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Pneumonia is a type of acute lower respiratory infection that is common and severe. The
outcome of lower respiratory infection is determined by the degrees to which immunity
is protective and inflammation is damaging. Intercellular and interorgan signaling net-

works coordinate these actions to fight infection and protect the tissue. Cells residing in the lung
initiate and steer these responses, with additional immunity effectors recruited from the blood-
stream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are
essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also
be counterproductive and drive acute and chronic comorbidities after respiratory infection. This
review discusses cell-specific and organ-specific roles in the integrated physiological response to
acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute
to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary
disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as
simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly under-
stood chronic conditions, and pneumonia results in diverse and often persistent deleterious
consequences for multiple physiological systems.
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I. INTRODUCTION

Pneumonia is responsible for an extremely large burden of
disease across the earth, more than diseases such as cancer,
diabetes, HIV/AIDS, malaria, and many other diseases rec-
ognized as leading global health problems (330, 335, 336,
350, 351). Burden of disease is calculated from disability-
adjusted life years lost, and the appalling global burden of
pneumonia results in part from the fact that pneumonia
kills more children worldwide than does any other disease
(425, 528). In the United States (US), children more com-
monly survive pneumonia, but even in such advantaged
countries pneumonia is the most common reason for chil-
dren to be hospitalized (566). A fifth of those children need
to be in the intensive care unit (ICU), and a third of those
require mechanical ventilation (228). After children are re-
leased from the hospital, they have increased risk of chronic
respiratory diseases including asthma and chronic obstruc-
tive pulmonary disease (COPD) (123, 188), which is a fur-
ther burden of this disease that does not get factored into
such calculations.

As dispiriting as those pediatric statistics are, the popula-
tion most afflicted by pneumonia is older adults, who have
incidence and risk of death from pneumonia that are orders
of magnitude greater than for children (174, 407). For se-
niors, pneumonia hospitalization has a higher risk of death
than any of the other common causes of hospitalization
(147). Pneumonia causes more deaths in the US (and glob-
ally) than does any other infectious disease (185). However,
most of even the oldest do survive (131). The economic
costs are staggering, with estimates ranging from nearly 20
billion dollars to more than 80 billion dollars per year in the
US (136, 189, 565). And after all this immediate suffering
and cost, additional indirect and longer term consequences
include cognitive decline comparable to traumatic brain
injury, greater incidence and severity of depression, wors-
ened cardiovascular and cerebrovascular health, physical
limitation, and decreased life-span (39, 88, 196, 376, 431,
445). Pneumonia prevention measures like influenza and
pneumococcal vaccines are sufficient to decrease risk,
thereby demonstrating causal relationships between pneu-
monia and longer term extrapulmonary outcomes (415,
503).

Pneumonia demands extraordinary attention from the bio-
medical community, as a direct cause of morbidity and
mortality and as a contributor to unhealthy aging and de-
cline. While pneumonia results from microbial infection,
the pathogenesis of this disease is driven by the host re-
sponse. Within the host, pneumonia is by definition within
the lungs, but it is a complex disease that involves diverse
physiological systems working together. Although pneumo-
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nia is an acute event, it is prompted by preexisting chronic
conditions, and it has long-term consequences. Thus pneu-
monia is an acute lower respiratory tract infection that is
more than acute, more than lower respiratory tract, and
more than infection.

Our goal with this review is to highlight evolving concepts
related to pneumonia biology. First, we emphasize the im-
portance of the host response. Pneumonia is an unusual
result of infection with commonly encountered microbes;
disease is the exception rather than the norm. Knowing
“what goes right” to prevent pneumonia during the vast
majority of times that these microbes get into our lungs
seems key to conceptualizing methods to better prevent and
cure this disease. Second, we advocate reenvisioning pneu-
monia as not just an acute event, but rather as a chronic
condition of heightened susceptibility. The mechanisms re-
sponsible for susceptibility must be better elucidated so they
can be interrupted. Third, we wish to increase attention on
pneumonia consequences outside of the lung. Physiological
pathways are only beginning to be defined for the extrapul-
monary manifestations of pneumonia. And fourth, we high-
light that pneumonia has physiological consequences that
persist beyond the time course of the pneumonia itself.
Pneumonia events lead to prolonged morbidity and earlier
mortality, with greater mechanistic insight needed. Im-
proved knowledge in these areas could lead to adjunct ther-
apies that target the wider and longer impacts of pneumonia
on its victims.

II. HOST-PATHOGEN INTERACTION

Pneumonia is an infection of the lung causing exudative
fluid to accumulate in the pulmonary parenchyma, compro-
mising respiratory function. Diagnosis depends on evidence
of pulmonary consolidation (based on auscultation or radi-
ology) in conjunction with evidence of infection (based on
microbiology or on general signs such as fever, malaise,
leukocyte shifts, etc.) with an acute onset. It does not have a
clinical definition that is established by an adjudicating
body and uniformly applied by the medical community.
Pneumonia is by far the most common cause of sepsis (320,
516), which has been defined by an international task
force as organ dysfunction due to a dysregulated host
response to infection that is severe enough to be life-
threatening (454). Pneumonia is distinguished from
other forms of sepsis by the location; when the infection
causing dysregulated host response is in the lungs, then it
is pneumonia. Pneumonia causes the majority (33, 62) of
cases of the acute respiratory distress syndrome (ARDS),
which has been defined (486a) as being acute in onset (�1
wk) with diffuse (bilateral) pulmonary edema (not due to
elevated hydrostatic pressure) and arterial hypoxemia
(the degree of which stratifies severity). Pneumonia is
distinguished from other forms of ARDS by etiology;
when the lungs contain fluid because of microbes present

there, then pneumonia is the cause of ARDS. The fact
that patients with pneumonia often become reclassified
as patients with sepsis or ARDS when they advance to
those stages confounds the discussion and understanding
of pneumonia. Sepsis and ARDS are immediately life-
threatening forms of severe pneumonia. Characteristics
of sepsis and of ARDS, including their pathophysiologi-
cal mechanisms and poor patient outcomes (19, 315),
should be recognized as consequences of severe pneumo-
nia. The definitions of sepsis and ARDS help advance
research related to those diseases. The lack of an unam-
biguous, uniform, and accepted clinical definition for
pneumonia may complicate research on this disease.

A. The Microbes Causing Pneumonia

Microbe-targeted approaches have proven useful for pneu-
monia. The advent of antibiotics was profoundly impor-
tant, dramatically reducing pneumonia mortality rates in
the US during the mid-20th century (336). Vaccines also
decrease rates of pneumonia in populations in which they
are adopted, modestly but importantly (154, 174, 175).
Thus interfering with the microbial side of this host-patho-
gen interaction driving pneumonia is productive.

Because microbes initiate this disease, changes among mi-
crobes infecting the respiratory tract influence pneumonia
biology. The mutations and reassortments leading to anti-
genic drift and shifts of influenza viruses are prominent
examples (574). Infamously, a strain of H1N1 influenza
virus that emerged in 1918 led to a pandemic with particu-
larly overwhelming increases in morbidity and mortality,
largely due to secondary bacterial pneumonias (341, 342).
A more recent antigenic shift for influenza virus in 2009
caused a pandemic that included severe pneumonias (574).
Sporadic but very severe cases of zoonotic pneumonias
caused by animal-tropic influenza viruses demonstrate that
highly pathogenic influenza viruses are always nearby (150,
545). Although the influenza viruses presently circulating in
animals are not readily transmissible among humans, a few
mutations can change that (291). Other zoonoses cause rare
pneumonias but get considerable attention because of their
bioterrorism potential, including Brucella anthracis, Yer-
sinia pestis, and Francisella tularensis. Some fungi are im-
portant causes of pneumonia within restricted geographic
regions, such as Coccidioides immitis in the southwestern
US or Histoplasma capsulatum in the Missouri, Ohio, and
Mississippi River valleys. Microbes that have prominently
emerged as pneumonia threats in recent decades include
Legionella, Pneumocystis, hantavirus, SARS coronavi-
rus, MERS coronavirus, and more. Some microbes that
have recently become recognized as important causes of
pneumonia may represent a recent emergence of knowl-
edge more than of microbes, including rhinoviruses C
and D, coronaviruses NL63 and HKU1, human metap-
neumoviruses, and more (230). Among pneumonia-caus-

QUINTON ET AL.

1418 Physiol Rev • VOL 98 • JULY 2018 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (155.041.163.053) on May 19, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.



ing bacteria, the emergence and spread of antibiotic re-
sistance is a continuous threat (280). Plasmids containing
carbapenem resistance genes are being passed among
Klebsiella pneumoniae and other pneumonia agents, in-
cluding bacteria already resistant to most other antibiot-
ics (133). The recent discovery of plasmid-mediated
colistin resistance (294, 402, 527) suggests the frighten-
ing prospect of bacterial pneumonias that are resistant to
all currently licensed antibiotics. The expanding myriad
of microbes combined with future prospects of increas-
ingly ineffective antibiotics mean microbe-targeting such
as with antimicrobials and vaccines can achieve successes
but not victory. Alternative and supplementary ap-
proaches, such as modifications of host responses during
pneumonia, are needed.

The etiology of pneumonia is complex and poorly under-
stood, because the microbes causing pneumonia are ex-
traordinarily numerous and extremely varied (FIGURE 1).
The agents identified include many different viruses and
bacteria, and these microbes do not appear to share any
particular characteristics (RNA viruses, DNA viruses, en-
veloped viruses, nonenveloped viruses, Gram-positive bac-
teria, Gram-negative bacteria, cell wall-free bacteria, extra-
cellular bacteria, intracellular bacteria, etc.). Pneumonia
can also be caused by fungal and other infectious agents.
Any given microbe accounts for only a small minority each
of all pneumonia cases (227), with the most common three
for adults hospitalized with community-acquired pneumo-
nia being rhinoviruses (9%), influenza viruses (6%), and
pneumococci (5%). Different populations (children, hospi-
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FIGURE 1. The microbial agents that
cause pneumonia are numerous, diverse,
and poorly understood. Data represent
nonimmunocompromised adult patients
hospitalized for community-acquired pneu-
monia (CAP). Despite intensive efforts, no
microbial agent can be identified in the ma-
jority of pneumonia cases. Among the viral
agents detected, no virus or type of virus
was especially prominent. Among bacte-
ria, pneumococcus was most common,
but a great many species and types of
bacteria were detected. [Data from Jain et
al. (227).]

INTEGRATIVE PHYSIOLOGY OF PNEUMONIA

1419Physiol Rev • VOL 98 • JULY 2018 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (155.041.163.053) on May 19, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.



talized patients, nursing home residents, etc.) have differ-
ent microbes implicated (15, 79), but in each population
it is a spectrum of responsible agents rather than a spe-
cific microbial type. There are few, if any, unifying prin-
ciples to the types of microbe that cause pneumonia.
These diverse etiologic agents encode a wide variety of
microbe-specific virulence pathways that influence the
likelihood that respiratory infection will cause pneumo-
nia. While contributing to pneumonia pathogenesis, mi-
crobial virulence pathways are beyond the scope of this
discussion of host physiology, and readers may wish to
consult other reviews specific to relevant microbes (135,
321, 339, 374, 380, 436, 508).

In many cases, a microbial suspect is not identified (FIGURE
1). Even in studies designed for the purpose of identifying
etiologic agents, a potentially responsible microbe fails to
be detected in about one-fifth of childhood pneumonias
(228) and more than half of adult pneumonias (227). When
one or more microbes are identified, the degree to which it
or they are truly causal is uncertain. In virtually all cases, the
agents recognized as responsible are ubiquitous opportunis-
tic microbes. Most people who encounter these microbes do
not develop pneumonia and do not get seriously ill. Rather,
the interaction usually results in asymptomatic carriage or
subclinical infection. The presence of the microbe does not
mean an individual gets pneumonia. While the microbe is
relevant, whether or not these microbes cause pneumonia
depends more on the host and the host response than on the
microbe or any specific microbial characteristics.

B. Host Responses to Microbes in the Lung

Whether or not microbes in the lung exceed a host’s capac-
ity to maintain pulmonary homeostasis depends on a com-
plex integration of physiological processes, together which
aim to prevent the onset of pneumonia. For these processes
to be effective they must provide adequate levels of both
immune resistance and tissue resilience (407). Immune re-
sistance refers to the eradication of living pathogens during
an infection, whereas tissue resilience involves the preven-
tion of or resolution of injury resulting from the pathogen
and/or from the host response to the pathogen. Inappropri-
ate amounts of either disrupt homeostasis, making both
equally essential. Despite important advances in our under-
standing the pathways comprising resistance and resilience,
the degree to which certain biological signals under certain
circumstances in certain individuals collaborate to dictate
pneumonia outcome remains largely unclear.

III. INNATE IMMUNITY AGAINST
MICROBES IN THE LUNGS

Innate immunity represents the initial preexisting determi-
nant of resistance against invading pathogens. While innate

immunity involves an elaborate network of cells and sig-
nals that actively function to eliminate invading organ-
isms and maintain tissue integrity, defense also includes
the anatomical barriers that restrict the deposition of
microbes within the respiratory tract. Airway architec-
ture not only offers the means to heat, humidify, and
distribute air throughout the respiratory tract, but it also
provides an efficient physical barrier against microbes
and other potentially toxic substances. Examples of an-
atomic protective measures include nasal hairs, the mu-
cociliary escalator, and the epithelial barrier itself, which
ultimately provides the protective interface separating
the external and internal environments (429). Even the
branching pattern of the respiratory tract represents a
critical innate defense. Materials over 3 �m in diameter
have extremely limited access to the lower respiratory
tract due to filtration and impaction in more proximal
airways (21), which has important implications for the
dispersal of infectious substances. Yet, this is insufficient
to wholly prevent microorganisms from accessing the
deeper lung, including the respiratory zone of the alveo-
locapillary interface. Defense against microbes within the
lower respiratory tract then relies on a carefully coordi-
nated immune response that includes both resident and
recruited features. Resident defenses such as soluble an-
timicrobial factors in airway lining fluid and alveolar
macrophages (AMs) provide the initial tier of protection
against microbes, followed quickly thereafter by re-
cruited elements such as extravasated leukocytes and
other immunomodulatory plasma constituents. The re-
sulting inflammation is a hallmark of innate immunity,
involving a panoply of intra- and extrapulmonary cells
and signals, some of which are highlighted below, that
ideally exert an appropriate balance of resistance and
resilience in an effort to re-establish lung homeostasis.

A. Lung Innate Immunity

The recognition of lung pathogens elicits robust remodeling
of the pulmonary transcriptome (e.g., as described in Refs.
162, 246, 259, 409, 546), resulting in the production and
release of mediators that coordinate early protection. These
mediators include a plethora of multifactorial cytokines,
chemokines, growth factors, antimicrobial substances, op-
sonins, enzymes, enzyme inhibitors, adhesion molecules,
receptors, apoptotic factors, anti-apoptotic factors, and
more. This response involves the recruitment and/or activa-
tion of numerous cell types, some of which have only re-
cently become appreciated in the setting of lung immunity.
Moreover, some of these cells function within the lungs,
whereas others do not. All of this must be considered in the
context of an integrated physiological response to lung in-
fection. The initial responses are from cells already present
within the uninfected lung.
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1. Alveolar macrophages

AMs are professional phagocytes that reside on the surface
of the lower respiratory tract. They represent an initial line
of leukocytic antimicrobial defense. Studies in mouse mod-
els indicate that AMs, like other tissue-resident macro-
phages (387), are yolk sac-derived and extremely long-lived
(177, 229, 349). In fact, experiments with GFP-expressing
chimeric mice strongly support that the lifespan of AMs
approaches the mouse lifespan (229). Examination of hu-
man lung transplants mismatched for HLA or for sex chro-
mosomes reveal that alveolar macrophages of the donor
lung persist for all of the several years that have been in-
cluded in analyses (124, 357). This population of resident
phagocytes is often maintained over the course of lung in-
jury and infection, remaining after the recruited inflamma-
tory cells have been removed from the airspaces by apopto-
sis and efferocytosis (229).

Functionally, AMs are extremely diverse, with essential
roles in both immune resistance and tissue resilience (4)
(FIGURE 2). Under normal homeostatic conditions, AMs
suppress inflammation through a variety of mechanisms to
be further discussed below. This is critical for limiting im-
munopathology, as macrophages clear environmental de-
bris, excess surfactant, apoptotic cells, and other innocuous
materials (211, 497). In the setting of infection, however,
AMs exert significant plasticity, transitioning from an anti-
inflammatory housekeeping cell into a central node of immune
activity. Macrophages bear an armament of pattern recogni-
tion receptors (484), allowing them to respond to a diverse
repertoire of pathogens. Upon pathogen recognition, AMs di-
rectly contribute to immune resistance through the ingestion
and phagocytosis of microbes (244) (FIGURE 2). Transmem-

brane transport of ions by CFTR, TRPC6, TRPM2, and other
channels and pumps coordinately render the phagosome
acidic and inhospitable to microbes (103, 104, 418). In addi-
tion, synthesis of reactive oxygen and nitrogen intermedi-
ates also contributes to alveolar macrophage killing of
phagocytized microbes (176, 199). In concert with phago-
cytosis, apoptosis can contribute to maximal macrophage-
mediated killing (111) (FIGURE 2), for example, when trig-
gered by release of cathepsin D into the cytosol to degrade
the anti-apoptotic factor Mcl-1 (312). AM apoptosis can
also be triggered by extracellular cues such as recognition of
the cytokine TRAIL by the DR5 receptor on macrophages
(468). Both TRAIL and apoptosis are required for efficient
clearance of bacteria in the lungs (35, 468). AM death by
pathways other than apoptosis can be stimulated by agents
of pneumonia, such as necroptosis mediated by RIP1 and
RIP3 kinases and MLKL (85, 165, 255) (FIGURE 2). This
does not kill bacteria but instead exacerbates infection (85,
165). Therefore, AM apoptosis is a specialized pathway of
immune resistance, while other macrophage death path-
ways are instead detrimental to the host. The antimicrobial
effector functions of AMs can be sufficient to control low
pathogen burdens without recruiting additional cells (2,
111).

