The CD451 lung SP population behaves
like hematopoetic stem cells (HSCs), possessing the ability to
reconstitute the bone marrow of radio-ablated hosts (49). The
CD452 SP has at least two subpopulations: a CD31-positive
and -negative population (49). Like marrow MSCs, the lung
CD452 CD312 SP cells can give rise to a variety of differen-
tiated mesenchymal cells types in vitro, including smooth
muscle (Figure 1) (6). The rarity of these cells, along with the
lack of specific markers, has hampered efforts to specifically
identify their site(s) of localization in the adult lung. Our data
indicate that these cells are resident in the embryonic and adult

Figure 1. Lung side population (SP) cells give rise to smooth

muscle. (Left) Density dot plot of Hoechst stained lung

digests. The boxed area represents cells (0.09%) that efflux
dye (SP cells). (Right) The CD452 CD312 subtype differ-

entiates into a-tropomyosin–positive cells after collection and

culture in smooth muscle media. The CD451 subgroup and
the CD452 CD311 subgroup do not display this capacity.
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lung and not likely derived from the blood. Whether these cells
contribute to airway remodeling is uncertain.

CONCLUSIONS AND FUTURE DIRECTIONS

Overall, there is a fundamental lack of knowledge regarding the
function of ASM in homeostasis, and the source and mechanism
of increased ASM mass in disease states. This state of affairs
relates directly to the lack of definitive markers that distinguish
ASM from VSM in the lung. The identification of such markers
would facilitate our understanding of the basic biology and
ontogeny of ASM, and the development of meaningful genetic
models. Clarifying whether ASM cells originate from a defined
progenitor or through expansion of differentiated cells may also
become possible if specific markers are available; armed with
this understanding, this knowledge would inform and guide new
treatment strategies for airway remodeling.
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