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Lung stem cells: New paradigms
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The intrinsic anatomical complexity of the lung, its slow cell turnover, and the lack of
regenerative models are among the factors that have complicated the study and isolation
of adult lung stem cells. Despite this, several endogenous lung progenitor cells have been
identified in the proximal and distal lung. However, there is limited data regarding the lineage
relationships, self-renewal properties, and clonality of these specific lung cell progenitors.
More recent work showing that marrow cells can engraft as differentiated cells of solid
organs has suggested new stem cell paradigms for the lung. In this review, we explore the
implications of these new studies for lung stem cell biology. We also summarize and discuss
the ongoing controversies that these studies have generated. � 2004 International Society
for Experimental Hematology. Published by Elsevier Inc.
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The lung is an extremely complex three-diminensional struc-
ture composed of numerous morphologically distinct epithe-
lial cell types arrayed along bifurcating tubes. These tubes
serve to conduct inspired and expired gas to and from distal
alveolar-capillary units. This intrinsic complexity along with
several unique aspects of lung structure and biology has
complicated the study and identification of lung stem cells.

Unlike other epithelial surfaces (i.e., skin, gastrointestinal
tract), airway and alveolar epithelia have very slow cell turn-
over and minimal regenerative capacity. This overall tissue
quiescence has significantly impeded the identification of
lung stem cells. This is further compounded by the technical
complexities associated with isolating pure populations of
lung cells for in vitro study. One additional issue is the
technical difficulties associated with the histological evalua-
tion of an organ that contains a gas-tissue interface.

Despite these limitations, several types of endogenous
lung progenitor cells have been identified in the proximal
and distal lung. There is, however, a paucity of information
regarding the lineage relationships, self-renewal properties,
and clonality of these currently identified lung progenitors. In
the proximal conducting airways, basal cells, Clara cells,
and cells that reside in submucosal glands have been shown
to function as progenitors [1–4]. Most recently, variant-Clara
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ells residing within neuroepithelial bodies [5–8] or bron-
hoalveolar duct junctions [9] have been shown to contribute
o airway epithelial repair after naphthalene injury.

In the gas exchange distal air sacs (alveoli), the cuboidal
ype II cell is thought to function as the progenitor of the
lveolar epithelium based on a capacity to replenish itself and
o give rise to terminally differentiated flat type I cells [10,11].
his model has evolved from in vitro data showing that
ells with a type I cell phenotype arise during culture of
rimary type II cells. Furthermore, classic in vivo thymidine
ncorporation studies have shown serial progression of label-
ng from type II into type I cell nuclei after lung injury [12–
5]. To date, a single lung stem cell that can give rise to
ultiple epithelial lineages in the proximal and distal lung

as not been identified.

ew paradigms
variety of recent studies in mice have suggested that

arrow stem cells can serve as progenitors of differentiated
ells of solid organs; these findings have challenged long-
eld views regarding the fixed nature of adult stem cell
otential and suggest the possibility of circulating tissue
tem cells. The data supporting a new stem cell paradigm

are from experiments in which irradiated mice have under-
gone bone marrow transplantation with donor cells that ex-
ress a tracking marker (i.e., green fluorescent protein [GFP];
-galactosidase; lacZ; Y-chromosome) [16–21]. In these
tudies, marrow-derived organ parenchymal cells were sub-
equently identified through the histological colocalization
xperimental Hematology. Published by Elsevier Inc.
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of the tracking marker along with selective differentiation
markers. Based on this experimental approach, marrow-de-
rived cells have been proposed to contribute to a variety of
epithelial cell types in various organs.

Supporting this new paradigm are data from human trans-
plant studies. Using the Y-chromosome as a tracking marker,
analyses of sex-mismatched allografts have suggested the
presence of parenchymal cells of purported marrow origin
[22–24]. Similar to the findings in mice, marrow-derived
cells have been suggested to engraft in multiple types of
human epithelial tissues, such as skin, intestine, kidney, liver,
and lung [23,25–28].