The direct microbicidal capacity of AMs is complemented
by their exceptional ability to coordinate the immune activ-
ity of other cells, both neighboring and remote, which is
essential when microbes are too virulent or too numerous to
be efficiently handled by resident innate immunity. To do
so, AMs use RelA from the NF-�B transcription factor fam-
ily to dispatch numerous cytokines such as tumor necrosis
factor (TNF)-�, interleukin (IL)-1�, IL-1�, chemokines,
IL-6, and granulocyte colony stimulating factor (G-CSF),
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all of which are important for eliciting lung innate immu-
nity (61, 171, 173, 194, 239, 240, 392, 408, 413) (FIGURE
2). Isolates of pneumococcus collected from complicated
pneumonia patients tend to be lower activators of macro-
phage NF-�B compared with pneumococci collected from
other individuals, and such lower NF-�B activators induce
slower cytokine expression and pulmonary defense in
mouse models of pneumonia (85), further supporting the
concept that the capacity of AMs to elaborate cytokines is
key to initiating immune responses in the lung. This capac-
ity may be shaped by prior encounters with invading patho-
gens. Macrophage NF-�B activation and cytokine elabora-
tion are altered for prolonged periods of time after the res-
olution of prior respiratory infections (211), suggestive of
trained immunity (363). The degree to which such altera-
tions in AM responsiveness may improve or worsen antimi-
crobial resistance, and mechanisms responsible for altering
these macrophage behaviors, demand further attention.

An emerging area of focus related to AMs is the release of
cytokines and other immunomodulating agents within
membrane-bound vesicles such as exosomes and micropar-
ticles (FIGURE 2). IL-36�, which is essential for efficient
resistance against bacterial pneumonia in mouse models, is
one such AM product (267). Following bacterial stimula-
tion of human and mouse AMs, this cytokine is released in
membrane-bound particles, and it appears within lipid ves-
icles in the air spaces of human patients with bacterial pneu-
monia (267). Mechanisms determining which cytoplasmic
constituents are encapsulated within the secreted vesicles
and how these signal to recipient cells are ongoing areas of
research in pulmonary immunity.

Thus macrophages are important as antimicrobial effector
cells and as sources of cytokines in the lungs (FIGURE 2),
promoting the recruitment and activation of other cells me-
diating immune resistance, some of which are highlighted
below. The profound influence of AMs on pneumonia out-
come is further supported by reports of targeted disruption
of macrophage function, either pharmacologically or genet-
ically, which impairs innate defense in mouse models of
lung infection (55, 111, 187, 198, 389, 392).

2. Epithelial cells

While the accessibility of AMs by bronchoalveolar lavage
has provided a wealth of information regarding their func-
tions and regulation in the context of pneumonia and other
lung diseases, contributions of other cell types have recently
emerged with the advent of more sophisticated isolation
and targeting strategies. Among these additional immuno-
modulatory cell types are those that comprise the lung epi-
thelium, a complex network of epithelial subsets differen-
tially distributed throughout the upper and lower respira-
tory tract (536). In the alveoli, surfactant proteins (SP) A
and D, synthesized by the alveolar epithelial type II cells,
have critical roles in immune resistance, by directly inhibit-

ing microbes (184) and also by influencing immune activi-
ties (381). In the upper respiratory tract and conducting
airways of the lung, a prominent feature is mucociliary
clearance. The importance of ciliary action is highlighted by
the severe lung disease, particularly recurrent respiratory
infections, in patients with primary ciliary dyskinesia (258).
Airway ciliated cells are more heterogeneous than previ-
ously recognized, and subsets of airway ciliated cells (e.g.,
those marked by the MIWI2 expression) have immuno-
modulatory roles that extend beyond the mechanical
clearance of mucus (529). Secreted airway mucins,
largely synthesized by goblet and club cells, are the pri-
mary constituents of the mucus layer, and are indepen-
dently essential for immune resistance. Genetic targeting
of MUC5B but not MUC5AC has been shown to render
mice more susceptible to bacterial infection, revealing the
former to represent a particularly important mucin in the
context of innate immunity (423). CFTR mutations,
which compromise the fluidity of mucus in cystic fibrosis
patients (191), also underscore the importance of mucus
in lung immunity given the prevalence of lung infections
in CF patients. In addition to mucus, numerous soluble
immunomodulators are constitutively present in epithe-
lial lining fluid throughout the respiratory tract, includ-
ing but not limited to SP-A, SP-D, lactoferrin, lysozyme,
and others (both known and likely unknown), all of
which exhibit defense properties (536).

Besides the constitutive defense properties of the epithelial
surface, epithelial function is immunologically dynamic fol-
lowing exposure to invading pathogens. Lung epithelial
cells can undergo dramatic transcriptional remodeling in
response to infection or infectious stimuli (82, 246), and
such activity is elicited by both pathogen- and host-derived
mediators, as enabled by a wide gamut of receptors for
pathogen-associated molecular patterns (PAMPs), damage-
associated molecular patterns (DAMPs), cytokines, and
other immunomodulatory agents (181, 455, 536). Epithe-
lial-specific genetic targeting of NF-�B activity, down-
stream of many of these receptors (408), is necessary and
sufficient for the elaboration of innate lung defense (73, 74,
406, 554, 555). With regards to pathogen-elicited re-
sponses, several studies in genetic mouse models support
Toll-like receptor (TLR) signaling as an important source of
immune activation (118, 180, 332, 367, 388, 413). Myeloid
differentiation factor 88 (MyD88) is a central adapter pro-
tein for much but not all TLR signaling and is essential for
pulmonary immune resistance as evidenced by profound
susceptibility to lung infections in individuals with genetic
MyD88 deficiency, particularly children (518). Mice lack-
ing MyD88 in either hematopoietic and/or nonhematopoi-
etic cells are vulnerable to lung infection (10, 118, 180), and
the targeted genetic manipulation of MyD88 in the epithe-
lium specifically yields substantial changes in pulmonary
inflammation and defense (118, 332).
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Microbial engagement of pathogen recognition receptors
(PRRs), while significant, is insufficient for maximal epithe-
lial responses. This is again evidenced by the influence of
MyD88 on pulmonary inflammation. MyD88 deficiency
appears to have a larger consequence on the development of
acute pulmonary inflammation than do combinations of
TLR deficiency (456), possibly owing to MyD88’s involve-
ment in signaling downstream of the IL-1 receptor IL-1R1
(332). Along these lines, cytokine stimulation of epithelial
cells, particularly that due to IL-1 and TNF-�, is a require-
ment for maximal epithelial responses in some settings. For
instance, direct in vitro stimulation of epithelial cells with
Streptococcus pneumoniae fails to elicit an NF-�B response,
whereas stimulation with pneumonic airway lining fluid
robustly activates this transcription factor in an IL-1- and
TNF-�-dependent manner (406). Expression of these cyto-
kines requires macrophage activity (392), which can occur
in direct response to pneumococcus (392, 406), suggesting
that AMs are a critical relay for initiating epithelial re-
sponses to certain microbes (like pneumococcus). The com-
bined importance of IL-1 and TNF-� is consistent with
evidence that mice lacking all signaling receptors for these
cytokines are exquisitely susceptible to infection (240), and
additional studies consistently support the notion that mac-
rophage-derived products such as IL-1 are requisite for ep-
ithelial-derived innate immunity (198, 283, 313).

The ability of epithelial cells to respond to AMs does not
preclude epithelial activation by other cytokines and cells.
IL-22, which has numerous protective properties during
pneumonia (23, 71, 220, 272, 371, 395, 498, 510, 549), is
produced by multiple cell types, including Th17 cells and
innate lymphocytes (71, 272, 371, 373, 510, 549). IL-22-
dependent protection includes its capacity to activate epi-
thelial cells via the transcription factor STAT3 to produce
the antimicrobial siderophore binding protein lipocalin 2
(LCN2) (23), which is itself required for maximal lung im-
munity (24, 66, 141). STAT3 activity in lung epithelium
also promotes expression of the antimicrobial factor Reg3�
(76). Likewise, the IL-6 family cytokine oncostatin M
(OSM) can activate epithelial STAT3 to promote induction
of the chemokine CXCL5 (495), which is important for
lung neutrophil recruitment (234, 327, 554). Although
CXCL5 is induced by STAT3, it is also dependent on NF-�B
in epithelial cells of the infected lung (554, 555), and
CXCL5 can be stimulated by IL-17 as well (69). CXCL5 is
especially interesting because it is derived exclusively from
epithelial cells during diverse settings (234, 246, 554, 555).
The epithelium can also signal directly to neutrophils by
producing granulocyte-macrophage colony stimulating fac-
tor (GM-CSF) and secreted and transmembrane 1 (Sectm1)
proteins (246, 465, 554). Additional epithelial-specific
products induced by lung infection include CCL20 (466,
555), short palate, lung, and nasal epithelial clone 1
(SPLUNC1) (292), thymic stromal lymphopoietin (TSLP)

(470), and many others (246) which can confer local im-
mune resistance.

The capacity of epithelial cells to control the immunological
tone of the lungs is further exemplified by studies showing
that their activation is highly protective against subsequent
infectious challenges (130). The intranasal administration
of nontypeable Hemophilus influenza lysates confers re-
markable protection against subsequent challenges with S.
pneumoniae (83). The protective signaling components of
this stimulation have been narrowed down to a combina-
tion of ligands for TLR2/6 and TLR9 (119). Importantly,
this broadly effective inducible resistance conferred by TLR
ligand administration appears to solely rely on the activity
of epithelial cells (82, 119, 284), which has important im-
plications regarding the functional capacity of this cell type
to control pulmonary immune resistance. Pharmacological
activation of TLRs is safely tolerated in vivo (11) and con-
fers significant protection against not only S. pneumoniae,
but also other bacterial, viral, and fungal pathogens (115,
129). This epithelial stimulation was demonstrated to be
sufficiently robust for pneumonia protection in the severely
immunocompromised setting of leukemia and its treatment
(284). These studies highlight the potential significance of
harnessing immune resistance provided by the lung epithe-
lium to prevent pneumonia.

3. Neutrophils

Following exposure to harmful microbes, a major role of
AMs, epithelial cells, and other resident cells of the lung is
to recruit additional effector cells in the event that initial
local defenses are insufficient. This requires the elaboration
of cytokines and other intermediates that facilitate the mi-
gration of cells into the airspaces of the lungs. Neutrophils,
which are sparse or absent in the airspaces of uninfected
lungs, are the earliest and most abundantly recruited leuko-
cyte in response to infectious stimuli, representing a hall-
mark feature of recruited innate immunity in the lungs.
Neutrophils have many and diverse roles during pneumo-
nia, as microbe killers and also as important modifiers of
the immune milieu (FIGURE 3).

The known biological mechanisms governing lung neutro-
phil recruitment are vast, with many more almost certainly
remaining to be discovered (90). Indeed, numerous local
signals coalesce to drive this response, such as pathogen
recognition (by PRRs), transcriptional remodeling of re-
sponding resident cells (by transcription factors such as
NF-�B and STAT3), production of early-response cyto-
kines and growth factors (which further stimulate neigh-
boring and remote cells), generation of a chemotactic or
haptotactic gradient (as accomplished by chemokines, eico-
sanoids, complement fragments, and other host factors),
an appropriate display of adhesion molecules, and the
cytoskeletal rearrangements and locomotion of the neu-
trophils themselves (90, 112). Rapid transmigration is
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aided by the large marginated pool of neutrophils in the
pulmonary vasculature, which means that neutrophil
numbers that can exceed the total circulating pool are
microns away at the start of infection (113). Neutrophils
are relatively short-lived cells (391, 491) compared with
other leukocytes, surviving on the order of hours to days,
but their survival time can be modified by signals within
the inflammatory milieu (86).

Neutrophils are antimicrobial cells (FIGURE 3). Upon acti-
vation within the airspaces, neutrophils exert an expansive
repertoire of intra- and extracellular antimicrobial activities
(260), and their importance in the context of lung infections
is evidenced by extreme susceptibility to infection in the
absence of functional neutrophils both clinically (during
neutropenia and with disorders of neutrophil function such
as chronic granulomatous disease) and in animal models
(following depletion or targeting of neutrophil-specific fac-
tors) (61, 151, 179, 386, 421, 539, 547). The primary
means of neutrophil-mediated killing are 1) phagocytosis,
during which phagolysosomal fusion exposes ingested or-
ganisms to reactive oxygen species (via NADPH-oxidase
activity) and acidity; 2) degranulation, during which gran-
ules release toxic factors such as myeloperoxidase (MPO),
gelatinase B (MMP9), cathepsins, defensins, and other an-
timicrobial proteins into the phagosome and/or extracellu-
lar space; and 3) the formation of neutrophil extracellular
traps (NETs), which result from the extrusion of DNA as-
sociated with histones and granule-derived antimicrobial
proteins. All of these killing mechanisms cooperate to erad-

icate pathogens. For instance, genetic deletion of neutrophil
elastase and cathepsin G in mice increases vulnerability to
lung infections with S. pneumoniae (179), whereas S. pneu-
moniae lacking endonuclease A are less efficient at evading
NETs, causing less severe pulmonary infections (32). Thus,
while short-lived, the bactericidal capacity of this critical
phagocyte population is a consequence of both great num-
bers and diverse function.

Outside of these effector roles, neutrophils also function in
a governing capacity, producing cytokines, chemokines,
and other factors that coordinate the ongoing immune func-
tions in the lung (226). Lung neutrophils dispatch a variety
of signals that shape acute pulmonary inflammation, pro-
viding a second wave of immunomodulatory cargo to ex-
pand upon initial responses from resident cells (FIGURE 3).
For example, neutrophils recruited in response to lung in-
jury induced by influenza virus or acid aspiration release the
chemokine CXCL10, which subsequently enhances both
neutrophil activity and recruitment through its receptor
CXCR3 (213). Neutrophils produce the neutrophil-attract-
ing and -activating chemokine CXCL2, and neutrophilic
production of CXCL2 can drive a self-amplifying feed-for-
ward loop of localized neutrophilia that is important to
defense but also a contributor to lethal lung injury (51).
Neutrophil production of chemokines like CXCL10 and
CXCL2 may contribute to “swarming” behavior of neutro-
phils (253), in which neutrophil activation amplifies the
local recruitment of neutrophils within the air spaces of
infected lungs (FIGURE 3). In some cases, neutrophils also
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FIGURE 3. During pneumonia, neutro-
phils have both effector (antimicrobial) and
affector (immunomodulatory) roles. Effec-
tor roles include microbial elimination via
phagocytosis and degranulation as well as
NET formation (top right). Affector roles
include activities that enhance antimicro-
bial activities by other cells, such as mac-
rophage stimulation by neutrophil-derived
IL-17 and TRAIL and neutrophil stimulation
by IFN-�. Other immunomodulating activi-
ties involve the recruitment of antimicrobial
cells (e.g., by CXCL12, CCL17, CXCL10,
CXCL2). Signals provided from apoptotic
neutrophils are immunoregulatory, en-
hancing the resolution of inflammation. The
molecules identified are for illustrative pur-
pose and do not represent an exhaustive
presentation. PhSer, phosphatidylserine.
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can be a source of IL-17 (60, 533), a cytokine driving pro-
tective immunity through the induction of CXCL5,
CXCL1, G-CSF, and enhanced phagocytic antimicrobial
defense (69, 559). Interferon (IFN)-�, the prototypical
driver of type I immunity, is another typically lymphocyte-
derived cytokine that can be produced by neutrophils in
some settings of lung infection. In mouse models of pneu-
monia induced by Gram-positive (but not Gram-negative)
bacteria, emigrated but not circulating neutrophils repre-
sent a prominent source of IFN-�, which then enhances
NET formation to facilitate bacterial killing (163, 553).
This finding expands the catalog of neutrophil defense func-
tions while highlighting the need to elucidate the causes and
consequences of neutrophil reprogramming as they shift
between the extra- and intrapulmonary environments.

