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Molecular mechanisms of neutrophil recruitment elicited by
bacteria in the lungs

Joseph P. Mizgerd

The recruitment of leukocytes to an extravascular destination
requires intercellular communication between tissue cells and
leukocytes. The molecules mediating this intercellular com-
munication play differing roles in recruiting different types
of leukocytes, in response to different stimuli, in different
tissues, and in different hosts. The present communication
reviews the adhesion molecules, chemokines, other cytokines,
and NF-κB proteins which regulate the recruitment of neu-
trophils elicited by bacteria in the lungs.
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Contextual specificity of leukocyte recruitment

Leukocyte recruitment requires signals that direct
leukocytes out of the blood and into and through
the tissue to a desired site. Infection, injury, and
inflammation induce the elaboration of adhesion
molecules and chemoattractants which guide
the migration of leukocytes expressing surface
receptors for these molecules (see References 1,2
for overview). Leukocyte recruitment is dependent
on such intercellular signalling molecules, but the
roles of particular molecules vary and are specific to
multiple parameters, including the following:

Cell

The recruitment of different types of leukocytes
within a given setting may be mediated by distinct
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sets of molecules. For example: during ocular
onchocerciasis, the recruitment of neutrophils
requires platelet-endothelial cell adhesion molecule
(PECAM)-1 but not intercellular adhesion molecule
(ICAM)-1 whereas the recruitment of eosinophils
requires ICAM-1 but not PECAM-1;3 after intra-
tracheal instillation of recombinant chemokine,
macrophage inflammatory protein (MIP)-2 recruits
neutrophils4 whereas monocyte chemoattractant
protein (MCP)-1 recruits monocytes;5 during
Streptococcus pneumoniae pneumonia, blockade of
multiple CC chemokines decreases the recruitment
of monocytes but not of neutrophils.6

Tissue

Recruitment of a single type of leukocyte by a
given stimulus may be mediated by distinct sets
of molecules in different organs or tissues. For
example: neutrophil recruitment elicited by S.
pneumoniae requires E- or P-selectins and CD18 in
abdominal tissues but not in the lungs;7–9 eosinophil
recruitment elicited by interleukin (IL)-4 requires
vascular cell adhesion molecule (VCAM)-1 in the
skin but not in the pleural space;10 neutrophil
recruitment elicited by IgG immune complexes
requires complement C3 in the lungs but not in the
skin.11

Stimulus

Recruitment of a single type of leukocyte in a
given tissue may be mediated by distinct sets of
molecules in response to different stimuli. For
example: neutrophil recruitment in the lungs
requires CD18 when elicited by Escherichia coli
lipopolysaccharide (LPS) or Pseudomonas aeruginosa,
but not when elicited by S. pneumoniae;12 neutrophil
recruitment in the lungs requires CD49b and CD49d
when elicited by the chemokine KC, but not when
elicited by LPS.13

123



J. P. Mizgerd

Host

Recruitment of a single cell-type within a specific
tissue by a given stimulus may be mediated by distinct
sets of molecules in different hosts (with differing
genetic and/or environmental constraints). For
example: neutrophil recruitment typically requires
CD18 during acute P. aeruginosa pneumonia, but
not if the host was previously infected in the same
site with that organism;14 neutrophil recruitment
typically requires E- and P-selectins during acute
dermatitis, but not if the hosts have spontaneous or
experimental chronic dermal lesions elsewhere;15

neutrophils express CCR1 and CCR2 receptors and
respond to the chemokine MCP-1 in rats with chronic
vasculitis, but not in naïve rats.16

As the above examples illustrate, mammals have
a diverse set of molecular pathways available for
responding to wide varieties of insults, injuries, and
infections. In this respect, an element of ‘specificity’
underlies even ‘innate’ (non-specific) immune
responses. This contextual specificity necessitates
that molecules regulating leukocyte recruitment
are studied in integrated, relevant, well-defined
experimental systems. The present communication
reviews the molecular signals which mediate the
emigration of neutrophils in the lungs in response to
bacteria or bacterial products in the air spaces.