Marrow to lung
Krause et al. found widespread engraftment as alveolar type
II cells and airway epithelial cells after transplantation of a
single marrow stem cell into mice [17]. In this study, single
male donor cells selected on the basis of size fractionation,
lineage depletion, and rapid marrow homing capacity were
used for transplantation into marrow-ablated female mice.
Engrafted cells were identified on the basis of colocaliza-
tion of the Y-chromosome and selective lung epithelial
markers. Levels of type II cell engraftment reached 20% at
11 months after transplantation. Follow-up studies by these
investigators using donor whole marrow or CD34�/Lin�

cells found that engraftment in the lung as alveolar type II cells
was detectable at 5 days after bone marrow transplantation,
and was robust by 2 months [29,30].

In another study, Kotton et al. injected 1 to 2 million
plastic-adherent lacZ� marrow cells into mice that did not
receive prior marrow ablation [31]. In this study, the marrow
cells were not purified beyond plastic adherence, and were
cultured for 1 week in basic serum-containing media prior
to administration. At 5 to 30 days post–direct intravenous
injection into uninjured and bleomycin-injured recipients, a
small number of engrafted cells with the characteristic flat-
tened morphology of type I cells were found. In addition,
these cells appeared to assume the molecular phenotype
of type I alveolar cells as they expressed the type I cell
surface marker, T1α, and bound the lectin, Lycopersicon
esculentum. Despite careful analysis, type II cell engraftment
was not observed in this study, even at time points as early as
24 hours after cell injection. Engraftment was significantly
more robust following induction of bleomycin injury. Simi-
larly, Ortiz et al. found engraftment of marrow-derived mes-
enchymal stem cells in the lung after bleomycin injury
[32]; these cells were localized to areas of injury and exhib-
ited an epithelial morphology.

In more recent work, a marrow cell derivative obtained
after prolonged culturing in a defined growth medium was
found to engraft as multiple epithelial cell types after injec-
tion into nonirradiated or irradiated adult nonobese dia-
betic/severe combined immunodeficient (NOD/SCID) mice
[19]. These cells, termed multipotent adult progenitor cells
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MAPC), adhered to plastic, could be serially passaged,
nd expressed primitive stem cell markers in vitro [33–36].
njection of single MAPCs into blastocysts further demon-
trated the ability of these cells to contribute to cell lineages
rom multiple tissues including blood, liver, intestine, and
ung [19]. In these studies β-galactosidase-labeled MAPCs
as found to engraft in lung tissue as cytokeratin�/CD45�

ells residing within the alveolar wall. Whether MAPCs
ormally participate in tissue homeostasis is not yet clear.

Despite these findings, studies showing marrow-to-organ
ngraftment remain a source of ongoing controversy. One
verriding issue relates to their reproducibility. For exam-
le, Wagers et al. extensively analyzed tissues from multiple
ice transplanted with a single GFP� hematopoietic stem

ell (HSC) and observed almost a complete lack of non-
ematopoietic engraftment except for a single GFP� cereb-
llar Purkinje cell and 7 GFP� hepatocytes [37]. Some have
rgued that these types of observations can be accounted
or by major variations in experimental design [38]. These
ariations include differing cell purification methods, appli-
ation of tissue injury, and the types of histological tech-
iques employed to evaluate engraftment.

One recurrent concern relates to the ability to distinguish
y immunohistochemical methods differentiated organ cells
rom hematopoietic marrow-derived cells contained within
uxtaposed capillaries and tissue spaces [37,38]. This is a
ignificant issue for the lung because of the high number
f resident hematopoietic cells and the extensive capillary
etwork. It has been argued that deconvolution or confocal
icroscopy, proof of absent CD45 expression in engrafted

ells, and the rigorous use of isotype control antibodies
ay minimize these issues. Ultimately, the development of

ransgenic mice that express fluorescent markers under the
ontrol of lung cell–specific promoters may be necessary to
larify these issues.