While CXCL10, IL-17, and IFN-� are examples of neutro-
phil-derived cytokines empowering neutrophil-driven de-
fense, neutrophil products affect other cells as well (FIGURE
3). For instance, neutrophils can enhance macrophage-me-
diated immunity by serving as a source of TRAIL, which
drives antimicrobial apoptotic responses (468). Neutro-
phils are a requirement for the extravasation of iNKT cells
from the pulmonary vasculature, where they are abundant
before infection (486). To do so, migrating neutrophils re-
lease the chemokine CCL17, which recruits iNKT cells to
the interstitium, and this is essential to optimal defense in
mice with pneumococcal pneumonia (486). Similarly, neu-
trophils can recruit lymphocytes for adaptive immunity
purposes; after influenza infections, the recruitment of an-
tiviral CD8� T cells to the lung and optimal influenza elim-
ination requires CXCL12, which is produced exclusively by
the migrating neutrophils within the infected lung and de-
posited in membrane-bound packets along the neutrophil’s
path within the interstitium (289). Therefore, neutrophils
serve as both a consequence and cause of acute pulmonary
inflammation, mediating both effector and affector actions
of immune resistance (FIGURE 3).

4. Recruited macrophages

While AMs may be the exclusive resident leukocyte of the
airspaces, they do not represent the only macrophage pop-
ulation driving innate immunity. Perhaps this has been
somewhat overlooked by the accessibility of AMs through
lavage and the overwhelming numbers of recruited neutro-
phils in the early stages of pneumonia, not to mention the
technical challenge of distinguishing resident versus re-
cruited cells of the same type. It is evident that a distinct
population of recruited bone marrow-derived macrophages
can have an indispensable role in pulmonary innate immu-
nity. In response to inflammatory stimulation, induction of
the chemokine CCL2 acts as the primary signal to recruit
monocytes into airspaces (72, 317–319), which then be-
come further primed (316), expanding the available macro-
phage pool. This newly recruited inflammatory monocyte/
macrophage population is functionally similar to classically

activated (M1) resident macrophages in that they are
phagocytes capable of producing inflammatory cytokines
such as IL-1, TNF-�, and IL-12, and they can be distin-
guished from resident cells by a variety of differentially
expressed surface markers, the most notably of which is
high expression of CD11b (4).

Multiple studies support an essential role for recruited mac-
rophages in maintaining immune resistance in the lungs.
CCL2, for example, is both sufficient and necessary for
inflammatory monocyte/macrophage recruitment in mice
challenged intratracheally with S. pneumoniae, and its ex-
pression level is inversely proportional to the number of
living bacteria recovered from the lungs (540, 541). Recent
studies in mice infected with K. pneumoniae suggest that
not only are CCR2� recruited monocytes critical for lung
bacterial clearance, but also that, for a subset of K. pneu-
moniae isolates, the antibacterial contribution of this cell
population exceeds that of neutrophils (547). As discussed
with other cell types above, recruited monocytes/macro-
phages also function to enhance the accumulation of other
recruited immune cells. In the setting of sterile inflammation
induced by intratracheal lipopolysaccharide (LPS), neutro-
phil and inflammatory monocyte responses were similarly
diminished following interruption of CCR2, suggesting
that the neutrophil accumulation requires signaling to
monocytes (318). Inflammatory monocytes may also be re-
quired for the recruitment of IL-17-producing innate lym-
phocytes; in mice challenged with K. pneumoniae, recruited
monocytes were identified as the prominent source of
TNF-�, contributing to the lung recruitment of ILC3s and
IL-17-mediated defense (548). Thus the integration of re-
cruited monocytes with other innate defenses has surfaced
as a key determinant of immune resistance.

5. Innate lymphocytes

The roles of innate lymphocytes in the context of pneumo-
nia biology are receiving considerable interest. Their study
is enabled by increasingly sophisticated tools for character-
izing and manipulating lymphocyte subsets. While innate
lymphocytes bear functional similarities to the B and T
lymphocytes well recognized for their roles in adaptive im-
mune responses, they are innate with regards to pathogen
recognition. Natural killer (NK) cells, which were discov-
ered over four decades ago, represent one type of innate
lymphocyte enriched in lung tissue, important for defense
against both viral and bacterial pathogens (197). Patients
with genetic mutations causing NK cell deficiency are espe-
cially prone to viral infections (369), and the direct require-
ment of NK cells for maximal antiviral immunity has been
observed in animal models as well (1, 467). While the im-
pact of NK cells on bacterial infections is less delineated,
pro-defense roles are beginning to emerge. Mice lacking the
NK cell activating receptor NCR1 (NKp46) as well as mice
depleted of NK cells (via anti-asialo GM1) exhibit increased
lung bacterial burdens and mortality upon infection with S.
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pneumoniae (125). NK cells also are essential for clearance
of K. pneumoniae (549) and S. aureus (457) in murine mod-
els of pneumonia, possibly due to their roles in synthesizing
IL-22 (549) and IL-15 (457), each of which is independently
essential for defense against those respective microbes (23,
457). NK cells may also function at the interface of viral and
bacterial pneumonias by limiting the likelihood of superin-
fection. The number of NK cells and their capacity to pro-
duce TNF-� were diminished in mouse lungs with S. aureus
pneumonia following influenza infection compared with
mice with S. aureus pneumonia and no prior influenza, and
adoptive transfer of NK cells (but not TNF-�-deficient or
influenza-exposed NK cells) was sufficient to restore anti-
bacterial defense to influenza-infected mice (458).

NK cells were the first recognized subset of the innate lym-
phocytes now known as innate lymphoid cells (ILCs). These
cells have been categorized in three distinct groups: 1) group
1 including ILC1s and NK cells, 2) group 2 including ILC2s,
and 3) group 3 including ILC3s and lymphoid tissue-in-
ducer (LTi) cells (461, 462, 519). The categorization of
ILCs across three distinct groups is consistent with their
capacity to produce cytokines reflective of Th1, Th2, and
Th17 adaptive lymphoid cells, yet ILCs are devoid of the
known lineage markers associated with adaptive T cells,
and they are not antigen specific (461, 519). Research into
ILCs and lung infection is in early stages.

ILCs have been identified in the lungs of humans (96) and
mice (338), and despite their relatively low abundance, they
can play important roles. To our knowledge, ILC1s do not
reside or function within the healthy lung. In contrast,
ILC2s are present under unchallenged homeostatic condi-
tions (152), although their functional contributions to im-
mune resistance are uncertain. RSV infection promotes ac-
cumulation of IL-13-expressing ILC2s in the lung, which
associates with increased type 2 inflammatory responses
(470), suggesting at least one connection of ILC2s to lower
respiratory infection. ILC2s help repair and regenerate in-
jured lung tissue (44, 279, 333), but ILC2-mediated repair
after pneumonia specifically is presently speculative. ILC3s
are perhaps the most relevant to pneumonia biology and
acute pulmonary inflammation, particularly with regards to
their influence on IL-17-mediated defense. ILC3s are a
prominent source of this cytokine in response to multiple
microbial stimuli in the lungs, including P. aeruginosa (31,
347), K. pneumoniae (548), and LPS (347). Similarly, IL-
22, often associated with Th17 biology and IL-17-depen-
dent lung immunity (23), has been shown to derive from
ILC3 cells during pneumococcal pneumonia (510). In all of
these cases, the physiological significance of lung ILC3s is
inferred from the already recognized influence of the cyto-
kines they express. In some cases, ILC3-dependent immune
effects are more directly supported through depletion strat-
egies (347, 548), although a limitation of these studies is
their use of Rag�/� mice lacking adaptive immunity lym-

phocytes. More precise targeting strategies will be required
to definitively distinguish the functional contributions of
ILCs during pneumonia.

In addition to ILCs, unconventional T cells (160) are an-
other group of innate lymphocytes promoting lung defense.
Invariant natural killer T (iNKT) cells possess an invariant
TCR alpha chain and recognize lipid antigens presented by
the MHC-like molecule CD1d (53). During pneumococcal
pneumonia, J�18�/� mice lacking iNKT cells exhibit in-
creased mortality in association with impaired bacterial
clearance from the lungs (54). Moreover, iNKT cells pro-
duce IFN-� and IL-22 in response to influenza infection
(373), although this did not alter immune resistance in this
particular setting, it may have defense implications in other
infections. ��-T cells have a limited diversity of TCRs with
poorly understood antigen specificity, but they demonstra-
bly function in an innate capacity to modulate pulmonary
inflammation (42). During pneumonia, ��-T cells can be a
major source of both TNF-� and IL-17, and mice lacking
these cells are more susceptible to lung infections with K.
pneumoniae or S. pneumoniae (71, 340, 356). Mucosa-
associated invariant T (MAIT) cells recognize riboflavin-
related products produced by diverse bacteria when pre-
sented by the MHC-related molecule MR1 (145). While
MAIT ligands are unexpected in viral infections of any an-
imal, MAIT cell numbers in the peripheral blood during
severe avian influenza infections were elevated in human
patients who survived, and MAIT activation by the cyto-
kine IL-18 might possibly improve defenses against influ-
enza (297). Although relevant to tuberculosis infection
(161), roles of MAIT cells during bacterial pneumonia have
yet (to our knowledge) to be demonstrated, but demand
further attention.

Beyond ILCs and unconventional T cells, innate-like B cells
also can impact early defense in the lungs. B1 cells are a
self-renewing B cell population that is a major producer of
cross-reactive natural IgM antibodies (30). The innate re-
sponse activator (IRA) subset of B1a cells has been shown
to reside in the pleural space and migrate to the lung paren-
chyma in response to E. coli pneumonia, where these cells
then provide a protective GM-CSF-dependent IgM re-
sponse (530). Additional studies in the setting of pneumo-
coccal pneumonia also support a requirement for B1a cells
to achieve maximal innate defense in the first days of infec-
tion (556).

6. Platelets

While best recognized for their roles in coagulation, plate-
lets contribute to innate immunity as well, with multiple
potential connections to pneumonia (46, 550). Platelets and
their associated platelet GTPases and adhesion molecules
enhance LPS-induced neutrophil recruitment in the lung
and host defense during Klebsiella pneumonia (98, 99,
375), demonstrating roles in immune resistance. Their myr-
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iad effects on coagulation, inflammation, and other aspects
of physiology (46, 550) likely shape immune resistance, but
also platelets may contribute in some cases through direct
antimicrobial activities (269). During severe influenza in-
fections, excess platelet activation amplifies inflammation,
lung injury, and mortality (278), consistent with the notion
that the challenge to tissue resilience from exuberant in-
flammation can at times be downstream of platelet activi-
ties. The lung is the site for much platelet production by
megakaryocytes during homeostasis (282), and platelet
production during acute inflammation is increased by mat-
uration of committed progenitors into new megakaryocytes
(178). It will be of interest to determine whether and how
megakaryocytes in the lung and the differentiation of stem-
like precursors into megakaryocytes are influenced by, and
in turn influence, pneumonia.

B. Extrapulmonary Innate Immune
Physiology

The immunological capacity of the lungs is shaped by a
complex and highly dynamic pool of local constituents,
some of which are discussed above. Typically, the lungs are
remarkably efficient at compartmentalizing both infections
and the response that they elicit, with a breach in contain-
ment representing insufficient resistance and resilience, po-
tentially resulting in ARDS and/or sepsis. While it is logical,
and certainly necessary, to investigate innate immune re-
sponses to lung infections from a local intrapulmonary per-
spective, lung defense does not and cannot occur in a vac-
uum. Rather, it involves an integrated physiological re-
sponse in which the lungs selectively send and receive input
from extrapulmonary tissues. Elucidating the identity and
functional relevance of these signals has been historically
challenging, due in large part to limited tools for interrogat-
ing tissue-specific contributions and the ever-present com-
plications in distinguishing cause from effect. Yet, advances
in gene targeting and other experimental approaches con-
tinue to expand our understanding and appreciation for
remote processes controlling local immune resistance dur-
ing pneumonia.

1. Liver

The liver has long been appreciated for its role in mounting
the acute phase response (APR). Liver hepatocytes synthe-
size and secrete significant quantities of circulating acute
phase proteins (APPs), whose expression can be dramati-
cally altered in response to virtually any infection or injury
(91, 148). The APR was discovered almost 90 yr ago in
pneumonia patients, when researchers identified changes a
substance (now known as C-reactive protein, CRP) in blood
that bound to a polysaccharide-containing fraction of S.
pneumoniae (490). There are now dozens of known [and
likely many more unknown (403)] APPs, which are func-
tionally diverse, and primarily expressed in the liver (148).

The clinical utility of APPs is largely restricted to their ap-
plication as biomarkers of disease severity, including that of
pneumonia (13, 460, 564). The regulation and physiologi-
cal relevance of APP expression is beginning to be under-
stood.

Lung infections elicit robust hepatic transcriptome remod-
eling within hours of experimentally induced pneumonia,
before the detection of any living organisms into the circu-
lation (403, 404, 531). Regulation of hepatic gene pro-
grams guiding APP synthesis is attributed to multiple tran-
scription factors (427), including STAT3, which was origi-
nally known as the “acute phase response factor” before it
was cloned in the early 1990s (9, 571). In the setting of lung
infections, NF-�B and STAT3 are particularly important
for hepatic acute phase changes based on studies in mouse
models (403). Following a lung infection with S. pneu-
moniae sufficient to induce over 1,000 gene changes in the
liver, targeted simultaneous deletion of NF-�B RelA and
STAT3 in hepatocytes virtually eliminated the pneumonia-
induced APR (403). This response requires a combination
of early-response cytokines (TNF-�, IL-1�, and IL-1�) with
IL-6, as mice lacking these cytokine signals exhibit marked
defects in hepatic activation of RelA and STAT3, respec-
tively, in association with abrogated APP synthesis (404).
These findings confirm the presence of a lung-liver axis,
whereby cytokine signals from the lung elicit a rapid hepatic
response to remodel the blood proteome. Consequently,
APR-null mice lacking hepatocyte RelA and STAT3 not
only lack changes in circulating APPs during pneumonia
(despite unaffected baseline levels), but they also have di-
minished amounts of some APPs in alveolar exudate during
pneumonia (200, 201). Failure to mount a liver APR is
associated with increased mortality and impaired immune
resistance both systemically and locally in mice lacking he-
patocyte RelA and STAT3 (200, 201, 403), directly dem-
onstrating the physiological significance of lung-liver com-
munication.

While the existence of liver-derived protection during pneu-
monia is supported by the aforementioned studies, unveil-
ing distinct mechanisms of protection presents a major chal-
lenge due to the breadth and diversity of hepatic acute phase
changes. Enhancing opsonophagocytosis is one important
function. It has been known for over a half century that
acute phase serum can enhance opsonophagocytosis (233),
and serum obtained from pneumonic mice lacking hepato-
cyte RelA and STAT3 has a diminished capacity to do so
(403), proving that hepatic activity is essential to this blood-
borne defense during pneumonia. The reduced op-
sonophagocytosis after hepatic transcription factor target-
ing invovlves decreased deposition of complement compo-
nent 3 (C3) on the surface of pneumococci (403). A role for
pneumonia-induced C3 expression is also supported by a
recent study showing that IL-22, which is essential for in-
nate defense against intrapulmonary S. pneumoniae, in-
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creases hepatic and serum C3 levels to a degree that is
sufficient to increase its bacterial deposition as well as pul-
monary defense (498). Targeted deletion of the IL-22 recep-
tor on hepatocytes reduces local lung clearance of pneumo-
coccus, indicating that this STAT3-activating cytokine
works alongside IL-6 in the context of the lung-liver axis.
Short pentraxins such as CRP and serum amyloid P (SAP)
are other APPs that bind to bacterial surfaces, where they
both activate complement deposition and promote recogni-
tion and phagocytosis through Fc�Rs (299). CRP and SAP
are necessary and sufficient to enhance host defense in
mouse models of pneumococcal pneumonia (452, 567). An-
other potential mechanism for liver-derived lung immunity
is enhancement of macrophage responsiveness, including
increases in the respiratory burst that depend on yet-to-be-
identified liver-derived factors (201). Regulation of metal
homeostasis may also be an important form of immune
resistance provided by the liver. For instance, iron acquisi-
tion is essential for bacteria to thrive (414), and host factors
that limit iron availability can be protective (235). Hepci-
din, which is largely driven by IL-6-dependent STAT3 ac-
tivity in the liver (361), limits iron availability by control-
ling its absorption in the intestines (362), and this factor
was recently shown to be both sufficient and necessary for
promoting defense against K. pneumonia in the lungs (331).
Beyond opsonophagocytosis, leukocyte activation, and
metal homeostasis, additional relevant APP functions may
include protease regulation, hemostasis, toxin inhibition,
microbial starvation, and more. In addition to those men-
tioned above, individual APPs such as lipopolysaccharide
binding protein (LBP), serum amyloid A (SAA), and man-
nose binding lectin (MBL) have been demonstrated signifi-
cant to pneumonia and acute pulmonary inflammation (52,
149, 164, 416).

Secreted APPs represent only a fraction of the many hepatic
gene changes constituting the acute phase response (8, 403),
and the importance of liver responses for lung defense de-
mands consideration of non-APP functions. While some
“APP-independent” hepatic gene programs, such as those
linked to metabolism, protein synthesis, and protein secre-
tion, almost certainly play a support role for APP responses
(8), others likely operate to promote defense that is entirely
distinct from that afforded by APPs themselves. Cholesterol
regulation represents one interesting example of APP-inde-
pendent liver-derived protection (531). S. pneumoniae lung
infections in mice were shown to promote liver gene expres-
sion of numerous factors connected to cholesterol biosyn-
thesis (531). In this study, hepatic gene changes were asso-
ciated with increased plasma cholesterol, and this increase
was shown to abrogate pneumolysin-dependent alveolar
macrophage necrosis, suggesting that acute phase exudate
in the alveolar space directly impairs pneumococcal viru-
lence (531). The functional relevance of the lung-liver axis is
now firmly established, and mechanisms governing liver-
derived lung immunity are beginning to be resolved.

