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fusion properties can be challenging due to possible measurement biases
originating from averaging of gray matter (GM) and cerebrospinal fluid (CSF) signals. Therefore, a better
characterization of CSF contamination effects in different cortical regions is required in order to disentangle
actual changes in microstructure of GM itself from changes due to other effects such as macroscopic
morphological changes. We propose a localized analysis framework for the CSF contamination effect on GM
mean diffusivity measurement and applied this framework to measurements on 15 subjects. Our proposed
modeling framework was compared to fluid-attenuated inversion recovery (FLAIR) DTI technique from the
same subjects. The results of our studies suggest that GM mean diffusivity value was significantly biased by
the CSF contamination effect, and that the amount of contamination strongly depended on the local
morphology of the peripheral brain. Expected biases had their maxima in the motor and the somatosensory
association cortex, and their minima in mid and inferior temporal areas of the brain where the cortical
thicknesses are particularly pronounced. We conclude from our studies that regional differences in tissue
compounding ratio must be taken into account when assessing localized GF diffusivity differences.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Understanding the microstructural characteristics of the human
brain in relation to neurophysiological and/or neuropathological
phenomena is an important issue in clinical and basic neurosciences.
Here, diffusion tensor imaging (DTI) based techniques have proven to
be a potentially important technique formicrostructural analysis of the
brain (Basser,1995; Beaulieu, 2002;Moseley, 2002). Inmany of the DTI
applications, a scalar DTI index such as mean diffusivity has been used
to provide anatomical contrast in a variety of clinical etiologies such as
aging, Alzheimer's disease, and brain tumors (Horsfield and Jones,
2002; Kubicki et al., 2002). However, unlike the successful utilization of
mean diffusivities for characterizingwhitematter (WM) and deep gray
matter (GM) structures (Camara et al., 2007; Kubicki et al., 2002; Neil
et al., 2002), its likewise applicability for cortical gray matter has been
questioned (Benedetti et al., 2006; Helenius et al., 2002).

On the other hand, several lines of recent studies raise both the
possibility of cortical gray matter mean diffusivity measurements for
detecting specific diseases characteristics. For example, cortical GM
mean diffusivity measurements were successfully applied to detect
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deterioration of primary progressive multiple sclerosis patients
(Rovaris et al., 2002, 2006). Also, significant elevation of GM mean
diffusivity was reported on mild cognitive impairment patients (Ray
et al., 2006), congenital central hypoventilation syndrome (Kumar
et al., 2006) and Creutzfeldt–Jakob disease (Liu et al., 2006). However,
the veracity of these results have to remain partially elusive as the
highly convoluted, thin-layered structure of the peripheral GM (Zilles
et al., 1988) coupled with the limited acquisition resolution (2–5 mm)
for conventional DTI will produce significant amount of partial
voluming biases. For example, averaging GM and cerebrospinal fluid
(CSF) containing voxels with each other may introduce critical
measurement biases such as overestimated mean diffusivity (Alex-
ander et al., 2001), and will depend on the volume of the fluid-filled
spaces (Le Bihan, 1995; Niendorf et al., 1996). Observed GM mean
diffusivity differences can therefore potentially be due to CSF
contamination effect as well due to genuine differences in diffusivity
from the underlying structures. Therefore, a better characterization of
CSF contamination effects in different cortical regionswill be critical to
distinguish actual changes inmicrostructure of GM itself from changes
due to other effects such as macroscopic morphological changes.

Although an estimation of the CSF contamination effect was
introduced through the use of partial volume simulation (Le Bihan,
1995; Niendorf et al., 1996), currently there are no established means
of interpreting the local GM diffusion measurements in relation to
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Fig. 1. Pipeline of CSF contamination effect modeling framework. The order of processing was numbered in the figure (steps 1–7). Here, T1 denotes high resolution anatomical
volume; DTI S(0) is non-diffusion weighted (b=0) volume; λapp-gm and λapp-csf denote apparent signal fraction weightings for GM and CSF compartment; FLAIR DTI S(0) is non-
diffusion weighted volume of FLAIR DTI; MD map denotes mean diffusivity map (D

P
); GM MD map denotes mean diffusivity map after correction (D

P

gm); FLAIR DTI MD map denotes
D
P

flair.