Neutrophils in the lungs

Even in the absence of pulmonary inflammation,
neutrophils are concentrated in the pulmonary
capillaries compared to the systemic blood.17 This
concentration of neutrophils likely results from
the narrow diameter of pulmonary capillaries
relative to spherical neutrophils, suggesting that
neutrophil transit through the pulmonary capillaries
is dependent on cellular deformation. Inflammatory
stimuli, such as bacteria in the lungs or blood,
increase the numbers of neutrophils within the
pulmonary capillaries. This accumulation results
from neutrophil stiffening, trapping neutrophils
within the pulmonary capillaries, and adhesion to
endothelial cells, prolonging neutrophil retention.
When inflammatory stimuli (such as microbes)
are present in the alveolar air spaces, neutrophils
emigrate from the pulmonary capillaries.18 At
least one anatomic pathway by which neutrophils
emigrate during respiratory infection is between
endothelial cells, through pre-existing holes in the

Figure 1. Molecular mechanisms by which neutrophil
recruitment is stimulated by gram-negative bacteria in
rodent lungs. Neutrophils constitutively express the recep-
tors CXCR2 and CD11/CD18. Upon ligand binding,
CXCR2 induces ‘inside–out’ signalling through integrins
including CD11/CD18 (enhancing adhesion), and sig-
nalling pathways from both CXCR2 and CD11/CD18
induce cytoskeletal reorganizations directing neutrophil
recruitment. The expression of ligands for these receptors,
including the chemokines KC and MIP-2 and the adhesion
molecule ICAM-1, is induced by gram-negative bacteria in
the lungs and by cytokines elicited by these bacteria. Inter-
rupting the function of CXCR2, KC, MIP-2, CD11/CD18,
or ICAM-1 compromises neutrophil recruitment elicited
by gram-negative bacteria or LPS in the lungs. The NF-κB
subunit RelA activates gene transcription and is necessary
for KC, MIP-2, and ICAM-1 expression and neutrophil
recruitment elicited by bacterial LPS in the lungs.

sub-endothelial basement membrane, along the
surface of interstitial fibroblasts to pre-existing holes
in the sub-epithelial basement membrane, between
type 1 and type 2 alveolar epithelial cells, and into the
alveolar air space.19,20 Some molecular interactions
which induce neutrophils to make such journeys
during respiratory infection are summarized in
Figure 1 and discussed further below.

Neutrophil recruitment during pneumonia:
adhesion molecules

The recruitment of leukocytes requires them
to transiently attach to endothelial cells and
then subsequently to cells and substrates in the
extravascular tissue. Cells attach to other cells and
to extracellular matrix components using adhesion
molecules.1
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Selectins are lectin-like adhesion molecules which
bind modified glycoconjugate ligands rapidly but
briefly. Under flow conditions, selectin–ligand
interactions result in rolling of neutrophils along
endothelial surfaces, which can be important
in emigration of neutrophils from postcapillary
venules. However, rolling of neutrophils along the
endothelium is unlikely to contribute to emigration
from the pulmonary capillaries, since geometric
constraints preclude such rolling.17 In addition
to facilitating rolling, selectins can also function
as signal-inducing receptors.21 Perhaps because
of this, inhibition of selectin–ligand interactions
compromises neutrophil emigration in the distal
lung during some inflammatory reactions, such
as that elicited by intrapulmonary IgG immune
complexes.22 Thus, selectins could be necessary for
neutrophil emigration elicited by bacteria in the
lungs, even in the absence of rolling requirements.

This hypothesis was tested by comparing neutrophil
emigration elicited by S. pneumoniae in the lungs of
wild type (WT) mice and mice deficient in both
E- and P-selectins, which are typically expressed
by endothelial cells at sites of inflammation. In
contrast to acute neutrophil emigration elicited
in the peritoneal cavity by S. pneumoniae or
thioglycollate8 or in the skin by croton oil,15

neutrophil emigration elicited by S. pneumoniae in
the lungs is not compromised by the combined
deficiency of E- and P-selectins.9 Furthermore,
fucoidin, which inhibits the remaining selectin
molecule (L-selectin, expressed by leukocytes),
does not decrease neutrophil emigration in S.
pneumoniae-infected lungs of mice deficient in both
E- and P-selectins.9 Thus, S. pneumoniae in the lungs
elicits neutrophil emigration which does not require
selectins.