2. Bone marrow

As outlined above, effective local immune resistance re-
quires both resident and recruited leukocytes in the
lungs, the latter of which includes the rapid emigration of
neutrophils from the blood to the airspaces. As neutro-
phils are extracted from the circulation, their supply
must be maintained to meet the demand of the infected
lung, which is primarily established by the egress of
newly formed cells out of the bone marrow. This shift
from homeostatic granulopoiesis to “emergency” granu-
lopoiesis in the marrow requires the lung to function in
an endocrine capacity, much like it does with the liver to
elicit the APR. While multiple cytokines and other immu-
nomodulators have been shown to impact the complex
process of granulopoiesis, the most prominent is G-CSF
(311), the primary intermediate through which pneu-
monic lungs trigger bone marrow responses. G-CSF is
required for steady-state granulopoiesis and is used ther-
apeutically in patients with neutropenia (379). By inhib-
iting osteoblast expression of the chemokine CXCL12,
G-CSF disrupts the retention of bone marrow neutro-
phils, which is largely maintained by CXCR4-CXCL12
interactions (121, 441, 442, 480). Diminished CXCL12
content in the bone marrow then enables neutrophils to
respond more readily to CXCR2 ligands, such as
CXCL1, CXCL2, and CXCL8, promoting neutrophil re-
lease from the bone marrow (120, 480).

G-CSF is a pleiotropic neutrophil-targeting cytokine, and
a major role of G-CSF during pneumonia is to signal to
the marrow from the lung. Lung infections stimulate
abundant G-CSF in the blood during pneumonia in both
patients and in animal models (382, 410). The intratra-
cheal administration of recombinant G-CSF alone is suf-
ficient to elicit increases in circulating G-CSF, blood neu-
trophils, and bone marrow granulopoiesis (447), consis-
tent with the notion that lung-derived G-CSF is
decompartmentalized to access the bone marrow during
pneumonia (410). Consequently, intrapulmonary G-CSF
delivery can also significantly amplify alveolar neutrophil
recruitment, as demonstrated in multiple settings of acute
pulmonary inflammation (26, 137, 360, 570). Genetic
targeting of the G-CSF receptor impairs clearance of P.
aeruginosa in mouse lungs, and this is associated with
reduced survival and dramatic decreases in both circulat-
ing and lung-recruited neutrophils (173). Similar conse-
quences are observed in response to pharmacological G-
CSF blockade in mice challenged with pneumococcal
pneumonia (257). Conditions that alter G-CSF expres-
sion also support an important role for this cytokine in
immune resistance. For example, impaired G-CSF ex-
pression in the setting of alcohol exposure associates
with reduced granulopoiesis and enhanced growth of S.
pneumoniae in the lungs (451).
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3. Spleen

Experimental splenectomy renders pneumonic mice highly
vulnerable to systemic infection (449), and this outcome is
consistent with increased occurrence and reoccurrence of
pneumonia in splenectomized patients (270, 346). Precise
contributions of splenic function to local lung defense are
presently unknown. Like that of the liver, the anatomy and
distribution of phagocytes within the spleen enable reticu-
loendothelial clearance of circulating pathogens (324),
which is essential for controlling systemic defense and
inflammation during pneumonia. This is unlikely a direct
contributor to immune resistance in the lung, though. As
a secondary lymphoid organ, the spleen has essential
roles in adaptive immune responses, and these may con-
tribute to local lung defense, particularly the delivery of
plasma antibodies in the exudate of an infected lung. The
IgM produced by marginal-zone B cells (324) may be
particularly important for some respiratory pathogens,
like pneumococcus (556). The activation mechanisms
and functional roles of splenic B cells involve other leu-
kocytes linked to pneumonia outcome such as neutro-
phils (78, 400), ILCs (304), and macrophages (263). Be-
yond the loss of phagocytes, neutropenia may predispose
to pneumococcal pneumonia because of defects in T cell-
independent antibodies from the spleen; IgM, IgG, and
IgA against pneumococcal capsular polysaccharides are
produced by splenic B cells requiring neutrophils as
helper cells, and all are diminished in the blood of neu-
tropenic patients (400).

4. Gastrointestinal tract

The intestinal mucosa is an immunologically rich environ-
ment, containing a microbial landscape shaped by interac-
tions among microbiota, invading pathogens, and host im-
mune functions (438). These interactions also have immu-
nologic consequences in tissue sites outside of the intestines,
including the lungs. For instance, meso-diaminopimelic
acid-containing peptidoglycan derived from the intestinal
microbiota engages the NOD1 receptor of neutrophils in
bone marrow, enhancing their in vitro microbicidal capac-
ity against S. pneumoniae and S. aureus (81). Depletion of
gut microbiota with antibiotics impairs K. pneumoniae
clearance in the lungs in association with reduced pulmo-
nary cytokine responses and impaired ROS synthesis by
AMs (80). Oral administration of NOD-like receptor li-
gands is sufficient to rescue innate immune responses fol-
lowing microbiome depletion, consistent with the hypoth-
esis that gut-derived microbial products promote defense at
other tissue sites (80). Similar immunodeficiency is also ob-
served in mice with pneumococcal pneumonia following
gut microbiome depletion; broad-spectrum antibiotic treat-
ment ablates intestinal microbiota and significantly in-
creases the number of viable bacteria recovered from the
lungs, concurrent with reduced cytokine expression and
phagocytosis by AMs (437). Gut-derived pulmonary de-

fense is also evident in the setting of viral pneumonia, in
which case microbiome ablation impairs immune responses
reliant on inflammasome activity (214). Despite the risk
of deleterious effects on immune defenses as well as po-
tentially fostering antibiotic resistance, selective decon-
tamination of the digestive tract has clinical utility; re-
ducing the presence of potentially infectious agents in the
gastrointestinal and respiratory systems of vulnerable pa-
tients can decrease rates of pneumonia and death in the
ICU (43, 97). In addition to microbe-derived substances,
host-derived metabolites from the intestines have also
been shown to have important immunomodulatory prop-
erties. For example, select intestinal short-chain fatty ac-
ids have numerous effects on leukocyte recruitment and
activation (517). These effects appear to be context spe-
cific, and at present their direct influence on immune
activity in the respiratory tract is unknown.

5. Fat

Adipose tissue represents another remote contributor to
innate pulmonary defense. Leptin is derived primarily from
adipocytes, and leptin signaling is essential to optimal im-
mune defense in multiple mouse models of lung infection
(308–310, 502). Conversely, excess leptin including hyper-
leptinemia, a hallmark of obesity, may increase risk of
pneumonia (390). Higher leptin levels associate with
greater pneumonia risk in nonhospitalized adults, and with
greater severity of pneumonia among hospitalized patients,
independent of body mass (502). High circulating leptin
content in mice, elevated by diverse strategies, can compro-
mise innate immunity in the lungs (502). A specific role for
leptin is further supported by the observation of no adverse
effects on lung defense in a leptin-independent mouse model
of obesity (307). The precise role of leptin is complicated by
indirect metabolic consequences of its manipulation and the
widespread physiological impacts of obesity (479). Adi-
ponectin is another adipokine with inflammation-regulat-
ing properties that may influence pulmonary immune resis-
tance. In the setting of sterile inflammation induced by LPS,
adiponectin deficiency exaggerates immune responses (59,
262), but whether or how this factor directly contributes to
pneumonia biology is currently unclear. While elements of
the obesity phenotype including changes in adipokines may
influence pneumonia biology, the evidence does not conclu-
sively demonstrate that obesity per se increases risk of com-
munity acquired pneumonia, independent of obesity-asso-
ciated comorbidities (265, 390).

6. Other extrapulmonary influences on lung
innate immunity

The liver, bone marrow, spleen, gut, and adipose tissue are
highlighted above for their impact on intrapulmonary im-
mune responses, perhaps all of which involve endocrine
activities from these tissues (FIGURE 4). The systemic re-
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sponse to pathogens in the airspaces has other origins, as
well. For example, procalcitonin (PCT), which is the thy-
roid-derived precursor to calcitonin, increases in the
blood of critically ill patients and rises in the blood dur-
ing pneumonia, and it can be used as a biomarker to help
distinguish infections of bacterial versus viral origin (22)
and as a predictor of pneumonia severity (483). The func-
tional significance of PCT elevation during bacterial
pneumonia is unknown. Likewise, febrile-range hyper-
thermia has numerous consequences on pulmonary in-
flammation and immunity (186), including elevated neu-
trophil accumulation and earlier clearance of K. pneu-
moniae from the lungs (419), suggesting that fever may
serve as a systemic mechanism of brain-derived pulmo-
nary defense. Direct biological contributions of fever to
pneumonia biology, either good or bad, are largely spec-
ulative. Brain function may also influence pneumonia
susceptibility, particularly that caused by aspiration,
through coordination of airway reflexes such as cough
(122). For instance, pneumonia incidence has been
shown to correlate with cough reflex sensitivity (355),
and among patients with mixed primary neurological
disorders the incidence of ARDS is significantly greater in
those lacking cough and/or gag reflexes (204). Interest-
ingly, a recent meta-analysis indicated markedly higher
pneumonia incidence in subjects with a specific polymor-
phism in angiotensin converting enzyme that reduces
substance P and bradykinin, both of which drive the
cough reflex (524), also consistent with the notion that
airway reflex sensitivity contributes to pulmonary de-
fense.

IV. ADAPTIVE IMMUNITY AND
PNEUMONIA

The adaptive immune system is well recognized in the fight
against pneumonia. One of the earliest effective treatments
for pneumonia, used until antibiotics became available, was
“serum therapy” in which antibodies collected from horses
or rabbits that had previously been serially exposed to
pneumococci were administered to pneumonia patients
(64, 65). If the antibodies were appropriate to the pneumo-
coccal serotype and were administered soon after pneumo-
nia symptoms developed, “serum therapy” decreased mor-
tality by approximately one-third (64, 65). Along similar
lines, but using hybridomas rather than animal sera as an
immunoglobulin source and for prevention rather than
cure, delivery of a monoclonal antibody against RSV is
currently in clinical use for high-risk children (16). The
vaccines against influenza, pneumococcus, and Hemo-
philus influenzae stimulate the host to generate their own
circulating antibodies against these microbes, which re-
duce risk of pneumonia (154, 174, 175). Thus the hu-
moral arm of adaptive immunity can protect the lungs.
The emergence of HIV/AIDS in the last half of the 20th
century emphasized the importance of cellular immunity
in immune defense of the lungs. Patients with low CD4�
T cell counts are highly susceptible to pneumonias caused
by diverse organisms including especially Pneumocystis
and pneumococcus (169, 440). Although not yet feasible
in humans, the adoptive transfer of microbe-specific
CD4� or CD8� T cells is capable of fighting respiratory
infection in inbred animals (182, 232, 558), similar to the
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FIGURE 4. Multiple extrapulmonary organs
contribute to immune resistance against pul-
monary infection. The molecules identified
are for illustrative purpose and do not repre-
sent an exhaustive presentation. In the few
instances where signals have been identified
by which pulmonary infection signals to the
extrapulmonary organ, this communication is
denoted in gray. APPs, acute phase proteins;
SCFAs, short-chain fatty acids.
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transfer of protection achieved with antibodies. Thus cel-
lular immunity also protects the lungs against pneumo-
nia. The regulation and function of specific components
of the adaptive immune system in fighting respiratory
infection are discussed in several recent reviews (47, 70,
75, 407, 481).

The earliest infections of the youngest children elicit pri-
mary adaptive immune responses, and subsequent en-
counters with those or related microbes trigger secondary
or recall responses from memory cells. The immunolog-
ical memory established by repeated respiratory infec-
tions is almost certainly key to the immune defense that
helps prevent pneumonia in older children and adults
(407). Such “real world” encounters with microbes pro-
foundly rewire immunity, including both innate and
adaptive immunity in the lungs (FIGURE 5). Effects of
“real world” exposures on immunity were elegantly dem-
onstrated by studies in which the circulating leukocyte
transcriptomes of mice and humans were compared (34).
In short, laboratory mice have immune systems that re-
flect those of human infants, whereas mice that were
caught in barns or purchased from pet stores have im-
mune systems that more closely match human adults
(34). The co-housing of laboratory mice with those pur-
chased from pet stores leads to 1) transcriptional remod-
eling of blood leukocytes to more closely match that of
human adults, 2) circulating antibodies against multiple
pathogens of mice, 3) seeding of the lungs (FIGURE 5) and
other organs with lymphocytes of the innate and adaptive
immune systems, and 4) dramatically improved defenses
against experimental infection (34). Here, we overview
two important ways in which adaptive immunity is re-
modeled by prior microbial infections, the establishment
of heterotypic immunity and of resident memory, both of
which are rapidly advancing areas of research with pro-
found implications for pneumonia defense.

A. Naturally Acquired Heterotypic
Adaptive Immunity

Heterotypic immunity refers to adaptive immunity directed
against a microbe that is similar but not identical to the
microbe originally establishing immunological memory.
Examples include memory to influenza viruses across dif-
ferent seasons (e.g., H1N1 from 2009 and H1N1 from
2010) or across different subtypes (e.g., H3N2 and H1N1),
or to multiple of the 94 different serotypes of pneumococ-
cus. Because they are such commonly encountered microbes
(FIGURE 1), healthy young adult humans probably have
some degree of heterotypic immune memory against all of
the most common causes of pneumonia.

Pneumonia defense is strongly influenced by the earliest
infections with respiratory pathogens, based on evidence
of immunological “imprinting” against influenza viruses
(167). Those born before 1968 were likely first infected
with influenza viruses containing hemagglutinins (HAs)
from phylogenetic group 1 (which includes H1, H2, and
H5 HAs), whereas those born after that date were more
likely to be first infected by influenza viruses with group
2 HAs (which includes H3 and H7 HAs). For the unfor-
tunate humans who get infected with highly pathogenic
zoonotic influenza viruses, the severity of pneumonia
correlates strongly with their birth dates; those born be-
fore 1968 are more likely to get severe pneumonia from
H7N9 rather than H5N1 avian influenza viruses,
whereas those born after 1968 are more likely to get
severe pneumonia from H5N1 rather than H7N9 (167).
These individuals likely did not have neutralizing anti-
bodies against the avian influenza viruses, but their ac-
quired immunity against related viruses (within the same
phylogenetic group) provided some level of protection.
Such early imprinting of immunity may influence many
or all types of respiratory infections.

Uninfected lung of infant humans and
naïve SPF laboratory mice

Uninfected lung of adult humans,
wild mice, and experienced lab mice

Time
ILCs

Treg

��-T

TRM

BALT

DC

B

T

AM AM

FIGURE 5. Lungs that have experienced
prior infections are different from naive lungs
that have not. The T-cell population most no-
table in lungs from neonatal humans is reg-
ulatory T (Treg) cells, whereas the healthy
lungs of adults or of laboratory animals that
have experienced prior respiratory infections
contain abundant resident memory T (TRM)
cells. In addition, lungs that have experie-
nced prior respiratory infections exhibit vary-
ing degrees of immunological changes in-
cluding bronchus-associated lymphoid tissue
(BALT), innate lymphoid cells (ILCs), and ��-T
cells. In addition, the alveolar macrophages
(AM) and epithelial cells of experienced lungs
behave differently from their counterparts in
naive lungs, likely due to a combination of
trained immunity and direction from adaptive
immunity.
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A combination of humoral and cellular protection is impli-
cated in mediating the naturally acquired heterotypic im-
munity that protects young adult humans against respira-
tory infection of the airways. When healthy young adults
are experimentally infected with influenza virus or RSV, the
amount of heterotypic antibodies in their blood before ex-
perimental infection inversely correlates with their viral
burden and symptoms after infection (25, 231). In serone-
gative individuals who have not seen a particular influenza
virus before, those with greater numbers of influenza-re-
sponsive CD4� T cells in their blood before infection (FIG-
URE 6) have less severe infection as measured by viral bur-
den and symptoms during the experimental infection (537).
By design necessity, the experimental human infections de-
scribed above cause mild disease; correlates of protection
observed there are inferred to be relevant to pneumonia.
Supporting this inference, antibodies with respiratory
pathogen specificity found in the blood of seronegative
healthy uninfected adults can be sufficient to protect mice
against severe viral or bacterial pneumonia (157, 543). Also
supporting the association of preexisting heterotypic immu-
nity with more severe infections is an epidemiologic study of
a population first experiencing the reassortant H1N1 influ-
enza virus that emerged in 2009 (463). Although all subjects
were naive to this particular virus, patients with greater
circulating numbers of CD8� T cells recognizing epitopes
conserved in that coming influenza virus (FIGURE 6) dem-
onstrated less symptoms during their naturally acquired

infections with that virus (463), suggesting that the preex-
isting heterotypic immunity provided protection. These re-
sults from the epidemiologic study differ in detail from re-
sults of experimental infections with influenza or RSV,
which showed correlation with elements of preexisting het-
erotypic immunity but not with blood CD8� T cells (243,
537). In animal models of influenza infection, both CD4� T
cells and CD8� T cells are sufficient to transfer heterotypic
immunity against pneumonia (182, 232). Together, such
studies demonstrate that preexisting heterotypic immunity
varies across hosts and pathogens, and variations in the
parameters of heterotypic immunity make critical contribu-
tions to the outcome of respiratory infection.