Table 1
Symbols and meanings

Symbols Meanings

S(0) Non diffusion weighted volume.
D Observed mean diffusivity value with CSF contamination effect
Dgm Estimated mean diffusivity value of GM
Dcsf Estimated mean diffusivity value of CSF
Dflair Estimated mean diffusivity value of GM from FLAIR DTI
λcsf, λgm Estimated volume ratio of the CSF and GM tissue
λapp-gm, λapp-csf Estimated apparent volume fraction of the CSF and GM tissue
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potential biases. For a detailed assessment of the local CSF contamina-
tion effect, estimation of the local peripheral brain structure is required.
An important step for estimating local brain structure is tissue
segmentation to classify each image voxel to a particular tissue class.
However, limited resolution of DTI increases the probability of
misclassification. Likewise, a simple thresholding resulting in binary
tissue classwill be not appropriate for estimating the CSF contamination
effect onDTImeasurement. Thus, relativelyfine resolutionDTI datawith
proper modeling framework for partial volume averaging is needed.

Alternatively, CSF contamination may also be corrected using more
specialized acquisition protocols, such as the fluid-attenuated inver-
sion recovery (FLAIR) DTI technique (Falconer and Narayana, 1997;
Kwong et al., 1991). However, while FLAIR DTI can suppress
extracortical CSF signals, it is more time consuming than non fluid-
attenuated sequences, hampering its use where time-efficiency is
critical, such as in pediatric imaging.

In order to extend the effect of CSF contamination to group data,
optimal registration and visualization are also important. Many of the
current cortical surface modeling methods are capable of defining the
boundaries between different brain tissues with subvoxel accuracy
(Dale et al., 1999; Fischl et al., 1999; Kim et al., 2005; Lee et al., 2006),
and the overall characteristics of cortex can be efficiently confirmed
from3 dimensional representation of cortical surface. The efficiency of
the surface-based approach for matching homologous brain regions
between subjects (Lyttelton et al., 2007) can help to improve the
definition of group-specific patterns in each cortical region. Therefore,
cortical surface modeling methods have been applied to increase the
accuracy of functional data (Jo et al., 2007; Park et al., 2006) and for
the structural analysis of the cortex (Benedetti et al., 2006). Here,
cortical surface modeling method was applied for assessing group-
specific regional CSF contamination patterns in relation to macro-
scopic morphology of peripheral brain.

The purpose of this study was firstly to develop a regional modeling
technique for the CSF contamination effect. Here, GM mean diffusivity
without CSF contamination effect was estimated from the proposed
method, and the resultwas compared to FLAIRDTI dataset for testing the
efficiency. Second goal of this studywas to interpret the relevance of CSF
contamination in measuring GM mean diffusivity in localized areas in
order to better assess group characteristics. We hypothesized that the
CSF contaminationeffectmight have region specific patternsdue to local
morphological differences. Therefore, regional patterns were assessed
based on the proposedmethod. Additionally, both cortical thickness and
local curvature of GMwere used to interpret the local CSF contamination
effect in terms of the morphological characteristics of GM.

Methods

Data acquisition

MRI scans were performed on 15 right-handed, healthy, male
subjects (age range: 22–34 years) using a 3 T Philips Intera systemwith
institutional approvals. An MPRAGE sequence was applied to acquire
high resolution anatomical images (T1), and the Single Shot-EPI was
used in DTI. FLAIR DTI was obtained using same Single Shot-EPI from
same group for validationpurposes. For conventional DTI, the following
parameters were used: TR=7–8 s (depending on the slice number),
TE=90 ms, b=1000 s/mm2, number of gradient directions=15, slice
thickness=2 mm, FOV=240 mm, matrix size=128 after zero filling,
AVG=3, scan time=2–3 min. For the FLAIR DTI experiments, the



Fig. 3. Result of mean probabilistic similarity index measurement from 9 subjects.
Regions above 0.9 are plotted using gray color.