Integrins are heterodimeric adhesion molecules
composed of transmembrane α and β chains. The β2
chain (CD18), expressed exclusively by leukocytes,
pairs with 1 of the 4 α chains of the CD11 family.
CD11/CD18 molecules mediate firm adhesion to
endothelial cells by binding diverse ligands including
ICAM-1. CD11/CD18 adhesion molecules are
essential to neutrophil emigration in many settings.1

Studies using function-blocking antibodies suggest
that CD11/CD18 adhesion molecules contribute
to neutrophil recruitment in the lung, but the
relative role of CD11/CD18 is specific to the stimulus
initiating inflammation. Blocking antibodies against
CD11/CD18 decrease neutrophil emigration to
∼30% of control values after instillation of E. coli, E.

coli LPS, or P. aeruginosa,7,23,24 whereas they do not
affect emigration elicited by S. pneumoniae, Group B
Streptococcus, or Staphylococcus aureus.7,24,25

Mice with a gene-targeted deficiency of CD1826

provide an independent tool, subject to different sets
of limitations than blocking antibodies, for studying
CD11/CD18 function in vivo. Leukocytes from
CD18-deficient mice do not express CD11/CD18.
In contrast to expectations from the blocking
antibody studies, CD18-deficient mice demonstrate
a significant increase in numbers of emigrated
neutrophils compared to WT in response to either
E. coli or S. pneumoniae in the lungs.27 These results
definitively confirm that CD11/CD18-independent
pathways for neutrophil emigration can be elicited
by bacteria in the lungs, but they fail to demonstrate
a role for CD11/CD18-dependent pathways, perhaps
due to phenotypic alterations from CD18 deficiency.

CD18 deficiency escalates peripheral blood
neutrophil counts, due to roles of CD11/CD18
in regulating both immune and hematopoietic
functions.28 This peripheral blood neutrophilia
makes it difficult or impossible to collect appropriate
control values or to derive an ‘expected’ value for
emigrated neutrophils in tissues of CD18-deficient
animals. In order to directly compare the abilities
of WT and CD18-deficient neutrophils to emigrate
in response to stimuli in the lungs, mice with both
types of neutrophils circulating in their blood were
generated. C57BL/6 mice were lethally irradiated,
and their hematopoietic systems were reconstituted
from mixtures of WT and CD18-deficient fetal liver
cells. After intratracheal instillation of E. coli LPS
or of P. aeruginosa, a smaller fraction of emigrated
neutrophils were CD18-deficient compared to the
fraction of circulating neutrophils,12 indicating that
CD18-deficient neutrophils are compromised in their
ability to emigrate compared to WT cells. In contrast,
after instillation of S. pneumoniae, there were no signif-
icant differences in the fractions of emigrated and cir-
culating neutrophils that were CD18-deficient,12 indi-
cating that CD18-deficient neutrophils are as capable
as WT neutrophils of emigrating in response to this
stimulus. Thus, different techniques of inhibiting
CD11/CD18 function (blocking antibodies and gene
targeting), with disparate sets of limitations, each
result in the conclusion that neutrophil emigration in
the lungs can be elicited via CD11/CD18-dependent
pathways and via CD11/CD18-independent pathways.
The data to date suggest that gram-negative bacteria
in the lungs induce predominantly CD11/CD18-
dependent emigration, and gram-positive bacteria
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in the lungs induce predominantly CD11/CD18-
independent emigration.

ICAM-1, a ligand for CD11/CD18 and a member
of the immunoglobulin gene superfamily, is
expressed at low levels basally on pulmonary
capillary endothelial cells and is further induced
in response to LPS in the lungs.29,30 Blocking
ICAM-1 function with antibodies, or decreasing
its expression with antisense oligonucleotides,
decreases neutrophil emigration elicited by LPS or P.
aeruginosa in the lungs.23,31 Thus, ICAM-1 mediates
neutrophil emigration in the lungs elicited by these
gram-negative bacterial stimuli.

Two independent lines of mice with insertions
in the ICAM-1 gene,32,33 designed to eliminate its
expression, resulted in the discovery that multiple
ICAM-1 gene products arise from alternative
splicing.34,35 Some of the alternatively spliced forms
appear to be LPS-inducible and especially abundant
in the lungs.34 Neutrophil emigration elicited by
LPS in the lungs is not altered by gene targeting
that eliminates full length ICAM-1 but spares subsets
of alternatively spliced forms,31 suggesting that the
alternatively spliced forms may perform essential
functions of ICAM-1 in mediating this neutrophil
emigration. It is also possible that other, ICAM-
1-independent pathways are responsible for the
surprising lack of effect of ICAM-1 gene targeting on
neutrophil emigration elicited by LPS in the lungs.
The potential roles of alternatively spliced forms of
ICAM-1 in regulating neutrophil recruitment remain
to be determined.