Some heterotypic antibodies in human blood can be neu-
tralizing, preventing viral infection of cells (354, 543).
Other heterotypic antibodies direct immune effector activ-
ities. Heterotypic antibodies against the conserved stalk re-
gion of influenza HA trigger a respiratory burst in phago-
cytes and provide heterotypic defense against respiratory
infection that is Fc receptor (FcR) dependent, whereas ho-
motypic protection provided by antibodies against the more
variable head regions of HA do not protect via such path-
ways (109, 348). This applies uniformly across anti-HA
antibodies and to anti-neuraminidase antibodies as well
(108), suggesting that FcR-mediated activities may be gen-
erally required for protection by heterotypic antibodies.
Young adult humans have antibodies recognizing hundreds
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FIGURE 6. T lymphocytes contribute differently to respiratory infection in naive and experienced hosts. A: in
naive individuals, who have not previously seen relevant respiratory infections, T lymphocytes responsive to the
microbe in the lungs are found in the circulating blood (red) and secondary lymphoid organs such as the spleen
(purple) and lymph nodes (LN, blue). It takes several days for them to appear in the lungs and a week for their
activities to be manifest. B: in contrast, in experienced hosts who have previously been infected with relevant
respiratory pathogens, there are greater numbers of responsive T lymphocytes in the blood and secondary
lymphoid organs, and there is a resident memory population of responsive T cells already present in the lungs
before infection. These lung T cells are poised to respond more rapidly and to elaborate a broader repertoire
of protective cytokines. Thus responsive T cells in experienced hosts are more numerous, localized to the right
place, able to respond more quickly, and prone to becoming multifunctional, altogether leading to T cell-
mediated defense in the lung that is quicker and more efficacious.
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of protein epitopes from pneumococcus (157), and raising
antibodies against some of these pneumococcal antigens by
vaccinating mice can improve defense against pneumococ-
cal pneumonia (157, 334), by mechanisms including op-
sonophagocytosis, decreased adherence, disruption of tox-
ins, and more. Human blood from any of at least three
different continents consistently contains IgG antibodies
against a common set of diverse pneumococcal proteins,
and delivering human IgG (without antigen selection) to
mice is sufficient to diminish the severity of infection during
pneumococcal pneumonia (538). However, pneumococ-
cus-recognizing antibodies found in the blood after pneu-
mococcal infection are not necessarily capable of mediating
heterotypic protection (84, 157). Whether and when the
heterotypic antibodies present in human blood can help to
prevent pneumonia demands more investigation.

Cellular immunity makes many contributions to hetero-
typic protection of the lungs (FIGURE 6). Memory CD4� T
cells established by prior respiratory infections are superior
to primary effectors in their protection of the respiratory
tract, because they are more multifunctional (i.e., produc-
ing a greater variety of cytokines) and more prone to yield T
follicular helper (TFH) cells in the relevant lung tissue (473).
The expansion of such memory CD4� T cells in the in-
fected lungs requires IL-6 (474). Activities of these virus-
specific memory CD4� T cells include the lysis of infected
cells (153, 537) as well as the acceleration and amplification
of pathways described above under “innate immunity” but
here directed by memory T cell-derived cytokines (472,
475). Similar phenomena apply to bacterial pneumonias.
Adult humans have CD4� T cells that proliferate and pro-
duce IL-17 in response to acapsular pneumococcus or pneu-
mococcal proteins, which are heterotypic responses in the
sense that they are independent of serotype (301). In hu-
mans, experimental pneumococcal infections of the upper
airways increase the numbers of cognate multifunctional
CD4� Th17 cells in the blood and lungs (544). IL-17 stim-
ulates host defense against extracellular bacteria and fungi
in the lungs (70). Heterotypic protection against pneumo-
coccus in the lungs can be modeled in mice by infecting
them with one serotype before challenging them with an-
other, and both IL-17 and CD4� T cells are necessary for
heterotypic protection against pneumonia in this model
(526). Furthermore, CD4� T cells from the spleens of such
mice are sufficient to confer defense against respiratory in-
fection, if and only if they have intact genes for IL-17 (526),
demonstrating that this systemic cellular immune memory
can provide heterotypic protection against bacterial pneu-
monia.

B. Resident Memory Cells

In addition to the circulating or systemic immune memory
described above, which can protect the lungs and all tissues,
there are also localized depots of immune memory within

the respiratory tract that specifically protect these tissues
against respiratory infection. The best recognized such
structures are the tertiary lymphoid organs of the upper
airways, the tonsils and nasal-associated lymphoid tissue
(443), as well as the variable amounts of bronchus-associ-
ated lymphoid tissue (BALT) in the lower airways (412).
These are sites of local antibody production, as well as
sources of memory B cells and plasma cells providing sys-
temic protection. More recently, it has become evident that
lung tissue contains numerous memory T cells that reside
stably in the interstitium but are not in tertiary lymphoid
organs (401, 485, 501). The biology of such resident mem-
ory T (TRM) cells has been reviewed (134, 434). Here, we
discuss aspects of lung TRM cells that are especially perti-
nent to pneumonia defense (FIGURE 6).

While identified previously (205), many fundamentals of
lung TRM cells in respiratory infection were established with
a seminal study from 2011 (485). Mice with a transgenic
TCR specific to influenza HA were used to restrict analyses
to antigen-specific cells. Memory CD4� T cells were col-
lected from the lungs or the spleen of mice with a fully
resolved influenza virus infection, and then adoptively
transferred to normal uninfected mice; the lung-derived
memory cells were then found exclusively in the lungs,
whereas the spleen-derived cells were found in the spleen
and other tissues of the recipient mice. When the blood-
streams of such recipient mice were connected via parabio-
sis to other uninfected mice who had not received T cell
transfers, the lung-derived T cells did not appear in the
parabiotic host, whereas the spleen-derived cells did. These
data demonstrated that the resolution of lung infection re-
sulted in a population of lung-resident memory cells, re-
tained in the tissue rather than recirculating with a lung-
homing propensity. When mice that had received compara-
ble numbers of TCR-transgenic (hence identical antigen
specificity to influenza HA) memory T cells from the lungs
or from the spleen were challenged with an influenza infec-
tion, the lung-derived cells provided better protection as
measured by weight loss, survival, and viral burdens, indi-
cating that lung TRM cells have superior abilities to protect
against respiratory infection compared with central mem-
ory cells. Therefore, the resolution of lower respiratory in-
fection can seed the lungs with TRM cells that remain local
and protect that pulmonary tissue against further infec-
tions.

Resident memory cells populate the lung tissues after bac-
terial pneumonia as well (459). When pneumococcus
causes a lobar pneumonia, the resulting CD4� TRM cells
concentrate selectively in the previously infected lobe,
rather than dispersing throughout the lower respiratory
tract (459). Because systemic immunity applies equally to
the entirety of the respiratory tract yet TRM cells are re-
stricted to a single lobe, this provides an elegant opportu-
nity to examine the contributions of resident memory above
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and beyond the combined abilities of all central memory
cells, circulating antibodies, and other components of sys-
temic heterotypic adaptive immunity. The lobe with TRM

cells demonstrates far superior lung defense against virulent
pneumococci compared with the contralateral lobes with-
out TRM cells (FIGURE 7). Trained innate immunity (363),
such as improved AM functions, could additionally con-
tribute to the localization of heterotypic immune defense
after lobar pneumonia, but the fact that depletion of CD4�
cells compromises such defense (459) highlights a TRM cell
role. Thus lung TRM cells protect against diverse types of
respiratory pathogens, and the lung protection characteris-

tic of young adults with naturally acquired heterotypic im-
munological memory cannot be provided by systemic adap-
tive immunity alone.

Human lungs contain TRM cells. A 2011 publication ana-
lyzing lobectomy samples from lung cancer patients re-
vealed that the noncancerous regions of lung tissue include
an unexpectedly large number of T cells (401), and this has
now been reproducibly found in human lung tissues with-
out cancer or any pulmonary disease, from young children
through senior citizens (433, 487, 488). These lung lympho-
cytes include both CD4� and CD8� T cells (433, 487,
488). While imperfect, CD69 expression on nonactivated T
cells is used as a marker for TRM cells (134, 434), and lung
T cells tend to express CD69 (401, 433, 487, 488). Memory
T cells begin accumulating in human lungs as early as in-
fancy (487, 488). T cells from human lungs are more likely
to proliferate in response to influenza virus antigen presen-
tation than are T cells from the blood or the skin (401),
suggesting antigen specificity may be skewed towards respi-
ratory pathogens. While cytokine expression from human
lung TRM cells stimulated by presentation of microbial an-
tigens has not (to our knowledge) been reported, pneumo-
coccus presentation to mouse lung TRM cells (459) induces
the MHCII-dependent expression of a wide variety of cyto-
kines (including IL-17A, IFN-�, TNF-�, IL-2, and more),
and the antigen-independent polyclonal activation of hu-
man lung-derived T cells (401, 433, 487, 488) stimulates
the coexpression of many cytokines (e.g., IFN-�, TNF-�,
and IL-2 together), altogether suggesting a predilection for
“multifunctional” phenotypes. Thus the human lung con-
tains a preponderance of TRM cells, which likely have spec-
ificity for respiratory pathogens and exert multifunctional
roles.

The CD8� TRM cells have been the most extensively stud-
ied resident memory cells in the lung, largely by character-
izing the cells found in human lungs or by influenza infec-
tions of mice. The heterotypic protection against influenza
provided by CD8� TRM cells depends on IFN-� expression,
which is more rapid from TRM cells compared with circu-
lating effector memory T (TEM) cells (323). CD8� TRM

cells from human lungs have distinct transcriptomes com-
pared with CD8� TEM cells from the blood, including
steady-state expression of mRNAs for effector molecules,
suggesting that the lung cells are not just better-positioned
anatomically but also are better poised molecularly to re-
spond quickly during lower respiratory infection (208) (FIG-
URE 6). Distinct patterns of expression for chemokine re-
ceptors and adhesion molecules (208) may contribute to the
prolonged lung localization of CD8� TRM cells in the
lungs. After influenza infection in mice, CD8� TRM cells
reside selectively at sites of prior damage to the tissue (482).
The maintenance of CD103� CD8� TRM cells in the lung
requires signaling from Notch, low levels of T-bet, and the
IL-15 receptor (208, 302). Administration of 4–1BB ligand
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FIGURE 7. The site of respiratory infection determines where
protection resides. After pneumococcal lobar pneumonia in mice,
CD4� resident memory T (TRM) cells are found 1–2 mo later in the
previously infected lobe rather than contralateral lobes. Polyclonal
stimulation of cells collected from the different lobes shows that
CD4� T cells are poised to elaborate Th17 cytokines only in the
previously infected lobe. Furthermore, the previously infected lobe is
significantly more protected against infection by pneumococci of a
different serotype compared with contralateral lobes. [Adapted from
Smith et al. (459).]
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amplifies CD8� TRM cell accumulation after mucosal vac-
cination, while 4–1BB-deficient CD8� T cells fail to seed
the lungs after recovery from influenza infection (572), sug-
gesting a requirement for this costimulation pathway. The
development of CD103� CD8� TRM cells in the lungs after
influenza infection also requires IFN-� from helper CD4�
T cells (276). Whether the pathways described above are
broadly applicable, for example, to multiple types of respi-
ratory infection or to CD4� lung TRM cells, demands more
study. The fundamental biology of lung TRM cells, and how
lung TRM cells are normally involved in resistance and sus-
ceptibility to diverse respiratory infections as well as the
roles of alterations in lung TRM cells in diverse populations
of susceptible or resistant hosts, remains poorly defined and
presents especially great promise for improving our under-
standing of pneumonia defense.

C. Other Long-Term Changes to Lung Cells
After Acute Pneumonia Infection

In addition to changes in adaptive immunity as outlined
above, other persistent changes to lung tissue (FIGURE 5)
have been noted to result from resolution of respiratory
infection, potentially relevant to immune resistance against
subsequent pneumonias. Severe respiratory infections can
cause BALT formation, and these tertiary lymphoid organs
can contribute to local antimicrobial defense (412). Pre-
sumably because of the infections experienced, the co-hous-
ing of laboratory mice with mice purchased from pet stores
is sufficient to thereafter increase the numbers of innate
lymphocyte populations in the lungs, including ILC1, ILC2,
ILC3, and ��-T cells (34). Infection with influenza virus is
capable of altering the phenotypes of alveolar macrophages
and epithelial cells in the mouse lung for months afterwards
(107, 247, 394). The degrees to which BALT, innate lym-
phocyte accumulation, and such remodeling of epithelial
cells and macrophages reflects chronic inflammation,
trained immunity (363), aberrant repair, or all of the above,
and the factors influencing these and other long-term
changes in the lung occasionally observed after respiratory
infection, are largely unclear.

V. TISSUE RESILIENCE AND PNEUMONIA

Like the local and remote resistance pathways outlined
above, biological processes driving tissue resilience also in-
clude input from intra- and extrapulmonary sources. The
shared goal of these signals is to limit injury resulting from
all aspects of infection, which requires countermeasures to
damage elicited from the microbes, as well as that from the
host response (i.e., immunopathology). Failure to achieve
this goal progresses pneumonia to ARDS and sepsis (19,
315). Two major avenues for fortifying tissue resilience in
the airspaces are events that 1) provide negative feedback
on inflammation, which left unchecked can cause injury;

and 2) retain the function and number of viable lung paren-
chymal cells to ensure an environment supportive of gas
exchange. Some of these events will be highlighted below,
with consideration to both intra- and extrapulmonary con-
tributions.

A. Resilience in the Lungs

An excess of the signals described above as promoting im-
mune resistance against microbes can be dangerous to the
lung tissue itself. Perhaps the most direct and immediate
element controlling the magnitude of this response is the
size and strength of the initial stimulus, which wanes as a
consequence of adequate defense. But the self-limiting na-
ture of infection, or lack thereof, cannot apply a sufficient
level of control to ensure tissue protection. This is accom-
plished, in part, through inducible processes that actively
limit innate immunity and acute pulmonary inflammation.
For example, classic anti-inflammatory cytokines such as
IL-10, transforming growth factor (TGF)-�, and IL-1 recep-
tor antagonist (IL-1RA) are sufficient and necessary to re-
duce innate immune responses and inflammatory lung in-
jury during pneumonia (94, 170, 195, 505, 507). Of course,
this comes with the risk of overly blunting immune resis-
tance and exacerbating infection (507), highlighting the
complexity of achieving effective but balanced immune re-
sponses to invading pathogens.

Just as AMs are central for establishing pulmonary immune
resistance, they are also essential for tissue resilience. The
activation state of AMs is tightly regulated by their mi-
croenvironment (211). In a state of baseline homeostasis,
engagement of CD200R, TGF-�R, and IL-10R by their cor-
responding ligands at the epithelial surface is an important
negative regulator of alveolar macrophage activity (211),
desensitizing these cells to innocuous environmental parti-
cles common to the airspaces. As the alveolar microenviron-
ment is altered (e.g., during infection), AMs become acti-
vated and can exhibit M1 (classical) or M2 (alternative)
characteristics, with the former more typically bearing the
pro-inflammatory features highlighted in the aforemen-
tioned section on immune resistance (4). On the other hand,
alternatively activated (M2) AMs generate anti-inflamma-
tory factors such as IL-10 and IL-1RA, and the size of this
cell population has been shown to expand during the reso-
lution phase of pneumonia, helping to restore tissues to
baseline homeostasis (93, 238, 525).

In addition to fine-tuning inflammation through the release
of anti-inflammatory cytokines, an essential role of macro-
phages in the aftermath of an acute inflammatory event is to
remove accumulated debris, a large amount of which in-
cludes dead or dying leukocytes. This is largely achieved
through phagocytosis of apoptotic cells presenting in-
creased levels of phosphatidylserine and other “eat me”
signals on their surface, in a complex and tightly regulated
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process known as efferocytosis (192, 193). Efferocytosis
steers the environment away from an accumulation of ne-
crotic cells, which are inherently pro-inflammatory. Addi-
tionally, efferocytosis actively reprograms AMs to release a
suite of anti-inflammatory mediators (193), limiting the
likelihood of immunopathology. While this includes cyto-
kines like TGF-� (212), it also involves the release of pro-
resolving lipid mediators such resolvins, lipoxins, maresins,
and protectins (285). These factors elicit resilience re-
sponses, including but not limited to inflammatory cytokine
regulation, epithelial repair, and efferocytosis itself (28).
Pro-resolving lipid mediators limit immunopathology in
numerous settings of viral and bacterial pneumonia (28),
and recent evidence suggests that inhibition of these path-
ways may even serve as a virulence determinant for P.
aeruginosa and perhaps other important causes of pneumo-
nia (140).