Fig. 2. Concept of local probabilistic similarity index measurement. Overlap figure
between T1 GM tissue compartment and DTI GM compartment is in (a). A Part of GM
compartment and T1 GM compartment are plotted in (b) and (c). Local PSI index is
calculated in dotted circle.
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parameters used were identical to the DTI except that the TR=10 s and
theAVG=5. A 180degree inversion recoverypulsewas addedbefore the
conventional DTI sequence with a delay of 2200 ms. To reduce the
inflow artifact, a 50% wider inversion pulse was used, and the slices
were divided into 2packages,which increased the scan time to 6–7min.
Here, all T1-weighted and DTI data were scanned in same sessionwith
same FOV for providing more relevant coregistration process.

Description of the CSF contamination model

Diffusion coefficient measurement depends on the composition of
tissue compartments in each voxel. Thus, signal intensity measured
for a voxel can be represented as the weighted sum of signals from all
independent components by assuming no spin exchange between
different tissue compartments. Because the mean diffusivity value of
peripheral WM has been reported to have a similar range to GM, a
two-tissue compartment model was applied and extended to the
surface-based regional modeling in this study.

SðbÞ = Sð0Þd½λapp−gmdexpð−bDgmÞ + λapp−csf :expð−bDcsf Þ�; ð1Þ

where S(b) and S(0) are the signal intensities of diffusion weighted
and non-weighted signals, and λapp-gm and λapp-csf are the apparent
signal fraction weightings of the GM and CSF compartment.

From Latour and Warach (2002), apparent signal fraction weight-
ing can be expressed as:

λapp−i =
λidSi 0ð Þ
∑
j
λjdSj 0ð Þ : ð2Þ

Here, λi is the estimated volume probability of existence for each
tissue compartment (λgm for GM compartment; λcsf for CSF compart-
ment) in a single voxel. Index j is the total number of tissue
compartments. Si(0), regarded as solely weighted by relaxation, is
the signal intensity in the absence of diffusion gradients in spin-echo
sequence and is defined as follows:

Si 0ð Þ = ρidexp
−TE
T2i

� �
d 1− exp

−TR
T1i

� �� �
: ð3Þ

Si(0) is a function each compartment's equilibrium proton spin
density (ρi), T1 relaxation time (T1i), T2 relaxation time (T2i), repetition
time (TR), and echo time (TE).
As the diffusivity of both GM and CSF can be assumed to be
isotropic, Eq. (1) can be extended to define the local CSF contamina-
tion effect on the mean diffusivity measurement.

exp −bD kð Þ� �
= λapp−gm kð Þdexp −bDgm kð Þ� �

+ λapp−csf kð Þdexp −bDcsf kð Þ� �
;

ð4Þ

where D is the observed mean diffusivity value with CSF contamina-
tion effect in the local cortical region (k). D

P
gm and D

P
csf denote the

estimated mean diffusivity value of GM and CSF. Here, D
P
csf was set to

3.0×10−3 m m2/s.

Computational framework for CSF contamination effect modeling

Based on the model description above, we now describe the
computational framework for CSF contamination effect modeling. The
computational framework for CSF contamination effect modeling is
composed of seven steps, as summarized in Fig. 1. The following
subsections have same order with each step expressed in Fig. 1.

Step 1. Mean diffusivity calculation

Both DTI and FLAIR DTI were corrected for distortion and motion
artifact using mutual information (Maes et al., 1997). Each directional
volume was individually normalized to the non-diffusion weighted
volume using affine transformation provided by Statistical Parametric
Mapping (SPM2, Institute of Neurology, University College of London,
UK). Then, the mean diffusivity map was calculated by in-house
software programmed using MATLAB (Mathworks, Natick, MA, USA).

Step 2. Construction of tissue probability map

To estimate λcsf and λcsf, EPI segmentation using SPM2 was applied
on individual S(0) volume for constructing tissue probability map
(step 2 in Fig. 1). The tissue probability value in each voxel denotes the
probability of GM or CSF segment volume, and ranged between zero
and one.

Steps 3 and 4. Estimation of parameters

After the calculation of λi based on CSF tissue probability map, the
λapp-csf and λapp-gm at each voxel were calculated based on Eq. (2) (step
3 in Fig. 1). Finally, D

P
gm in each voxel was estimated based on Eq. (4)

(step 4 in Fig. 1). For clearness, important symbols used to describe the
method are listed with its corresponding meanings in Table 1.