Additional adhesion molecules also contribute
to neutrophil emigration elicited by bacterial
stimuli in the lungs. In response to LPS, neutrophil
recruitment into the pulmonary air spaces is
diminished by blocking antibodies against CD29,
CD49e, or CD49f, suggesting that the β1 integrins
very late antigen (VLA)-5 (CD49e/CD29) and VLA-6
(CD49f/CD29) contribute to this process.13 The β1
integrin ligands essential to neutrophil emigration
elicited by LPS in the lungs remain to be identified,
but VLA-5 and VLA-6 may mediate neutrophil
recruitment by binding fibronectin and laminin and
facilitating transit through the interstitium.13 The
glycosylphosphatidylinositol-anchored urokinase
receptor (uPAR) can mediate adhesion to substrates
and can alter the adhesion and signalling properties
of CD11/CD18 and other adhesion molecules,
in addition to acting as a receptor for urokinase-
type plasminogen activator (uPA).36 The genetic
deficiency of uPAR, but not of uPA, decreases

neutrophil emigration elicited by P. aeruginosa in the
lungs,37 suggesting that uPAR facilitates neutrophil
emigration independent of its interactions with
uPA, perhaps by directly or indirectly regulating
cellular attachment. Finally, neutrophil emigration
elicited by gram-positive bacteria in the lungs has
not yet been demonstrated to be dependent on any
adhesion molecule, to the author’s knowledge. Such
neutrophil recruitment may require novel, yet to be
identified adhesion molecules.

Neutrophil recruitment during pneumonia:
chemokines

Chemokines are chemotactic cytokines that stimulate
the directed migration of cells expressing their
cognate receptors.2 Chemokines also facilitate
adhesion, by inducing intracellular signalling
pathways which result in conformational changes
in integrins such as CD11/CD18, promoting firm
adhesion to their ligands. Chemokines are classified
according to their primary structure, and peripheral
blood neutrophils express receptors for chemokines
of the α (CXC) family which contain the glutamic
acid-leucine-arginine (ELR) motif. Humans and
rodents have genes for similar but nonidentical
sets of ELR+ CXC chemokines. ELR+ CXC
chemokines stimulate neutrophil chemotaxis in
vitro, and intratracheal instillation of the ELR+

CXC chemokine MIP-2 recruits neutrophils into the
pulmonary air spaces in vivo.4

ELR+ CXC chemokines are essential to neutrophil
emigration induced by bacteria or LPS in the
lungs. Blocking antibodies against either KC or
MIP-2 decrease neutrophil recruitment elicited
by intrapulmonary LPS in rats,38,39 suggesting
that each of these chemokines is independently
essential for maximal neutrophil recruitment in this
setting. During pulmonary infection with Klebsiella
pneumoniae, blocking the function of either MIP-2
or Lungkine inhibits neutrophil recruitment in the
lungs of mice,40,41 again suggesting independent
roles for different ELR+ CXC chemokines. During
Legionella pneumophila pneumonia, neutrophil
recruitment is inhibited to a greater degree by
blocking the receptor CXCR2 (which recognizes
both KC and MIP-2) than by simultaneously blocking
both KC and MIP-2, suggesting that CXCR2 ligands
other than KC and MIP-2 contribute to neutrophil
recruitment during this infection.42 Thus, multiple
ELR+ CXC chemokines have essential independent
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roles in regulating neutrophil emigration induced by
bacterial stimuli in the pulmonary air spaces.

The reasons behind independent requirements for
multiple ELR+ CXC chemokines are not obvious.
The directed migration of neutrophils from within
the pulmonary capillaries, between endothelial cells,
across the interstitium, between epithelial cells, and
into the alveolar air spaces may require sequential
interactions with different chemokines present in
distinct anatomic locations. Microenvironments with
unique chemokine characteristics may result from
differential chemokine expression by local cells, or
differential retention or presentation of chemokines
by cells or matrix components.43–45

