Diaphragm paralysis in primary systemic amyloidosis

JOHN L. BERK1,2, JANICE F. WIESMAN2,5, MARTHA SKINNER2,4, & VAISHALI SANCHORAWALA2,3,4

1The Pulmonary Center, 2Amyloid Treatment and Research Program, 3Stem Cell Transplant Program, 4Department of Medicine, and 5Department of Neurology, Boston University School of Medicine, Boston MA, USA

Keywords: Amyloidosis, diaphragm paralysis, neuropathy, non-invasive ventilation

Abbreviations: ADM, abductor digiti minimi; APB, abductor pollicus brevis; EMG, electromyography; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; MAG, myelin-associated glycoprotein; MGUS, monoclonal gammopathy of unknown significance; NCS, nerve conduction studies; PA, pulmonary artery; Pdi max, maximal transdiaphragmatic pressure; Pemax, maximal expiratory pressure; Pimax, maximal inspiratory pressure; Pg, gastric pressure; Ppl, pleural pressure; RA, right atrial; RV, right ventricle

Abstract
A patient with primary (AL) systemic amyloidosis developed mononeuropathy multiplex complicated by diaphragmatic failure. High dose melphalan and autologous stem cell transplantation did not ameliorate neuropathy or diaphragm dysfunction. Nocturnal non-invasive ventilation lowered arterial carbon dioxide levels and improved daytime dyspnea. This is the first case associating AL amyloid-induced neuropathy with diaphragm dysfunction.

Introduction
Organ dysfunction in primary systemic (AL) amyloidosis results from tissue deposition of insoluble fibrils composed of monoclonal immunoglobulin protein. The heart, kidneys, liver and nervous system are most frequently involved. Three case reports attribute diaphragm dysfunction in systemic amyloidosis to an infiltrative myopathy without associated neuropathy [1–3]. We report a case of diaphragm paralysis complicating AL amyloid-induced mononeuropathy multiplex.

Case report
A 65 year-old woman presented with worsening dyspnea and new orthopnea. Immunoelectrophoresis 4 years earlier detected IgG κ monoclonal gammopathy of unknown significance (MGUS) accompanied by right radial neuropathy and left vocal cord paralysis. Electromyography (EMG) and nerve conduction studies (NCS) diagnosed multiple sensory and motor mononeuropathies involving the right and left median, right ulnar and right radial nerves (Tables I and II). Peroneal motor and sensory responses were normal. Neither conduction block nor small, polyphasic (‘myopathic’) muscle units were detected. Sural nerve biopsies were non-diagnostic. Weakness was confined to muscles innervated by the affected nerves on NCS. Creatine phosphokinase levels were normal. Antibodies to acetylcholine receptor, ganglioside, myelin sulfatide, myelin-associated glycoprotein (MAG) and Hu epitopes were negative. Rheumatoid factor, antinuclear antibodies, cryoglobulins, antineutrophilic cytoplasmic antibodies, HIV and hepatitis B and C virus titers were unremarkable. Serum glucose levels were normal on multiple occasions. Chest X-ray demonstrated right hemidiaphragm elevation (Figure 1). MRI studies identified normal cervical and thoracic spine foramen, and diffuse adenopathy. Cervical lymph node biopsy documented amyloid deposits. She was referred to the Amyloid Treatment and Research Program at Boston University where IgG κ AL amyloidosis was diagnosed by monoclonal protein expression on serum immunofixation electrophoresis, congophilia on fat pad aspirate, and bone marrow clonal plasma cell expansion with κ light chain over-expression. Organ involvement was limited to the peripheral nervous system and lymph nodes. The patient underwent treatment with high dose intravenous melphalan (200 mg/M2) and autologous stem cell transplantation. Persistent plasma
cell dyscrasia post-transplant prompted 3 months salvage therapy with intermittent dexamethasone.

Four months later, dyspnea and orthopnea worsened. Mediastinal adenopathy and right diaphragm elevation remained unchanged by CT imaging. Right heart catheterization recorded RA pressure of 7, RV 40/13, PA 35/12 (mean 22), and wedge pressure of 10 mmHg. Fluoroscopic ‘sniff testing’ revealed minimal left and absent right hemidiaphragm movement. Upright spirometry (FEV1 0.77 L (49% predicted) and FVC 0.94 L (42%)) decreased 46% when repeated supine. Room air arterial blood gas documented hypercarbia (PaCO2 49 torr) and normal alveolar–arterial oxygen difference. Static respiratory muscle functions were significantly decreased: maximal inspiratory pressure (Pimax) of 30.9 (normal 475 cmH2O) and maximal expiratory pressure (Pemax) of 76 cmH2O (normal 4150).

Esophageal and gastric balloon manometry recorded trans-diaphragmatic pressures (Pdimax) of 5.64 cmH2O, consistent with diaphragm paralysis (Figure 2). Noninvasive nocturnal ventilation resolved the orthopnea, lowered PaCO2 (45 torr) levels, and improved daytime exercise tolerance.

Discussion

We document bilateral diaphragmatic paralysis in a patient with AL amyloidosis. Patients with neuromuscular disease require a Pdimax of 40 cmH2O to sustain unsupported ventilation [4]; our patient had a Pdimax of 5 cmH2O. Weak accessory respiratory

<table>
<thead>
<tr>
<th>Stimulation site</th>
<th>Record site</th>
<th>Latency (ms) (normal)</th>
<th>Amplitude (mV) (normal)</th>
<th>Velocity (m/s) (normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right median wrist</td>
<td>APB*</td>
<td>3.1 (< 4.4)</td>
<td>1.2 (> 4.2)</td>
<td>46 (> 49)</td>
</tr>
<tr>
<td>Left median wrist</td>
<td>APB*</td>
<td>4.1 (< 4.4)</td>
<td>2.0 (> 4.2)</td>
<td>37 (> 49)</td>
</tr>
<tr>
<td>Right ulnar wrist</td>
<td>ADM**</td>
<td>3.3 (< 3.5)</td>
<td>9.6 (> 5.6)</td>
<td>61 (> 49)</td>
</tr>
</tbody>
</table>

*APB, abductor pollicus brevis; **ADM, abductor digiti minimi.