Use of in situ imaging has compellingly revealed a popula-
tion of nonmotile macrophages in the airspaces, which also
appear to have a major influence on tissue resilience (534).
These “sessile” macrophages remain adherent to the alveo-
lar surface, where upon stimulation they employ gap junctions
to propagate immunosuppressive Ca2� waves throughout the
epithelium. Disruption of these connexin-43-containing gap
junctions is sufficient to amplify cytokine expression and
alveolar neutrophilia in response to bacteria or bacterial
stimuli (534), suggesting that these interactions apply neg-
ative feedback to reduce injury in the setting of acute in-
flammation. Notably, the identification of sessile macro-
phages challenges existing paradigms of alveolar macro-
phage biology, produced by decades of studies focused on
macrophages lavaged from the airspaces (38). Only a frac-
tion of alveolar macrophages are recovered by bronchoal-
veolar lavage, which may be a consequence of differential
lavageability among several functionally distinct macro-
phage subsets. The alveolar macrophages that are con-
nected to epithelial cells via gap junctions and not collected
by bronchoalveolar lavage may have specialized roles in
lung resilience during pulmonary inflammation.

The alveolar-capillary barrier is maintained and restored by
the presence of tight junctions and the expression of epithe-
lial Na� channels (e.g., ENaC and Na�-K�-ATPase) and
other membrane transporters (e.g., CFTR and aquaporin 5)
which actively limit the airspace liquid accumulation char-
acteristic of pneumonia (37). These surface proteins are
dynamically regulated by host factors such as cAMP ago-
nists, glucocorticoids, thyroid hormone, and TRAIL, and
disruption of these pathways can enhance acute lung injury
(37, 389).

Structural integrity of the epithelial barrier also relies on
cellular viability, which is actively supported during pneu-
monia by tissue-protective signaling networks. STAT3 ac-
tivity is a critical determinant of epithelial resilience, en-

abling this cell population to better withstand the barrage
of toxic stimuli accrued at the air-liquid interface in an
infected lung. Mouse models employing targeted lung-spe-
cific epithelial STAT3 deficiency have consistently demon-
strated a requirement for this transcription factor to limit
cytotoxicity and acute lung injury in response to a variety of
stimuli, including virus (314), bacteria (405), LPS (215),
hyperoxia (206), and naphthalene (252). Mechanisms of
STAT3-mediated epithelial protection likely involve, at
least in part, the induction of gene programs that inhibit
apoptosis and drive tissue repair (252, 314). Conversely,
gain of STAT3 function in lung epithelium can limit acute
lung injury, as shown in the setting of hyperoxia (287), but
protective STAT3-dependent signals require precise regula-
tion given the potential for the development of epithelial
adenocarcinoma (286). Host-derived signals upstream of
epithelial STAT3 activation, therefore, represent an impor-
tant control point for guiding tissue resilience during pneu-
monia. Leukemia inhibitory factor (LIF) may represent a
particularly prominent player in this regard. LIF is induced
in lung epithelial cells in response to infection (144, 405,
496), and it is necessary and sufficient to activate lung epi-
thelial STAT3 (409). Pharmacological blockade of LIF
causes significant injury in response to bacterial and viral
pneumonias (144, 409). Not only does this phenocopy the
consequence of epithelial STAT3 inhibition (405), but it is
also notable that LIF neutralization does not impact patho-
gen burdens (144, 409), suggesting that the benefits of LIF
are solely attributable to increased tissue resilience. In ad-
dition to STAT3, other contributors to epithelial protection
and/or repair in the setting of lung infections include
�-catenin (568, 569), FOXM1 (293), and p63 (273). The
promising and burgeoning area of stem cell-mediated tissue
regeneration, while still nascent, is also likely to reveal im-
portant mechanisms of epithelial barrier control as the field
develops (247, 266).

In addition to its viability and fluid clearance, the epithe-
lium of the lung has significant resilience roles in producing
anti-inflammatory signals. SAM Pointed Domain Contain-
ing ETS Transcription Factor (SPDEF) is best recognized for
driving mucus metaplasia (68), but a nonpathological role
of SPDEF is to limit inflammatory gene expression down-
stream of MyD88 and TRIF (264). The goblet cell promot-
ing factor transcription factor FOXA3 also diminishes an-
tiviral immune resistance gene programs (67). And some
mucus proteins exhibit anti-inflammatory roles in the pneu-
monic lung (254), as highlighted by protective immunosup-
pressive effects of MUC1 following P. aeruginosa infection
in mice (506).

While AMs and lung epithelium represent resident sources
of pulmonary resilience, recruited leukocyte populations
also have the capability to elicit tissue protective responses.
For example, recruited exudate macrophages have been
identified as an important source of IL-1RA-dependent pre-
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vention of epithelial apoptosis and inflammatory injury in
mice with pneumonia caused by LPS or K. pneumoniae
(195). Macrophages support the growth of alveolar epithe-
lial cells and of lung epithelial “pneumospheres” in vitro
(279), and the CCR2-mediated migration of blood mono-
cytes into lung tissue is essential to maximizing lung regen-
eration after pneumonectomy (279), together suggesting
that the repair of lungs injured by infection may be down-
stream of monocyte recruitment; although not tested in
pneumonia yet, an emerging body of evidence consistently
suggests that type 2 immune signals drive macrophage-me-
diated tissue repair after diverse infections and insults, de-
pendent on macrophage receptors including IL-4R� and
myosin 18A (44, 279, 333). Neutrophils, perhaps the most
prototypical “proinflammatory” cell type, cause elastase-
dependent activation of a cytoprotective �-catenin response
as they migrate across the epithelial barrier (568, 569).
Myeloid-derived suppressor cells (MDSCs), which bear re-
semblances to neutrophils, also accumulate in pneumonic
lungs, where they limit immunopathology through synthe-
sis of IL-10 and enhanced efferocytosis of apoptotic neutro-
phils (396). Recruited cells derived from lymphoid progen-
itors can also limit inflammatory injury in the lungs. Regu-
latory T cells (Tregs) accumulate in the lungs of patients and
mice with lung injury, and these cells are sufficient and
necessary to curb inflammatory cytokine induction and to
stimulate resolution in mouse models of acute pulmonary
inflammation (5, 94). Antiviral effector T cells, including

particularly CD8� but also CD4� T cells, can be important
additional sources of IL-10-mediated tissue protection dur-
ing respiratory viral infections (477, 478), thereby exhibit-
ing both pro-resistance and pro-resilience characteristics.
Recruited ILC2s can limit immunopathology during pneu-
monia, as evidenced by their accumulation in the airspaces
of mice and humans following influenza infection, com-
bined with their release of the tissue protective factor am-
phiregulin (338). NK cells can also be tissue protective,
producing IL-22 to mediate epithelial repair in response to
viral or bacterial lung infections (272, 276, 549). Thus res-
ident and recruited cell types enhance intrapulmonary resil-
ience during pneumonia (FIGURE 8).

B. Resilience From Outside the Lungs

Tissue resilience of the lungs, like immune resistance (see
above), can originate from extrapulmonary sources. The
brain is one example. As discussed above, brain-dependent
processes such as fever and reflex control appear to promote
immune defense in the lungs (122, 186), but the central
nervous system can also function to limit inflammation po-
tentially reducing immunopathology. For instance, neu-
roendocrine control of immunity, such as that achieved by
autonomics and the hypothalamic-pituitary-adrenal (HPA)
axis, is well appreciated (372). Crosstalk between the sym-
pathetic and parasympathetic activity has been attributed
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to myriad immunological processes, with ACh and cat-
echolamines, particularly norepinephrine, now mechanisti-
cally linked to the suppression of cells across the immune
system, including but not limited to macrophages, dendritic
cells, T cells, and B cells (372). Meanwhile, glucocorticoids
derived from the HPA axis are quintessentially anti-inflam-
matory. The anti-inflammatory effects of glucocorticoids
on CXCL5 expression and neutrophilic inflammation in the
lungs involve circadian rhythms in airway epithelial cells
(156). While the direct impact of endogenously synthesized
glucocorticoids such as cortisol on pneumonia is not en-
tirely clear, the HPA axis has long been a target for phar-
macological intervention. Many studies have examined the
application of corticosteroids for pneumonia patients.
While plausible that steroids may pose risk for pneumonia
patients (422), results have suggested general trends to-
wards a protective effect, perhaps reducing the risk of
ARDS and shortening hospital stays (523). Because it en-
tails risk and only subsets of patients may respond favor-
ably, precision medicine may be needed to apply corticoste-
roid therapies most effectively for pneumonia. Consistent
with this premise, a recent clinical trial showed that severe
community-acquired pneumonia patients with the highest
levels of inflammation (based on serum CRP) showed sig-
nificant reductions in treatment failure if they received
methylprednisone (494). Investigations in animal models
have shed further light on functional connections between
neural input and pulmonary immune responses. Vagal de-
nervation reduces acute pulmonary inflammation and mor-
tality in mice with pneumonia induced by E. coli, likely
owing to decreased engagement of the anti-inflammatory
�7 nicotinic acetylcholine receptor (�7 nAChR) on alveolar
macrophages and neutrophils (476). This is further sup-
ported by enhanced injury in mice lacking �7 nAChR itself
under the same conditions (476). In another example of
brain-derived lung resilience, adrenalectomy impairs circa-
dian suppression of airway epithelial cells and exaggerates
the lung CXCL5 response, seemingly due to disruption of
glucocorticoid receptor occupancy (156), which is consis-
tent with the possibility of an endogenous HPA-dependent
reduction of inflammatory injury. Similarly, adrenalec-
tomy promotes inflammatory injury following intrapul-
monary challenges with LPS or immune complexes, al-
though this could be more attributable to modulation of
catecholamine responses rather than glucocorticoids
based on blockade studies of the latter (139). A recently
identified anti-inflammatory role of pulmonary neuroen-
docrine cells also suggests neural regulation of lung im-
munity (49). These innervated lung epithelial cells release
excessive neuropeptides and enhance pulmonary inflam-
mation when their organization is disrupted by targeted
mutation of the Robo receptor (49), suggesting that the
organization and function of these innervated cells is
essential to curbing inflammatory responses to pulmo-
nary challenges such as infection.

Some of the APPs produced in the liver in response to pul-
monary infection serve to counter inflammatory injury. Per-
haps the most revealing example of liver-dependent tissue
protection in the lungs is the pathological consequence of
�1-antitrypsin (AAT) deficiency. Patients with this inher-
ited disorder can present with severe liver and lung injury,
the latter of which can result in COPD, bronchiectasis, and
increased pneumonia incidence (172). Therapeutic treat-
ment with AAT reduces inflammatory injury in patients and
animal models (63, 241), and this protective effect may
extend beyond AAT’s seminal function of inhibiting neu-
trophil elastase. Liver-derived APPs contributing to metal
homeostasis may also influence pulmonary tissue resilience.
For example, in addition to their roles in immune resistance
(e.g., bacteriostatic iron sequestration) (235), iron-handling
proteins also prevent iron toxicity, oxidative stress, and
lung injury (155). Thus it is feasible that APPs including but
not limited to antiproteases and those regulating metal ho-
meostasis confer liver-dependent tissue protection in pneu-
monic lungs. An indirect example of liver-dependent immu-
noregulation in the lungs relates to MDSC mobilization.
Egress of these anti-inflammatory cells from the bone mar-
row requires gp130-dependent liver activity during sepsis
(430), suggesting that the liver may be a requisite interme-
diate for the lung-protective roles of MDSCs observed in
pneumonia (396).

Extrapulmonary organ injury is a common sequela of se-
vere pneumonia, posing concern for sepsis secondary to
pulmonary infections (320) and indicating that signals gov-
erning extrapulmonary tissue resilience are critical to pneu-
monia outcome. Liver injury is a prominent feature of sepsis
(471). As discussed above, hepatic acute phase changes oc-
cur in response to lung infections in mice (403, 404). Pneu-
monia-induced transcript changes in hepatocytes include
hepatoprotective means to limit liver injury, and distur-
bance of such transcriptome remodeling by interruption of
either RelA or STAT3 in hepatocytes can lead to hepato-
toxicity (8, 201). The ER stress and antiapoptotic pathways
induced by STAT3 and RelA in hepatocytes are examples of
inducible tissue resilience outside of the lungs. Increased gut
permeability, which is both a cause and consequence of
sepsis (256), is also regulated during pneumonia. Results
from animal models recapitulate pneumonia-induced intes-
tinal injury and provide evidence for its occurrence being
dictated by signals including surfactant proteins A and D
(117), PARP (295), EGF (114), Bcl2 (210), and p53 (87).
Acute injury to the kidneys and brain is also associated with
sepsis, and increased damage to either organ occurs up- and
downstream of that of the lung (345, 435, 453). In the
heart, pneumococcal pneumonia can lead to bacterial
growth and macrophage necroptosis within the mycocar-
dium that leads to acute injury and prolonged scarring (56,
159, 417). The mechanistic basis for most of the crosstalk
between these tissues and the lungs is poorly understood,
requiring further investigation into biological pathways
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that promote or limit damaging interactions. Further in-
sights regarding extrapulmonary tissue resilience will be
essential for illuminating physiological determinants pre-
venting disseminated injury and sepsis during pneumonia.

VI. LUNG MICROBIOME AND PNEUMONIA

While the lung was previously considered to be a sterile
organ, a microbiome in the lung has become appreciated
due to culture-independent techniques for detecting, iden-
tifying, and quantifying bacteria (105). The bacteria in the
lungs of healthy individuals are likely transients that repre-
sent a balanced equilibrium of incoming bacteria (from in-
halation, aspiration, etc.) with bacterial elimination (by res-
ident innate immunity including the mucociliary escalator,
alveolar macrophages, and biochemical components in
lung lining fluids, as described above). While healthy lungs
are not likely a niche for stable populations of resident
bacteria growing there, they are never sterile and those mi-
crobes in the lung have physiological consequences (105).

In healthy individuals, the microbiota in the lung are similar
to that of the mouth (29, 513). The bacteria are most abun-
dant in the largest airways and diminish with increasing
distance into the respiratory tract, suggesting an oral source
for the lung microbiome during health (209). Healthy sub-
jects with greater amounts of this microbiota in their air
spaces have evidence of low level subclinical inflammation
in their BAL fluid (439), implying that recruited immunity
may at times need to supplement resident immunity to con-
trol lung microbiota and prevent pneumonia. Consistent
with the notion that exposure to respiratory pathogens is
not sufficient to cause pneumonia, it is not unusual to find
bacterial agents that cause pneumonia in the lung micro-
biome of healthy individuals (127, 202, 337).

One perspective on pneumonia is to frame it as a shift in the
lung microbiome (105). During pneumonia, the lung micro-
biome becomes dominated by the etiologic agent causing
infection (105, 221, 385, 492). Thus the pneumonia micro-
biome is differentiated by low microbial diversity, high mi-
crobial biomass, and local bacterial growth (105). A feature
that may differentiate the bacteria that cause pneumonia
(FIGURE 1) from other bacteria of the normal respiratory
tract microbiome is that the causative agents of pneumonia
better thrive in a setting of lung inflammation (with differ-
ences in nutrients, temperature, biochemical and immune
components, etc.). Subsets of organisms within the respira-
tory microbiome may be better adapted to growth in such
environments, and these may be most likely to be causes of
pneumonia (209).

In addition to providing agents that cause pneumonia, the
microbiome importantly influences pneumonia susceptibil-
ity and outcome. Microbes in the respiratory tract micro-
biome can limit or favor growth of the causative agents of

pneumonia (105, 306, 448, 450, 535). Furthermore, the
respiratory microbiome shapes the immune system that de-
fends the lungs against pathogens (209, 306). The lung
microbiome and lung immunity are both influenced by ex-
trapulmonary microbiomes (58, 81, 106, 190, 209), includ-
ing that of the gastrointestinal tract as detailed above, high-
lighting roles of microbiota outside the lungs affecting
pneumonia.

Finally, the lung microbiome is altered in chronic pulmo-
nary diseases (105). As discussed below, chronic pulmonary
diseases increase the risk of pneumonia, and pneumonia
accelerates the course of chronic pulmonary diseases.
Changes in the lung microbiome may mediate some of these
relationships between chronic pulmonary diseases and
pneumonia.

VII. PNEUMONIA SUSCEPTIBILITY

We propose a change in how pneumonia is approached,
that the medical community should address pneumonia as a
chronic condition of susceptibility rather than merely an
acute infection. The argument for such a shift in approach is
motivated by the inspiring successes from the cardiovascu-
lar community. Deaths from infarction (i.e., heart attacks
and strokes) are presently a third of their levels from a
half-century ago (353), contrasting sharply with the un-
changing mortality rates for pneumonia over this time-
frame (20, 147, 290, 336). Both pneumonia and infarction
are acute events with disastrous consequences. Infarction is
attacked with blood-thinners and anticoagulants that pre-
vent or eliminate clots, analogous to attacking pneumonia
using vaccines and antibiotics that prevent or eliminate in-
fections. However, so much more is done to address the
underlying chronic disease predisposing to acute infarc-
tions. With so little biological understanding at present,
little or nothing can be done to address the underlying
chronic disease predisposing to acute pneumonia.