Table 2
Individual result of CSF contamination modeling and its comparison result from FLAIR
DTI

Subject Mean(D
P
)

(×10−4)
Mean(D

P
gm)

(×10−4)
Mean(D

P
flair)

(×10−4)
Mean
(D−Dflair) (%)

Mean
(Dgm−Dflair) (%)

1 7.92 6.83 6.53 23.80 6.18
2 7.84 7.51 6.46 25.37 13.14
3 8.25 7.35 6.93 21.48 9.64
4 7.12 6.32 6.17 19.02 5.81
5 7.13 6.51 6.11 21.09 7.88
6 7.27 6.54 6.15 21.29 7.21
7 9.11 7.01 7.55 25.57 14.90
8 8.29 7.50 7.09 19.09 9.58
9 8.26 7.01 7.19 27.68 11.49
10 7.74 6.78 6.67 22.54 9.32
11 7.56 6.72 6.56 24.63 8.74
12 8.01 7.12 7.02 17.52 6.53
13 7.86 7.23 7.04 15.36 5.55
14 7.54 7.21 6.54 16.35 6.23
15 8.21 7.05 6.97 23.47 10.29
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Step 5. Coregistration

To accurately estimate the intracranial correspondence between
structural and diffusion weighted spaces, the high resolution
anatomical image and the S(0) volume of both DTI and FLAIR DTI
were initially skull-stripped using Oxford FSL BET (Smith, 2000)
(http://www.fmrib.ox.ac.uk/analysis/research/bet). Affine and non-
linear transformation parameter estimation was performed between
the high resolution anatomical image and the S(0) image using SPM2
(step 5 in Fig. 1). Based on the estimated transformation parameter,
reconstructed cortical surface was inverse transformed to DTI space
for estimating partial volume fraction and diffusion data mapping.
This was to avoid error effect due to the interpolation procedure.

Step 6. Cortical surface modeling

Cortical surfaces were automatically extracted from each high
resolution anatomical scan using the Constrained Laplacian-based
Automated Segmentation with Proximities (CLASP) algorithm (Kim
et al., 2005). CLASP reconstructs the inner cortical surface by
Fig. 4. Individual result of CSF contamination modeling and its comparison result from FLAIR
result (D

P

gm) is in (a) and (b). (c) is the mean diffusivity map of FLAIR DTI (D
P

flair). Percent differ
(e). (f) is the estimated CSF apparent signal fractionweight (λcsf). Change of the histogram due
the color bar in left the side of (a). (d) and (e) follows the color bar in the left side of (d).
deforming a spherical mesh onto the boundary separating the GM
and WM. Deformation begins with a low-resolution polyhedral
surface (320 surface points), which is deformed to fit the image data
and resampled to contain more triangles (80,920 points). The outer
cortical surface is expanded from the inner surface to the boundary
between gray and white matter along a Laplacian map, which
smoothly increases the potential surface between the gray/white
and gray/CSF boundaries. During the expansion, the refined CSF
fraction image is used as a constraint for accurate representation of
buried sulci. Here, as the gray/CSF surface was generated from the
gray/white surface, point-to-point correspondence between the two
surfaces was automatically defined after final surface reconstruction.

Step 7. Surface mapping

Voxel information, including D
P
, D

P
gm, λapp-csf and FLAIR mean

diffusivity (D
P
flair), were directly mapped to surface points using the

nearest-neighbor projection method (step 7 in Fig. 1). Using the fine-
surface registration technique (Lyttelton et al., 2007), each subject's
surface information was mapped to an average surface template
for group analysis. Finally, all the comparison and analyses were
performed on the surface space.