Table II. Sensory nerve conduction studies.

<table>
<thead>
<tr>
<th>Stimulation site</th>
<th>Record site</th>
<th>Latency (ms) (normal)</th>
<th>Amplitude (uV) (normal)</th>
<th>Velocity (m/s) (normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. median sensory digit II</td>
<td>wrist</td>
<td>3.5 (< 3.5)</td>
<td>99.4 (> 10)</td>
<td>38 (> 41)</td>
</tr>
<tr>
<td>L. median sensory digit II</td>
<td>wrist</td>
<td>no response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. ulnar sensory digit V</td>
<td>wrist</td>
<td>3.0 (< 2.9)</td>
<td>12.0 (> 5)</td>
<td>36 (> 39)</td>
</tr>
<tr>
<td>R. radial sensory wrist</td>
<td>snuff box</td>
<td>2.2 (< 2.7)</td>
<td>6.6 (> 18)</td>
<td>46 (> 44)</td>
</tr>
</tbody>
</table>

Figure 1. Right hemidiaphragm elevation. PA chest radiograph demonstrating marked upward displacement of the right hemidiaphragm.
muscles compounded the problem. Hypercarbia and dependence on nocturnal mechanical ventilation provided clinical confirmation of respiratory muscle failure.

Three case reports describe diaphragm weakness in patients with systemic amyloidosis – two with multiple myeloma and one with undefined amyloid [1–3]. Our patient represents the first report of diaphragm paralysis in primary systemic (AL) amyloidosis. Prior cases documented diaphragmatic amyloid deposits surrounding vessels or atrophic smooth muscle fibers, without clinical or histologic signs of neuropathy. Diaphragm dysfunction in these cases was attributed to amyloid-related disruption of muscle fiber length–tension properties or to the compressive effects of extracellular ‘amyloid muscle pseudohypertrophy’ [3].

Our data offer a different apparent mechanism of disease: AL amyloid-induced phrenic nerve damage. Multiple motor and sensory neuropathies preceded diaphragm dysfunction, fulfilling criteria for mononeuropathy multiplex. The neuropathies progressed despite bone marrow ablation and stem cell transplantation for AL amyloidosis, ultimately disrupting diaphragm function. Normal proximal muscle strength and absence of myopathic signs on repeated EMG studies excluded primary amyloid myopathy. Additionally, unilateral hemidiaphragm elevation is characteristic of phrenic nerve disorders, not infiltrative diaphragmatic myopathies.

Mononeuropathy multiplex is an unusual neurologic presentation of AL amyloidosis [5]. Polyneuropathy complicates AL amyloidosis in 17–35% of cases, typified by symmetric distal sensorimotor axonal degeneration affecting small nerve fiber function [6,7]. Over the past 7 years, we treated 99 AL patients with severe peripheral neuropathy manifest as symmetric lower extremity paraesthesias and sensory loss. None developed mononeuropathy multiplex or diaphragm paralysis. A related condition, MGUS-associated multifocal motor neuropathy, can induce phrenic nerve paralysis [8], however co-existent sensory deficits, lack of conduction block, and absence of ganglioside antibodies excluded that diagnosis. Myasthenia gravis was ruled out by normal extraocular and bulbar muscle function with undetectable anti-acetylcholine receptor antibody titers.

The mechanism by which AL amyloidosis induces axonal nerve degeneration is unknown. Biopsies documenting endoneural vascular infiltration or perivascular amyloid deposition support ischemic injury to the nerve, while compressive injury might occur from extraneural deposits [6,9]. Alternatively, circulating free light chain may injure small nerve fibers by increasing cellular oxidative stress [10,11].

Treatment toxicities could cause diaphragm paralysis. Our patient received melphalan and glucocorticoids. Melphalan has never been associated with diaphragm paralysis or respiratory muscle dysfunction. In contrast, chronic dexamethasone administration induces types I and II fiber atrophy in rat diaphragms [12], implicating it in respiratory muscle weakness. Despite treating 37 AL patients with a dexamethasone salvage protocol at Boston University, steroid-related respiratory muscle failure has not occurred.

Amyloid-adenopathy accompanied our patient’s disease. Lymph node injury to recurrent laryngeal and phrenic nerves occurs in cancers and granulomatous diseases [13]. Similarly, neurofibromata induce diaphragm paralysis by compressing cervical nerves exiting the spine [14]. CT and MRI studies of our patient excluded foraminal pathology of the cervical spine or enlarged lymph nodes positioned along the course of the right phrenic nerve.

We report the first case of diaphragm paralysis in a patient with AL amyloidosis. Amyloid-induced mononeuropathy multiplex offers a new potential mechanism of phrenic nerve injury. Patients with AL disease and mononeuropathy multiplex should have respiratory muscle function checked periodically.

Acknowledgments
The authors gratefully acknowledge expert support and contributions of staff from the Stem Cell and Amyloid Treatment and Research Programs. Supported by grants from NIH (HL 68705), FDA (FD-R-002532-01), the Gerry Foundation, the Young Family Amyloid Research Fund, and the Amyloid Research Fund at Boston University.
References