A pivotal event in cardiology was the demonstration that
subjects who would later get infarctions already had mea-
surable biological changes: higher blood pressure and se-
rum cholesterol (248). This discovery led to individualized
risk factor assessments, behavioral changes (e.g., in diet,
exercise, and smoking) designed specifically to alter the rel-
evant risk factors, and the use of drugs such as beta-block-
ers and statins that target risk factors (rather than acute
clots) and thereby lower infarction risk (353). Successful
prevention of infarctions results in part from treating the
underlying chronic disease process. The approach to pneu-
monia should move in similar directions. Finding ways to
measure and interfere with the chronic processes underlying
pneumonia susceptibility should be major goals for the
coming years. The ability to approach pneumonia by differ-
entiating those with susceptibility and effectively treating
that susceptibility has exceptional promise for diminishing
the burden of pneumonia.
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So who gets pneumonia? Who are the susceptible? As de-
tailed above, young children and older adults have higher
rates of pneumonia then those aged in-between (FIGURE
9A). Multiple clinical and behavioral conditions have been
identified as risk factors for pneumonia (discussed further
below), and these conditions associate with increased pneu-
monia risk across the age spectrum (FIGURE 9A) (384).
However, while those with recognized risk factors have
higher rates of pneumonia, this results from an increased
degree of susceptibility rather than a switch from resistant
to susceptible. People get pneumonia at every age, even
without recognized risk factors (FIGURE 9A). About half of
children hospitalized with pneumonia have recognizable
underlying conditions, especially premature birth or
asthma, while the other half do not (228). Similarly, young
adults with pneumonia more often do not have recognized
risk factors (FIGURE 9B). In contrast, most older adults hos-
pitalized with pneumonia have underlying conditions that
are known risk factors for pneumonia (FIGURE 9B), includ-
ing chronic respiratory, cardiovascular, neurologic, or met-
abolic diseases (227). A large fraction of aging adults suffer
from one or more of these chronic conditions, tilting the
demographics of pneumonia towards the aging group, re-
sulting in a disproportionate number of pneumonia cases in
the 60-and-over cohort (FIGURE 9B). Despite this, among
adults hospitalized for pneumonia in the US, the majority

(around two-thirds) are younger than 65 yr of age (227).
This is probably because the chronic conditions that in-
crease pneumonia susceptibility begin in middle age, and
there are more middle-aged than elderly people (e.g., over
twice as many 55 as 75 yr olds in the US, based on 2016
census data). Finally, only a fraction of the population with
any of the recognized risk factors will get pneumonia, but
there are presently no means of predicting which subjects
within these risk groups are most likely to get pneumonia.
Underlying conditions or risk factors are pivotal, but not
well understood. We summarize here some of the currently
recognized connections between underlying factors and
pneumonia susceptibility. However, this is an area that
needs more research. Deeper epidemiologic and especially
physiological insights are needed before we can recognize,
prevent, or reverse pneumonia susceptibility.

A. Age

Although pneumonia can occur across a lifespan, the very
young and old are at highest risk. Both the old and young
have impaired immune responses to pulmonary pathogens,
as well as increased risk of pathogens breaching impaired
anatomic barriers to the lower respiratory tract, such as
aspiration of oral or gastric contents. The combination of
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poorer immune clearance and increased alveolar pathogen
burden potently increases age-associated risks for develop-
ing pneumonia.

Young children have scant prior history with pathogens,
leaving them less protected by adaptive immune memory
and more dependent on innate immune responses (as
detailed above). Their lack of heterotypic immunologic
memory against the etiologic agents of pneumonia is
likely a predominant predisposing factor for childhood
pneumonia. In addition, many specific immune altera-
tions have been noted in the very young, including altered
phagocyte function and cytokine production by their
AMs (219, 274, 275), a preponderance of Treg cells in
their lungs (487), different patterns of cytokine release by
their blood leukocytes (261), and altered recruitment and
activity of their ILCs during respiratory infection (432).
While both are involved, it is unclear whether getting
older or gaining experience with microbes (34) is most
responsible for “maturing” these and other immune pa-
rameters in young children.

Whereas the very young have immature and inexperienced
immune systems that predispose to development of pneu-
monia, excessive activity and chronic inflammation may
paradoxically impair immune responses and contribute to
pneumonia risks in the aged (45). There is evidence of smol-
dering inflammation in the aging lung as well. In one study
of bronchoalveolar lavage fluid, healthy volunteers older
than 65 yr old had increased neutrophil, immunoglobulin,
and IL-6 concentrations when compared with younger vol-
unteers (329). The chronic inflammatory milieu of aging
induces multiple changes that contribute to increased
pneumonia risk. Chronic inflammation increases patho-
gen adhesion to host cells (92), induces tolerance of TLRs
(107), impairs monocyte pathogen clearance (399), and
blunts pulmonary innate immune responses to S. pneu-
moniae (203). In short, the cells of the lung and their
inter-communication that is necessary for coordinated
immune responses become dysregulated with advancing
age (50). In addition, multiple changes in the adaptive
immune system associate with aging and reflect a grow-
ing state of immunosenescence with diminished efficacy
of responses to diverse microbial challenges (166, 322,
557), which may further contribute to the increased sus-
ceptibility to pneumonia among the elderly. Modification
of compromised immunity resulting from the chronic in-
flammation and/or immunosenescence of aging may rep-
resent targets of future pneumonia risk reduction, once
better defined.

B. Comorbidities

At any age, a wide spectrum of comorbidities associates
with increasing risk of pneumonia (FIGURE 9). While pneu-
monia rates are two- to threefold higher in those with co-

morbidities compared with those without, it is also evident
that only a small fraction of those that are young or old and
have high risk conditions will get pneumonia in a given
year, on the order of 3,000 per 100,000 or 3% per year
(FIGURE 9A).

Multiple environmental and behavioral exposures act to-
gether to increase pneumonia susceptibility. Tobacco
smoke represents the most important modifiable risk factor
for pneumonia (368), with nearly one in three pneumonia
cases attributable to tobacco smoking (14). Both active and
passive tobacco smoke exposures increase nasopharyngeal
pathogen (e.g., S. pneumoniae) carriage (281, 366) and al-
ter acute respiratory tract immune responses. Short-term
exposure to tobacco smoke disrupts airway mucociliary
clearance, alters interferon response to viral pathogens, and
attenuates alveolar macrophage, natural killer cell, and
dendritic cell responses to pathogens (464). Chronic expo-
sures to cigarette smoke substantially derail antibacterial
adaptive immunity, diminishing bacteria-specific antibod-
ies (both IgA and IgG in the BAL fluid and IgG in the blood)
and skewing bacterial antigen-induced T-cell responses
(whether from lung or spleen) towards IL-17 and away
from IFN-� and IL-4 (300). Such changes worsen host de-
fense while exaggerating inflammation. Mechanisms by
which cigarette smoke alters immune cells are multifaceted,
involving many diverse particulate materials, toxic chemi-
cals (acrolein, acetone, benzopyrenes, methylcholanthrene,
etc.), catalytic agents, noxious gases, and more in cigarette
smoke (464). Many of the �4,000 components of cigarette
smoke are individually capable of dysregulating immuno-
physiology, and the habit of cigarette smoking ensures pro-
longed exposures to large doses of these in combination.
High levels of secondhand smoke or of air pollution also
associate with increased risk for and severity of pneumonia
(7, 364, 538). These exposures contain similar particulate
matter and toxic compounds like acrolein, so pneumonia
susceptibility due to secondhand smoke and air pollution
may be from overlapping mechanisms with tobacco smok-
ing.

Long-term tobacco and poor air quality exposure leads to
chronic lung diseases that further exacerbate pneumonia
risks. COPD is the most common clinically observed path-
ological response to long-term exposure to noxious inhaled
particles. COPD is characterized by development of fixed
airway obstruction, emphysematous remodeling of the al-
veolar air spaces, and mucus metaplasia with impaired mu-
cociliary clearance in the conducting airways. The AMs of
COPD patients adapt to increased oxidative stress by in-
creasing expression of the anti-apoptotic protein Mcl-1,
which diminishes antibacterial efficacy of these cells and
may be a biological factor contributing to pneumonia sus-
ceptibility in these patients (36). Responses of COPD lungs
to pathogens are further influenced by alterations in the
airway microbiome (305) as well as COPD treatments such
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as inhaled and systemic immunosuppressive corticosteroid
therapies (138, 251). This leads to a three- to fourfold in-
creased risk for pneumonia in COPD patients (444, 493).
Smoking cessation reduces the elevated pneumonia risk
for COPD patients, but it is not sufficient to eliminate it,
and COPD patients maintain an excessive pneumonia
susceptibility despite smoking cessation (12). Impor-
tantly, patients with COPD who get pneumonia experi-
ence acute decrements of lung function that worsen
COPD severity and chronic inflammation, both of which
increase risk for future pneumonia and perpetuate a cycle
of COPD decline (444).

Asthma, defined by reversible airways obstruction, is asso-
ciated with a 1.5- to 2-fold increased risk for pneumonia,
substantially lower than COPD (216). Reasons for lower
rates of pneumonia associated with asthma as compared
with COPD likely include the younger age, less tobacco
smoke exposure, and different anatomical pathologies ob-
served in patients with asthma as compared with COPD.
Factors predisposing asthma patients to pneumonia include
airways with excessive mucus and immune profiles skewing
towards anti-helminthic defense and allergic responses
rather than protection against bacteria and viruses (132,
207).

In addition to the increased risk of pneumonia accompany-
ing chronic lung diseases, comorbid conditions involving
other organ systems also increase pneumonia risk. Despite
the substantial differences in each condition, diabetes mel-
litus, chronic liver disease, kidney disease, and heart failure
all show strong increases (e.g., 1.5- to 4-fold) in pneumonia
risks (216, 493). The hyperglycemia of diabetes impairs
neutrophil chemotaxis (100) and superoxide-mediated an-
timicrobial effects (383), although clinical trials of strict
control of hyperglycemia fail to demonstrate reductions in
pneumonia (6, 486b), implying additional mechanisms
contributing to susceptibility. Impaired neutrophil function
during liver disease (40) is in part related to tuftsin defi-
ciency (499). Tuftsin modulates activities of phagocytic
cells, but requires activation in the spleen; splenic conges-
tion from cirrhotic liver disease is hypothesized to impair
tuftsin activation. Uremia during chronic kidney disease
impairs neutrophil intracellular killing through unclear
mechanisms; however, dialysis partially restores neutrophil
function (17). Mechanisms of increased pneumonia risk
associated with heart failure have not been experimentally
elucidated, although some hypothesize that chronic pulmo-
nary edema may generally impair neutrophil and monocyte
chemotaxis and function. Importantly, chronic diseases
cluster together (e.g., diabetes is a risk factor for liver and
kidney disease as well as heart failure). With the exception
of targeted vaccination against influenza and pneumococ-
cus, methods to reduce pneumonia risks among patients
with chronic disease are unclear and warrant further study.
Understanding the pathophysiological interactions between

multiple chronic diseases that lead to pneumonia may iden-
tify novel opportunities to interrupt etiological pathways.

Drug and alcohol abuse, dementia, and stroke are also as-
sociated with increased risks of pneumonia (168). Increased
pneumonia risks associated with these conditions that re-
sult in altered mental status occur through immunosuppres-
sion, altered host microbiome, and disruption of physical
barriers that allow larger burdens of pathogens entry into
the lower respiratory tract. Alterations in upper airway re-
flexes and depressed mental status increase dysphagia risk
and the number of pathogens aspirated into lung in patients
with either acute or chronic conditions that impair mental
status. The risks for pneumonia in conditions disrupting
basic anatomical airway protection are further exacerbated
by alterations in nasopharyngeal pathogen carriage and lo-
cal immune suppression, including impairments in alveolar
macrophage function with alcohol and drug abuse (57, 288,
325, 326, 424). For example, chronic alcohol ingestion re-
sults in oxidative mitochondrial stress leading to dysfunc-
tional alveolar macrophage phagocytosis and increased
risks of ARDS during pneumonia; both opiates and opiate
withdrawal syndromes have protean immunosuppressive
actions involving innate and adaptive immunity (424). Ef-
fects of alcohol consumption on redox imbalance and oxi-
dative stress in alveolar macrophages have been attributed,
in part, to diminished glutathione availability (57, 95, 288,
560). The inverse relationship between alcohol consump-
tion and glutathione levels has been observed in patients
and animal models, and more recent studies have indicated
that glutathione supplementation can be used to circumvent
alcohol-related macrophage dysfunction (326, 344, 560).
Acute neurological insults such as stroke act through vagal
�7 nAChR-mediated anti-inflammatory pathways to in-
crease pneumonia risks. Increased vagal tone after stroke
activates �7 nAChRs on macrophages and alveolar epithe-
lium to impair the innate immune response and promote
pneumonia (126). Compounding risks for patients with
substance abuse or dementia, neurological conditions, and
impaired physical barrier defenses are comorbid nutritional
deficiencies (including vitamin D, zinc, and protein-calorie
malnutrition) that exacerbate innate immune dysfunction
(27, 183, 296, 411, 420). The aging populace, heralding
more strokes and dementia, plus the growing prevalence of
opiate abuse suggest increasing burdens of pneumonia over
coming years, putting added pressure on elucidating mech-
anisms by which these major risk factors predispose to
pneumonia.

For young children, additional major factors associated
with increased risk of pneumonia are factors common in
areas of lower socioeconomic status, including malnutri-
tion, vitamin deficiencies, incomplete vaccination, crowded
living conditions, indoor air pollution/parental smoking,
prematurity or low birth weight, lack of breastfeeding, and
HIV infection (142, 225, 277, 365, 514, 542). Breastfeed-
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ing is considered one of the most cost-effective interventions
to reduce childhood pneumonia, by supplying humoral and
cellular adaptive immune components to the neonate with a
naive and immature immune system. In addition to being
immunocompromised from HIV, childhood comorbid con-
ditions such as gastroesophageal reflux, asthma, and con-
genital heart diseases also increase pneumonia risk, al-
though diverse mechanisms including increased penetration
of pathogens to the lower respiratory tract, recurrent sub-
clinical lung injury, airways disease, pulmonary edema, and
chronic inflammation.

C. Acute Illness and Pneumonia

Healthcare-associated pneumonia represents an important
and potentially preventable burden to the healthcare system
(573). Pneumonia is the most common healthcare-associ-
ated infection in the US (303), and ventilator-associated
pneumonias alone contributed approximately $3 billion in
US healthcare costs in 2009 (573). Healthcare-associated
pneumonias represent a “perfect storm” of pneumonia risk
factors. Patients in the healthcare setting often have multi-
ple comorbid conditions that increase pneumonia risks,
disruptions to airway barriers from sedative medications
and/or endotracheal tubes, sepsis-induced (41) and drug-
induced immunosuppression, increased exposures to op-
portunistic and antibiotic-resistant bacteria, and an al-
tered microbiome from recent antibiotic exposure. It is
thus not surprising that hospitalized patients are at high
risk for recurrent pneumonias: ~20% of patients hospi-
talized with pneumonia and 5% of patients hospitalized
with sepsis, heart failure, or myocardial infarction are
rehospitalized within 30 days with pneumonia (102,
397). Typical of pneumonias occurring during other
acute illnesses, ventilator-associated pneumonias repre-
sent a pathophysiology driven by simultaneous disrup-
tions to upper airway barrier protection, to lower airway
clearance mechanisms, and to immunological responses.
Despite efforts such as routine chlorhexidine-based oro-
pharyngeal care and measures to prevent gastroesopha-
geal reflux among patients requiring mechanical ventila-
tion, ~1 in 10 patients requiring mechanical ventilation
for more than 2 days develop ventilator-associated pneu-
monia (328). Endotracheal tubes and sedatives remove
epiglottic airway protection and facilitate entry of oro-
pharyngeal flora into the distal lung. Furthermore, pre-
existing lung injury from prior illness and damage due to
mechanical ventilation, combined with the high preva-
lence of multidrug-resistant pathogens in the nosocomial
setting, favors infection with pathogenic bacteria differ-
ing from the common causes of community acquired
pneumonia, including Staphylococcus aureus, Entero-
bacteriaceae (especially Klebsiella and E. coli), Pseu-
domonas, and Acinetobacter (79). Immune suppression
due to critical illness, such as impaired leukocyte glycol-
ysis (511), expansion of myeloid-derived suppressor cells

(504), and blunted type I interferon signaling (512) may
contribute to the inability to mount an effective response
to the increased bacterial load faced by the ventilated
lung.

Acute viral upper respiratory infections may lead to super-
infection with bacterial pathogens in the absence of me-
chanical ventilation and impaired upper airway protection.
Bacterial infections (most commonly S. pneumoniae) com-
plicated nearly all deaths resulting from the 1918 H1N1
influenza pandemic (321, 342) and 25–50% of severe influ-
enza deaths during the 2009 H1N1 pandemic (158). Many
mechanisms for bacterial superinfection after viral infection
are shared with ventilator- and hospital-acquired pneumonia
during critical illness, including epithelial damage increasing
susceptibility to bacterial invasion, macrophage depletion and
dysfunction, type I interferon dysregulation, and attenuated
TH17 responses necessary for bacterial clearance.