Validation

Reliability of tissue probability estimation
As the quality of the S(0) segmentation could strongly affect Dgm

estimation, S(0) segmentation results were d by estimating probabil-
istic similarity index (PSI) (Anbeek et al., 2004) between T1 GM
segmentation map and S(0) GM tissue probability map (Fig. 2a). Here,
PSI was measured in each cortical surface point. Local sphere with
5 mm radius was used for measuring local PSI. PSI was defined as
follow:

PSI =
2ñ∑Pb0gm;T1gm¼ 1

∑1T1gm +∑Pb0gm
; ð5Þ

where ∑Pb0gm;T1gm ¼ 1 is sum over all voxel probabilities of GM
tissue probability map from S(0) in local region (Fig. 2b). Only counts
DTI. Subject 1 in Table 2 was used to display. Mean diffusivity map (D
P
) and its corrected

ences between D
P
and D

P

flair is in (d). Also, Percent differences between D
P

gm and D
P

flair is in
to the CSF contamination correction is displayed in (g). Note that, (a), (b), and (c) follows

http://www.fmrib.ox.ac.uk/analysis/research/bet


Fig. 5. Average result of CSF contamination modeling and its comparison result from FLAIR DTI. The First row is results for left hemisphere and the second is results for right
hemisphere. (a) is correctedmean diffusivity map (D

P

gm). (b) is themean diffusivity map from FLAIR DTI(D
P

flair). (c) is difference between D
P

gm and D
P

flair. Yellow-red color denotes greater
D
P

gm and blue-light blue color denotes greater D
P

flair. Note that values under 15% were colored in gray. (d) is the paired t-test result (Pb0.05, with FDR correction). FNC has greater D
P

flair

and FbC has greater D
P

gm.

140 B.-B. Koo et al. / NeuroImage 44 (2009) 136–144
the probabilities in the T1 GM segment equals 1. ∑1T1gm is sum over all
voxels in T1 GM segment (Fig. 2c). ∑Pb0gm is sum over all voxel
probabilities over all voxel probabilities of GM tissue probability map
from S(0) in local region.

Comparisons with FLAIR DTI
Fifteen matched sets of conventional DTI and FLAIR DTI data were

used for assessing reliability of the proposed regional modeling
technique for the CSF contamination effect on GM measurement.
Difference between estimated D

P
gm and D

P
flair was calculated in each

subjects. Also, average difference patterns from 15 matched data were
measured.

Analysis of regional CSF contamination effect

Regional pattern differences of CSF contamination effect
Regional pattern of signal bias was assessed from the comparison

between D
P
gm and D

P
of 15 subjects for testing the hypothesis on

regional specificity of CSF contamination effect. Difference between
estimated D

P
gm and D

P
was measured in each subjects, and mean

difference was mapped for assessing spatial patterns. Also, regional
pattern of tissue compounding ratio (λapp-csf) was assessed to describe
localized pattern of CSF contamination effect.

Relationships with GM morphology
Both cortical thickness and local curvature of GM were used to

interpret the local CSF contamination effect in terms of the morpholo-
gical characteristics of GM. As the gray/CSF surfacewas derived from the
gray/white surface in our surface modeling technique, local point-to-
point correspondences between two surfaces were automatically
defined after final surface reconstruction. Thus, cortical thickness was
measured automatically (Lerch and Evans, 2005) and thenused to assess
relationship between CSF contamination effect and cortical thickness.
Local curvature was calculated automatically on GM/CSF surface based
on mean curvature calculation scheme (Meyer et al., 2002).

Results

Validation

Reliability of tissue probability estimation
The quality of the S(0) segmentation was validated based on local

PSI measurement as shown in Fig. 3. Most of region showed the local
PSI above 0.9, which means 90% similarity with high resolution T1
segmentation result. Maximum error of S(0) segmentation was
observed in the precentral gyrus and the primary visual area. The
somatosensory association cortex and the supplementary motor area
displayed local PSI values in the range of 0.75 to 0.9. Also, small clusters
with local PSI values around 0.8 were found in the inferior prefrontal
region, the mid temporal lobe, the ventral posterior cingulated gyrus.