Importantly, several laboratories demonstrated that fusion
f marrow-derived cells with recipient cells explains the
olocalization of tracking and differentiation markers, rather
han true stem cell plasticity [39–43]. Fusion of marrow-
erived cells with organ cells has been documented in recipi-
nt liver, heart, and brain [39,44]. On the other hand, the
unctional implications of fusion remain unclear and may
onceivably be a potential mechanism for injury repair
16,44]. Fusion events, however, may not mediate all cell
ngraftment events [39,45].

The appropriateness of the experimental models em-
loyed to detect engraftment in lung tissue of bone mar-
ow–derived cells also remains at issue. Models that have
mployed GFP or lacZ labels assume that detectable
ransgene expression is maintained in all cell types after
ransplantation. Models that track the Y-chromosome are not
usceptible to problems of transgene expression; however,
he Y-chromosome cannot be detected unless the plane of
issue section being analyzed passes through the correct
ortion of the cell nucleus. Even if a particular model
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is proven reliable, a difficult challenge remains to clarify
whether engraftment is only a feature of experimental condi-
tions or can occur in a more physiologic state in the
intact organism.

New strategies to identify resident lung stem cells
Recent work has shown that small populations of resident
cells within solid organs display phenotypic features of
known marrow stem cells. Taking this into account, investi-
gators have attempted to isolate and characterize tissue stem
cells by identifying organ cells that display these specific
stem cell phenotypes.

One such strategy is to identify organ cells that express
stem cell antigens, such as Sca-1 or c-kit [24,45–49]. This ap-
proach is limited by the relative lack of cellular specificity
for antigens expressed by stem cells. For example, in lung
tissue, Sca-1 is expressed throughout the endothelium of
arteries, veins, and capillaries [50]. Another strategy is based
upon the observed capacity of HSCs to efflux Hoechst dye,
a process mediated by the ABC half transporter Bcrp1 (breast
cancer resistance protein) [51]. Such cells, termed side popu-
lation (SP) cells, can be isolated by dual-wavelength flow
cytometry due to an absence of staining with Hoechst dye
[52,53].

Marrow SP cells are CD45�/Sca-1�/c-kit�/Lin� and are
highly enriched for hematopoietic stem cell activity. In addi-
tion to the bone marrow, SP cells have been identified in
various solid organs [21,46,54–56]. In the adult lung,
Summer et al. showed that these cells comprise 0.03% of
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1

Figure 1. Models of lung epithelial derivation from bone marrow cells.
Several possible marrow cell types may serve as the source of lung epithelial
cells. These include: 1) a pluripotent marrow cell, 2) hematopoietic stem cells
(HSC), 3) mesenchymal stem cells (MSC), 4) multipotent adult progenitor
cells (MAPC), or 5) a lung-committed progenitor cell. Three possible
biological mechanisms may mediate lung epithelial engraftment. These in-
clude: 1) trafficking of marrow cells to a local progenitor niche in the lung,
2) fusion of bone marrow–derived cells with differentiated epithelial cells
in the lung, or 3) direct “transdifferentiation” into lung epithelial cells.
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otal cell suspensions [55]. In contrast to the marrow, two
ubtypes of lung SP cells can be identified based on the
resence or absence of the hematopoietic marker CD45.
otably, both lung SP sub-populations are Sca-1�, Lin�,

nd express Bcrp1 [55]. Recently, cell suspensions prepared
rom lung airway digests were also found to contain SP
ells, some of which appeared to express the phenotype of
ariant-Clara cells of the neuroepithelial body [57]. While
he SP phenotype is a powerful tool for the identification of
tem cells, there are no functional studies to show that these
ells may represent lung stem cells. The role of lung SP cells
n tissue reconstitution as well as their relationship to defined
arrow stem cell populations is currently under study.
In conclusion, there is accumulating evidence supporting

he possibility that marrow-derived cells can engraft as dif-
erentiated epithelial cells of the lung (Fig. 1). Furthermore,
esident lung cells with features of marrow stem cell popula-
ions have been identified. Although controversial, these
bservations challenge fundamental concepts regarding
he origin and repertoire of adult stem cells and suggest
ramatic new cell-based therapies for lung disease.
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