The numerous and complex mechanisms by which acute
viral infections transiently suppress innate and adaptive im-
mune responses against bacteria in the lung have been ex-
cellently summarized by others (101, 242, 249, 321, 428).
Most current knowledge relates to interactions between in-
fluenza infections and pneumonias caused by pneumococ-
cus or S. aureus, but information may be greatest for these
interactions because they have been examined more exten-
sively because of special relationships among these organ-
isms. Many immunological mechanisms for how influenza
viruses predispose to secondary infections (101, 242, 249,
321, 428), such as epithelial damage, ineffective macro-
phages, exuberant interferons, and TH17 cell dysfunction,
should also apply to viral infections other than influenza.
Supporting such pan-viral generalization, mimicking viral
signaling by administering noninfectious polyI:C (as a sur-
rogate for viral double-stranded RNA) is sufficient to
render mice susceptible to pneumonia caused by pneu-
mococcus or S. aureus, dependent on signaling from type
I IFNs (489) as was previously demonstrated for influ-
enza virus-induced susceptibility (446). Viruses other
than influenza, such as RSV and rhinovirus, predispose to
secondary bacterial infections in animal studies and as-
sociate with secondary bacterial infections in patient
studies (101). More than one-tenth of all hospitalized
adult pneumonia patients in whom virus could be de-
tected also have evidence of bacterial co-infection, and
the fraction of pneumonias in which a copathogen is
identified appears roughly similar across all the different
viruses (227). Similarly, a plethora of bacterial agents
beyond pneumococcus and S. aureus are identified in
studies of secondary bacterial pneumonias, including H.
influenzae, S. pyogenes, and more (101, 242, 249, 321).
Thus, although many virus-specific and bacteria-specific
contributions to bacterial superinfections after acute vi-
ral infection have been elucidated (249, 321), we suspect
that most lower respiratory tract viral infections increase
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risk for most bacterial pneumonias, through immune
pathways triggered by diverse viruses that compromise
immune defenses against diverse bacteria.

In summary, aging, tobacco, alcohol or drug abuse, poor air
quality, nutritional deficiencies, pulmonary disease, non-
pulmonary comorbid conditions, and acute illnesses or ex-
posures interact to increase pneumonia susceptibility. Con-
ditions predisposing to pneumonia enhance susceptibility
by increasing upper respiratory colonization, decreasing lo-
cally protective barrier mechanisms, and altering local and
systemic innate and adaptive immune responses. Impor-
tantly, conditions that predispose to pneumonia tend to
cluster within individuals and communities, further magni-
fying pneumonia risks. Because an incident of pneumonia

can exacerbate the underlying comorbidity predisposing to
pneumonia, this becomes a vicious cycle (FIGURE 10). In-
creased efforts to interrupt pneumonia susceptibility in
those with comorbidities will help break these feed-forward
cycles of comorbidity and pneumonia. However, better bi-
ological understanding is needed first. At present, we have
no biologic metrics that can distinguish those with elevated
pneumonia susceptibility from their more resistant peers.
Our understanding of the physiological underpinnings of
pneumonia susceptibility are too rudimentary and incom-
plete to guide useful countermeasures that will preserve or
restore defects in resistance and resilience that develop due
to comorbidities or exposures. In this instance, the epide-
miology is leading the way, and biological understanding
needs to catch up.
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FIGURE 10. The vicious cycle by which pneumonia drives unhealthy aging. Pneumonia susceptibility is raised
by a wide variety of chronic diseases that are recognized as general risk factors for pneumonia (comorbidities).
Pneumonia elicits a predisposition to and worsening of those same comorbidities. Thus comorbidities make
people more likely to get pneumonia, and pneumonia precipitates and exacerbates comorbidities, which makes
individuals yet more likely to get pneumonia, which yet further accelerates comorbidities, and so on. A: the
self-amplifying cycle of interactions between pneumonia and comorbidities. B: the decline in physiological
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VIII. PNEUMONIA SEQUELAE

The prior section highlights that pneumonia cannot simply
be considered as an acute event, but that conditions preced-
ing infection must be considered as responsible for enabling
the pneumonia occurrence. Similarly, the outcomes of
pneumonia also should be considered in physiological and
temporal context. Death from pneumonia is one potential
result, perhaps the most emphasized of the possible out-
comes. In addition, pneumonia has other long-term conse-
quences for survivors, which degrade health and hasten
mortality after the acute event is over.

An unfortunate aspect of the strong relationship between
aging, pneumonia, and death is the prominent notion of
pneumonia as the “old man’s friend.” This metaphor is
off-base and counterproductive, encouraging some to con-
clude that pneumonia is inevitable and merciful for the
elderly. To our knowledge, this metaphor first appeared in
the fifth edition of William Osler’s textbook The Principles
and Practice of Medicine, used to imply that pneumonia can
provide a quick and painless end for some elderly patients
suffering from other slow terminal conditions (370). How-
ever, pneumonia is not universally quick, or painless, or in
terminal patients. Ironically, Dr. Osler enjoyed good health
until he developed pneumonia at age 70, leading to months
of distress, decline, and recurrent illness before he eventu-
ally succumbed to this disease (3).

Pneumonia is not typically lethal, but rather it is usually
survived. The likelihood of survival decreases with age, but
even those over 90 yr of age have a 75% survival rate (3).
Those elderly pneumonia cases (the vast majority) that end
in survival cannot possibly be framed as merciful in any
way. They are costly, distressing, and major contributors to
morbidity for the aged. It is difficult to precisely quantify
the toll pneumonia exacts beyond its (important) impact on
mortality, but it is undeniably large. Pneumonia requires
hospitalization in 10–20% of cases (with more than 5 days
of stay typical), necessitates ICU admission in �20% of
hospitalizations, incurs 30-day readmission rates of ~20%
after hospitalization, and costs tens of billions of dollars per
year in the US (136, 189, 227, 228, 352, 565). For Medicare
alone (hence only a subset of the population), pneumonia
costs 13 billion dollars in healthcare per year (565). In ad-
dition to its immediately attributable burden, pneumonia
increases the risk for and worsens the progression of many
of the other chronic diseases that also commonly afflict
older individuals. For example, as expanded upon below,
after matching for initial disease severity and controlling for
confounders, survivors of pneumonia consistently experi-
ence worse degrees of cognitive decline and dementia, func-
tional disability and limitations, heart attacks, strokes, de-
pression, and risk of death over the ensuing years (39, 88,
196, 376, 431, 445). Implicating causal relationships, vac-
cination against respiratory pathogens decreases cardiovas-
cular and cerebrovascular disease morbidity and mortality

(503, 515). Thus, far from a merciful agent of relief as often
and erroneously conceptualized, pneumonia is a major
problem for the aged and forms a catastrophic positive
feedback loop with other chronic diseases (FIGURE 10), pre-
venting healthy aging and worsening overall decline.

A. Short-Term Consequences of Pneumonia

Severe pneumonia results in direct lung injury from the
infectious pathogen, impairing alveolar gas exchange and
causing respiratory failure (FIGURE 11). Pneumonia is the
leading cause of ARDS, when it causes a bilateral injury that
includes the diffuse influx of protein-rich edema and inflam-
matory cells into the alveolar space, destruction of surfac-
tant, formation of fibrin-rich intra-alveolar hyaline mem-
branes, and loss of gas-exchanging type 1 pneumocytes
(315). Treatment of ARDS currently consists of supportive
therapy and use of measures to decrease further lung injury
caused by mechanical ventilation practices. Patients with
ARDS have mortality rates of 30–40%.

Severe pneumonia may also result in injury to organs dis-
tant from the lung (FIGURE 11). Prior sections communi-
cated that lung resistance and resilience depended on ex-
trapulmonary tissues, and it is also clear that extrapulmo-
nary tissues can be involved in the acute and severe
manifestations of pneumonia. The occurrence of life-threat-
ening organ injury from an infection such as pneumonia is
defining for sepsis (454). Extrapulmonary organ damage
resulting from pneumonia may have diverse manifestations
including encephalopathy, coagulopathy, kidney and liver
failure, as well as cardiovascular complications (e.g., shock
or arrhythmias). With the exception of antibiotics, intrave-
nous fluid therapy, and organ-supportive treatments (e.g.,
renal dialysis and mechanical ventilation), no sepsis-specific
treatments have been shown to improve patient outcomes.
Despite the absence of sepsis-specific therapies, improve-
ments in the processes of critical care delivery have resulted
in nearly a 50% reduction in short-term case-fatality rates
from sepsis over the past two decades (469), revealing that
improvements in healthcare delivery can have substantial
impact for this disease. However, this outcome of pneumo-
nia is as grim as ARDS, and severe sepsis patients currently
have mortality rates of 33% (469).

Considered in isolation as an acute event, pneumonia is a
major cause of morbidity and mortality, often due to ARDS
and/or sepsis. But pneumonia is much more than this acute
event.

B. Long-Term Consequences of Pneumonia
in Adulthood

In the century-plus since Osler depicted pneumonia as
friendly to the aged and deemed it “Captain of the Men of
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Death” (370), pneumonia case-fatality rates in advantaged
communities such as the US have dramatically declined
(407). ARDS and sepsis have high mortality rates, but they
occur in only a fraction of pneumonia cases, and fewer than
10% of all elderly patients hospitalized for pneumonia die
from this disease (290). The public health impact of pneu-
monia in the 21st century is perhaps most driven by its
contribution to progressive health decline from long-term
complications that often involve extrapulmonary organs
(222, 223). Unlike in Dr. Osler’s day, most pneumonia
patients today suffer, survive, and deteriorate (FIGURE 11).

Among older adults, survivors of an acute pneumonia hos-
pitalization have higher mortality risks that persist for years
following discharge compared with matched patients hos-
pitalized for reasons other than pneumonia (48, 128). In-
creased mortality risks following pneumonia appear to be
less dependent on age or acute severity of pneumonia, but
strongly influenced by the nature of the preexisting comor-
bid conditions (48, 88, 128, 343). However, even after ad-
justing for comorbid conditions as well as age, patients with
pneumonia appear to have worse long-term mortality rates
when compared with similar patients who have not suffered
pneumonia (398, 561, 563).

Long-term effects of pneumonia are manifest in extrapul-
monary organs. Pneumonia accelerates or precipitates de-
clines in cognition (445) and functional status (224), as well
as raising risks for cardiovascular complications such as
stroke, myocardial infarction, and heart failure (88) and for
recurrent infections (397, 398). For example, after account-
ing for multiple comorbid conditions and prior trajectories

of cognitive and functional status, pneumonia (and not
other reasons for hospitalization) associates with a 57%
increase in risk of developing dementia (445). The risk of
myocardial infarction, stroke, or heart failure increases
fourfold in patients with pneumonia within 30 days, and
remains twofold elevated 1 yr later (88). Risks of cardiovas-
cular events associated with pneumonia exceed what can be
accounted for by other cardiovascular risk factors such as
diabetes or smoking (88, 89). Finally, nearly one in five
pneumonia hospitalizations results in rehospitalization
within 30 days, and most of these readmissions are for
infection (102). Thus hospital discharge after pneumonia
should not imply a full recovery.

The mechanisms through which pneumonia affects long-
term risk for cognitive, functional, cardiovascular, and in-
fectious disease are poorly understood. Current hypotheses
implicate residual inflammation in the many complications
that occur following pneumonia. For example, IL-6 levels
measured in the blood at the time of pneumonia hospital-
ization discharge are associated with increased risk of later
death from cardiovascular disease and infection (561). Cir-
culating levels of inflammatory cytokines and acute-phase
reactants such as IL-6 and CRP also associate with subse-
quent cognitive decline (551, 552). Poor cognitive and func-
tional outcomes following pneumonia may additionally re-
sult from hypoxia and hypoperfusion during acute illness
(445) and from ancillary treatments common to severe
pneumonia (e.g., benzodiazepine sedatives and bed rest)
that appear to increase inflammation, acute delirium, and
long-term cognitive risks (376, 378, 393, 532). Increased
risks of recurrent and new infections may be due in part to
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FIGURE 11. Pneumonia sequelae. Pneu-
monia causes direct injury to the lungs,
from a combination of microbial and inflam-
matory signals. When the degree of injury
crosses a physiological threshold defined
by blood gases, this is diagnosed as acute
respiratory distress syndrome (ARDS).
When infection and inflammation dissemi-
nate from the lungs and injure other or-
gans, this is diagnosed as sepsis if severe
enough to be life-threatening. ARDS and
sepsis are well-recognized outcomes of
pneumonia. Perhaps less well-recognized
are the indirect consequences, including
the predisposition to or exacerbation of on-
going chronic diseases such as COPD, ath-
erosclerosis, cognitive decline, and more.
The mechanisms driving the sequelae of
pneumonia are multifactorial, including sys-
temic inflammation and infection plus local-
ized and diffuse aberrations involving the
immune, cardiovascular, microbiome, he-
matologic, and nervous systems.
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postinfectious immune paralysis (18, 41). Risks of stroke,
myocardial infarction, and heart failure may be increased
due to prolonged coagulopathy (562), endothelial injury
with accelerated atherosclerosis (250), large volume shifts
(116), cardiac injury (218, 245, 426), and arrhythmias
(521, 522) that result from pneumonia (FIGURE 10). At least
for some types of pneumonia (e.g., pneumococcus), cardiac
complications may result from direct infection of cardiac
tissue with macrophage necroptosis followed by scarring
(56, 159). Use of physical rehabilitation (110, 358, 359,
500), avoidance of benzodiazepines (146, 268), targeted
immune modulation (494), and use of cardiovascular risk
reduction medications such as statins and aspirin (520) are
active areas of investigation seeking to attenuate myriad
long-term risks following pneumonia (271). Further studies
are required to determine the mechanistic links between
pneumonia and these longer term extrapulmonary conse-
quences, as well as the extent to which these complications
after pneumonia are modifiable.

C. Long-Term Consequences of Pediatric
Pneumonia

Pneumonia affects 50% of children each year in the most
economically disadvantaged regions (77) and is the most
common reason for childhood hospitalization in regions
such as the US that have a more privileged socioeconomic
status (566). Studies of childhood pneumonia further refute
the notion that pneumonia is an acute illness with limited
ramifications for survivors. Rather, children experience
high rates of subsequent pulmonary comorbidity following
pneumonia, with 10% of children suffering complications
following resolution of pneumonia (123). Unlike multisys-
tem disease of adults, the best recognized long-term com-
plications of childhood pneumonias are localized to the
affected organ, the lungs. The most common complications
following childhood pneumonia are development of restric-
tive lung disease, asthma, bronchiectasis, and chronic bron-
chitis (123, 298). Acute effects of pneumonia in children
also result in altered lung development that increases the
predilection for pneumonia later in life (236, 237). Biolog-
ical links between early life acute infections and persistent
chronic respiratory diseases are not yet well established, to
our knowledge.

D. Positive Feedback Loop of Pneumonia and
Progressively Declining Health

As shown by the overlap between pneumonia risk factors
and pneumonia consequences, iterative positive feedback
loops are prominent features of this disease (FIGURE 10).
Poor health begets pneumonia, and pneumonia diminishes
health. COPD predisposes patients to lung infection, and
lung infections accelerate the decline of COPD (444, 493).
Cardiovascular diseases raise pneumonia risk, and pneu-

monia events hasten cardiovascular deterioration (89, 493,
509). Neurological and psychological diseases make pneu-
monia more likely, and pneumonia compounds the severity
of neurological and psychological diseases (39, 376, 445).
Such iterative positive feedback loops apply to most of the
comorbidities associated with pneumonia. In short, pneu-
monia is both a symptom of and a cause of unhealthy aging.

IX. CONCLUSIONS AND FUTURE
DIRECTIONS

Exposures to the ubiquitous microbes that cause pneumo-
nia are routine and unavoidable. Whether and which sub-
jects get pneumonia upon exposure is dictated by mamma-
lian biology. When the integrated responses of the pulmo-
nary, immune, cardiovascular, neurological, and other
systems are appropriate to eliminating microbes while pre-
serving physiological function, respiratory infection is sub-
clinical or mild. Too often, though, this is not the case. We
need to develop a better understanding of how the body
normally successfully defends itself against respiratory
pathogens so that we can recognize and counter decrements
in these protective pathways. Comorbidities and exposures
render individuals more susceptible to pneumonia, but the
biology of this susceptibility is not yet well delineated. The
physiology underlying the long-term and extrapulmonary
sequelae of pneumonia that accelerate chronic disease and
unhealthy aging is only speculative still.

We need new ways to approach pneumonia, to diminish the
burden of this disease that has stayed too high for too long.
Continued research into fighting microbes will be helpful,
hopefully resulting in more and better antibiotics and vac-
cines, but these directions cannot be enough. The responsi-
ble microbes are too numerous, too ubiquitous, and too
diverse. We need to reconceptualize pneumonia. Improved
understanding of the physiology of the acute infection will
lead to new approaches for limiting lung injury and the
dissemination of infection, inflammation, and injury be-
yond the lung. This will reduce ARDS and sepsis. Improved
understanding of the biological mechanisms connecting
acute pneumonia events to their long-term sequelae will
beget new approaches to interrupting the vicious cycle that
drives unhealthy aging. This will help people live longer,
better. Before people get pneumonia, changes in their phys-
iology are responsible for rendering them susceptible, and
these changes are a biological process that is not yet identi-
fied but needs to be defined. Pneumonia susceptibility must
be considered as a chronic condition so that we can develop
medical approaches to combat this chronic condition be-
fore pneumonia occurs. Improved understanding of the
mechanisms underlying pneumonia susceptibility will di-
rect such development. Just as lowering blood pressure and
cholesterol levels help prevent acute infarctions, under-
standing which biological changes render individuals most
susceptible to pneumonia will provide opportunities for in-
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terventions that target those biological pathways and re-
verse or slow the progression of pneumonia susceptibility.
Greater physiological insight is needed to more effectively
prevent and treat pneumonia.
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