Comparisons with FLAIR DTI
The CSF contamination modeling framework proposed in this

study was directly compared withmatching FLAIR DTI data. Individual
CSF contamination modeling effect is shown in Table 2. Mean
differences between DTI and FLAIR DTI was significantly reduced
after the elimination of CSF contamination effect. Also, spatial pattern
differences are shown in Fig. 4. GM mean diffusivity without CSF
contamination correction of individual subject (Fig. 4a) showed above
50% signal increase in superior part of the brain in comparison to
FLAIR DTI (Fig. 4c). Also, the prefrontal lobe, the occipital lobe and the
temporal pole region displayed significant increase of mean diffusivity
(Fig. 4d). Those significant biases were reduced after the CSF
contamination modeling (Figs. 4b,e). Estimated apparent CSF volume



Fig. 6. Average properties of relative CSF contamination effect on GM mean diffusion measurements from 15 subjects. The First row is results for left hemisphere and the second is
results for right hemisphere. (a) is the mean diffusivity map (D

P
).(b) is difference between D

P
and D

P

gm. Yellow-red color denotes greater D
P
and blue-light blue color denotes greater D

P

gm.
Note that values under 15% were colored in gray. (c) is the estimated CSF apparent signal fraction weight (λcsf). (d) is the average cortical thickness.
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fraction (λapp-csf) is shown in Fig. 4f. Histogram of GMmean diffusivity
showed higher similarity with FLAIR DTI after the elimination of CSF
contamination (Fig. 4g).

Group average pattern after modeling of CSF contamination for 15
subjects was compared to their matching FLAIR DTI data as shown in
Fig. 5. Estimated D

P
gm (Fig. 5a) resulted in similar ranges of D

P
flair (Fig.
Fig. 7. Relationship between λapp-csf and D
P

is in (a). Relationship between D
P

and cortical t
denotes D

P

gm.
5b) except for the superior part of pre and post central region, the
parahippocampal gyrus, anterior part of the entorhinal cortex, and
medial part of the visual cortex (Fig. 5c). However, paired t-test
(Pb0.05 with FDR correction) between DTI and FLAIR DTI showed
significant differences in superior part of the central sulcus andmedial
part of the visual cortex (Fig. 5d).
hickness measurement is shown in (b). The red color plot denotes D
P

and blue color



Fig. 8. Relationship between local mean curvature and CSF contamination effect is shown in left side. The red color plot denotes D
P
and blue color denotes D

P

gm. Local mean curvature
map is shown in right side. The corresponding color bar is displayed in the lower part of the graph.
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Analysis of regional CSF contamination effect

Regional pattern differences of CSF contamination effect
Surface mapping of D from the 15 subjects is displayed in Fig. 6a.

The maximum D
P

values are shown in superior part of the pre-/
postcentral gyri, the parahippocampal gyrus, and medial part of the
visual cortex. The difference between D

P
gm and D

P
(Fig. 6b) provides

clear figure of estimated signal bias. Over 50% signal increases were
observed in superior part of the pre-/postcentral gyri, the superior
parietal lobe, medial part of the visual cortex and the parahippocam-
pal gyrus. Over 30% signal biases were observed in lateral part of the
prefrontal region and the temporal pole. Also, over 15% signal
increases were shown in the mid and the inferior frontal gyri, the
superior temporal gyrus. The regional estimation of λapp-csf is shown
in Fig. 6c. Here, λapp-csf maps exhibit a similar spatial pattern of signal
bias as seen in Fig. 6b. Significant mutual relationship between λapp-csf

and D is shown in Fig. 7a.

Relationships with GM morphology
Relationship between local cortical thickness (Fig. 6d) and CSF

contamination effect (Fig. 6b) is shown in Fig. 7b. Cortical thickness
ranging between 2.5 to 3.5 mm displayed linear decrease pattern and
cortical thickness above 3.5 mm showed large variances. After the
elimination of CSF contamination, mean diffusivity of GM showed
slight increase with cortical thickness. Also, the variance was reduced.
Also, relationship between local cortical thickness and CSF contam-
ination effect is shown in the left side of Fig. 8. The region with
negative curvature which shown in sulcal banks (right side of Fig. 8)
had minimum signal bias. Moreover, signal bias was increased when
the curvature increased.