Other classes of chemokines may also mediate neu-
trophil recruitment elicited by bacterial stimuli in the
lungs. Blocking antibodies against the β family (CC)
chemokine MIP-1α decrease neutrophil emigration
induced by LPS in rats,46 although it is unclear
whether the essential role for MIP-1α in this setting
involves signalling to neutrophils or to other cells.
Receptors for and responsiveness to CC chemokines
are increased in neutrophils by treatment with
the cytokines interferon (IFN)-γ , tumor necrosis
factor (TNF)-α, or granulocyte-macrophage colony
stimulating factor (GM-CSF) in vitro.47–49 Since
IFN-γ , TNF-α, and GM-CSF are elaborated during
bacterial pneumonias, CC chemokines may directly
influence neutrophil functions during infection.
Chronic inflammation in rats (induced by adjuvant
immunization) stimulates circulating neutrophils
to express the receptors CCR1 and CCR2 and to
migrate to the CC chemokine MCP-1 both in vivo
and in vitro,16 demonstrating that altered receptor
expression opens new pathways for neutrophil
recruitment. Furthermore, circulating neutrophils
in human patients with sepsis have decreased
surface expression of CXCR2 and decreased in
vitro responses to several ELR+ CXC chemokines,50

suggesting that altered receptor expression may
bar otherwise available pathways for neutrophil
recruitment. Thus, the roles of specific chemokines in
regulating neutrophil recruitment will likely change
during the progression of pulmonary infection and
may be affected by other inflammatory diseases.

Neutrophil recruitment during pneumonia:
TNF and IL-1

During bacterial pneumonia, multiple stimuli may
induce the expression of chemokines and adhesion

molecules in the lungs. The earliest signalling events
are likely initiated by receptors recognizing and
responding to bacterial products such as LPS.51

Subsequently, mediators elaborated by the host,
such as the cytokines TNF and IL-1, may amplify,
propagate, and prolong the expression of these
essential genes. For some lung inflammations, such
as that induced by the intrapulmonary formation of
IgG immune complexes, TNF-α and IL-1β are each
independently essential for neutrophil emigration in
the lungs.52

Each of 2 different receptors for TNF-α,
TNF receptor 1 (TNFR1) and TNFR2, induces
signalling and gene expression in vitro (reviewed
in Reference 53). TNFR1 is preferentially activated
by soluble forms of TNF-α, whereas TNFR2 is
preferentially activated by TNF-α that is presented
on cellular surfaces.54 During pulmonary infection
with E. coli, the deficiency of both TNFR1 and
TNFR2 results in greater numbers of neutrophils
in the lungs compared to WT.55 Decreased killing
of intrapulmonary bacteria is observed during
E. coli pneumonia in TNFR1/TNFR2-deficient
mice,55 suggesting that increased emigration may
have resulted from increased bacterial stimuli
in the lungs. Many,55–59 but not all,60,61 studies
demonstrate bacterial killing in the lungs to require
TNF-α signalling. Studies of neutrophil emigration
in response to bacteria or bacterial LPS in the
lungs show varying effects of inhibiting TNF-α
signalling, including increased emigration,55,61

no effect on emigration,59,60,62,63 or decreased
emigration.56,58,61,64

Some investigators report varied responses within
their studies, which may help illuminate biologically
relevant sources of this variability. Skerrett et al.
observed that neutrophil emigration elicited by
aerosolized LPS was diminished by TNFR1 deficiency
whereas that elicited by aerosolized P. aeruginosa was
not,61 and Peschon et al. observed that neutrophil
emigration elicited by repeated intranasal challenge
with Micropolyspora faeni antigen was diminished
by TNFR1/TNFR2 deficiency whereas that elicited
by an intranasal insufflation of LPS was not.63

Thus, TNF signalling may have different roles
in mediating neutrophil emigration in response
to different stimuli. Ulich et al. observed soluble
TNFR1 to diminish neutrophil emigration 6 h after
LPS instillation, but not at 4 or 12 h after LPS
instillation.64 And Laichalk et al. observed that
an inhibitor based on soluble TNFR2 significantly
diminished neutrophil emigration 48 h after
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instillation of K. pneumoniae, but not 24 h after
instillation.58 Thus, TNF-α signalling may be
essential to neutrophil emigration for very limited
time frames, which also may differ across stimuli.
Considered together, these studies suggest that, in
some settings, TNF-α plays a limited but essential role
in neutrophil emigration elicited by bacterial stimuli
in the lungs. However, altogether, these studies
provide substantial evidence for TNF-independent
pathways for neutrophil emigration in response to
bacterial stimuli in the lungs.

Like TNF-α, IL-1 binds to 2 different receptors,
the type I IL-1 receptor (IL1R1) and the type II
IL-1 receptor (IL1R2). IL1R2 does not elicit second
messenger signalling or cellular responses such
as gene expression (see Reference 65 for review);
only IL1R1 induces signals from IL1α or IL-1β.
Although IL1R1, TNFR1, and TNFR2 associate with
diverse adapter proteins, their signalling pathways
partially overlap, eliciting common transcription
factors and similar patterns of gene expression (e.g.
see References 66, 67). Thus, IL-1 and IL1R1 may
mediate similar functions as TNF-α and its receptors,
and may facilitate the emigration of neutrophils in
the lungs in the absence of TNF-α signalling.

To begin testing this hypothesis, neutrophil
emigration induced by E. coli in the lungs was
compared in WT mice and mice deficient in both
TNFR1, the primary receptor for soluble TNF-α, and
IL1R1, the only receptor for IL-1α and IL-1β. In
contrast to TNFR1/TNFR2 deficient mice55 and to
mice deficient in IL1R1 alone,68 mice deficient in
both TNFR1 and IL1R1 exhibit a significant defect
in E. coli-induced neutrophil emigration.68 These
data suggest that downstream signals which can be
elicited by either TNFR1 or IL1R1 are required for
neutrophil emigration elicited by E. coli in the lungs.

Both TNFR1 and IL1R1 induce the nuclear
translocation of NF-κB transcription factors
(discussed below), and the nuclear accumulation
of NF-κB in the lungs during IgG immune
complex inflammation requires both TNF and
IL-1 signalling.69 However, the nuclear accumulation
of NF-κB in the lungs is not detectably different
between WT and TNFR1/IL1R1 deficient mice
during E. coli pneumonia,68 suggesting that NF-
κB translocation in the lungs does not require
these receptors during this infection and that the
decrease in neutrophil emigration in TNFR1/IL1R1
deficient mice does not result from diminished
NF-κB translocation in lung cells. In contrast, NF-κB
translocation in the liver during E. coli pneumonia is

significantly inhibited by TNFR1/IL1R1 deficiency,68

indicating that these cytokine receptors are essential
for this response. NF-κB translocation in the liver
may contribute to maximal neutrophil emigration
induced by bacteria in the lungs, since liver-
derived acute phase proteins such as serum amyloid
A and complement C3 are dependent on NF-
κB70–72 and can facilitate neutrophil emigration
and activation.73–76 In addition, the pulmonary
expression of the chemokine KC, but not MIP-2, is
compromised by TNFR1/IL1R1 deficiency.68 Since
KC is essential to maximal emigration elicited by
E. coli LPS in the lungs,38 the decreased expression
of KC in TNFR1/IL1R1 mice may also contribute to
the decreased neutrophil emigration in response to
intrapulmonary E. coli.

It is notable that much of the local inflammatory
response induced by E. coli in the lungs, including
approximately half of the neutrophil emigration,
half of the KC expression, and all of the MIP-2
expression and NF-κB translocation, was unabated
by the deficiency of both TNFR1 and IL1R1.
These data suggest either that much of the initial
inflammatory response to E. coli in the lungs
does not require signalling by TNF-α or IL-1
or that other receptors are mediating signals in
response to these cytokines. TNFR2 is capable of
signalling from TNF-α, especially membrane-bound
TNF-α,54 and hence TNF-α signalling via TNFR2
may contribute to neutrophil emigration, NF-κB
translocation, and gene expression in this setting.
Ongoing experiments are designed to examine
the inflammatory responses to intrapulmonary
bacteria and LPS in gene-targeted mutant mice
with combined deficiencies of all three signalling
receptors for these early response cytokines (TNFR1,
TNFR2, and IL1R1).

Neutrophil recruitment during pneumonia:
other cytokines

Signaling from other cytokines can also regulate
neutrophil recruitment elicited by bacterial stimuli
in the lungs. Neutrophil emigration elicited by K.
pneumoniae in the lungs is diminished by genetic
deficiency of the IL-17 receptor;77 IL-17 may
facilitate emigration by increasing the number
of neutrophils available in the blood and/or by
increasing chemokine expression in the lungs.77

In contrast to the other mediators discussed above,
IL-6 limits LPS-elicited neutrophil emigration in
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the lungs. Exogenous IL-6 decreases LPS-elicited
neutrophil recruitment in rat lungs,78 and IL-
6-deficiency increases LPS-elicited neutrophil
recruitment in mouse lungs.79 IL-6 may limit LPS-
elicited neutrophil emigration by decreasing the
pulmonary expression of TNF-α, MIP-2, and other
cytokines.79

Neutrophil recruitment during pneumonia:
NF-κκκB

The coordinated expression of adhesion molecules
and cytokines required for neutrophil recruitment
may be mediated in part by transcription factors
that bind to promoter elements common to their
genes. Genes for ICAM-1, KC, MIP-2, and many
other neutrophil receptor ligands contain functional
κB sites in their upstream untranslated regions (see
Reference 80 and references therein), suggesting that
these genes (and, hence, neutrophil recruitment)
may be regulated by the NF-κB family of transcription
factors. NF-κB proteins are inhibited by IκB proteins
under basal conditions. The intratracheal instillation
of E. coli LPS results in the degradation of IκB-α
and IκB-β and the nuclear translocation of the NF-
κB subunits p65 (RelA) and p50 (Reference 81 and
unpublished observations).

Gene-targeted interruption of RelA results in
embryonic lethality,82 which was hypothesized
to result from an essential role for RelA in the
prevention of apoptosis induced by TNF-α.83

Combining RelA deficiency with the gene-targeted
deficiency of either TNF-α or TNFR1 confirmed this
hypothesis, and mice deficient in both TNF-α or
TNFR1 and RelA (as opposed to those deficient in
RelA alone) are born in the expected ratios based on
Mendelian genetics.84–86 Although extremely prone
to infections and with typical lifespans of only several
weeks, these mice provide a window of opportunity
to study innate immune responses in the lungs in the
absence of RelA.

The intranasal insufflation of E. coli LPS results in
the accumulation of neutrophils in the alveolar air
spaces of WT mice which are 3–5 days old.86 This
LPS-elicited neutrophil emigration is not significantly
affected by TNFR1 deficiency, but it is significantly
reduced in mice deficient in both TNFR1 and RelA
when compared to either WT or TNFR1-deficient
mice.86 Thus, RelA is essential to LPS-induced
neutrophil recruitment in the lungs.

Pulmonary expression of the chemokines KC and
MIP-2 and the adhesion molecule ICAM-1 is also
dependent on RelA. The LPS-induced expression
of KC and MIP-2 in the lungs is not significantly
affected by TNFR1-deficiency, but expression of both
chemokines is almost completely inhibited by the
combined deficiency of TNFR1 and RelA.86 ICAM-1
transcript levels in the lungs do not differ across these
3 genotypes prior to LPS insufflation.86 The LPS-
induced increase in pulmonary ICAM-1 expression
is reduced by the deficiency of TNFR1 alone, and
yet further reduced by the combined deficiency of
TNFR1 and RelA.86 Therefore, RelA promotes the
coordinated expression of adhesion molecules and
chemokines essential to neutrophil emigration in
response to bacterial LPS in the lungs.

RelA contains a transactivation domain which
promotes gene expression by engaging trans
activators which remodel chromatin and recruit RNA
polymerase activity.87,88 In contrast, p50 does not
contain a transactivation domain. Despite this lack,
interactions with other nuclear proteins allow p50 to
engage trans activators and promote gene expression
under some circumstances.89,90 However, p50 can
also repress gene expression,91–94 by mechanisms
which remain largely speculative. While it is clear
that p50 translocates to the nucleus in response
to LPS or bacteria in the lungs, its functions in
promoting and/or repressing the local expression of
genes that regulate innate immunity and neutrophil
recruitment remain to be demonstrated.

Conclusions

Lung infections are common and important causes
of morbidity and mortality.95,96 Innate immune
functions, including the recruitment and activation of
neutrophils, determine the outcome of interactions
with microbes in the lungs. Insights into the
functional roles of adhesion molecules, cytokines,
and regulatory factors in mediating pulmonary
immune responses may contribute to rationally
designing and appropriately using therapeutic
and prophylactic agents. The specificity of distinct
molecular responses to diverse physiological settings
will need to be considered for strategies aimed
at altering leukocyte recruitment in order to
improve host defense (e.g. against antibiotic-resistant
organisms) or to prevent inflammatory injury (e.g.
respiratory distress or cardiovascular collapse).
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