Discussion

In this study, relationships between the GM mean diffusivity
measurement and the CSF contamination effect were quantitatively
assessed within a regional modeling framework. From Latour and
Warach (2002), it could have been expected that CSF averagingwith GM
in a voxel would provide significant mean diffusivity signal increase
(almost twice as much as volume fraction ratio of CSF itself). However,
due to the coarse resolution of typical diffusion weighted imaging and
the resulting limitation on partial volume fraction estimation, it was not
possible to use thepartial volumemodel onmore realistic sets of data. In
this study, high resolution DTI with 1.88×1.88×2.00 mm size voxel was
obtained, and the degree of regional CSF contamination effects on GM
mean diffusivity measurement were properly estimated from the two
compartment model. Moreover, relationship between CSF contamina-
tion effect and local macroscopic morphology was assessed without
difficulty from cortical surface modeling methods.

Validation

Reliability of tissue probability estimation
Related parameters, such as λapp-gm and λapp-csf, were efficiently

estimated from segmenting S(0) volume using EPI segmentation
algorithm. Quality of S(0) segmentation using the local PSI index
showed efficiency of the tissue probability estimation. Thismay indicate
that SPM-based estimation of tissue probability can be a propermethod
for estimating critical parameters on CSF contamination modeling.
However, the GM region with thin cortical thickness (below 2.5 mm),
such as precentral gyrus, the primary visual area, and somatosensory
cortex, showed poor segmentation result in spite of relatively high
resolution of DTI data. Such segmentation errormaycritically increase in
coarse resolution dataset. Thus, we could conclude that the maximum
2 mmvoxel resolution is critical to analyze the GM microstructure.

Comparisons with FLAIR DTI
Overall consistency between estimated GM mean diffusivity and

the FLAIR DTI comparison results indicate that proposed modeling
technique based on two compartment model will be adequate for
handling the critical issues on GM mean diffusivity measurement.
Moreover, significant change in cumulative distribution after the
elimination of estimated CSF contamination effect (Fig. 4g) suggests
that our data strongly agrees with other studies (Bhagat and Beaulieu,
2004; Liu et al., 2006). However, from Figs. 3 and 5c, it is clear that
inconsistency between D

P
gm and D

P
flair can be explained by poor

segmentation result shown in precentral gyrus and the primary visual
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area. Thus, those regions with inconsistencies need to be carefully
considered for analyze CSF contamination effect.

Analysis of regional CSF contamination effect

Regional pattern differences of CSF contamination effect
Ourdata (Fig. 6) showed the regional specificityof CSF contamination

effect due to local morphological differences. More specifically, the local
CSF volume fraction varies with local morphology. The sub-arachnoid
space, which contains the extracortical CSF, is known to have a minimal
volume near the top of gyral region, and, in the sulcal region, it is filled
with sponge-like sub-arachnoid trabecular tissue that extends from the
arachnoid matter and merges into the pia. Also, the superior and
ambient cisterns show the sub-arachnoidal space to be maximal. These
properties can be confirmed from local CSF volume fraction map in Fig.
6c. Thus, it is clear that estimation of CSF volume fraction in each GM
voxel is most critical factor for measuring GMmean diffusivity (Fig. 7a).

Relationships with GM morphology
Our results suggest that macroscopic morphology, such as the

geometrical complexity and the thickness of GM, strongly contributes
to produce region specific difference of heterogeneous tissue aver-
aging. Considering Fig. 7b, the regions that had significantly higher D
ranges were significantly thinner (2–2.5 mm) than other regions. Also,
the regions that had significantly lower D ranges were significantly
thicker (above 3.5 mm) than other regions. The regions with relatively
thin GM, such as superior part of the pre-/postcentral gyri and the
superior parietal lobe showed higher possibility of CSF compartment
than the regionwith thick GM structure. This means that thick cortical
structure may decrease the possibility of CSF contamination. Oppo-
sitely, thin GM structure such as the visual cortex showed relatively
lower possibility of CSF compartment. Those differences may due to
the local morphology of sub-arachnoid space. Thus, GM region
adjacent to relatively small sub-arachnoidal space, such as visual
cortex, may have different amount of CSF contamination.

CSF contamination may also vary with sulcal geometry, depth, and
width in the sulcal region within the gyrus. In Fig. 8, highly curved
structure in gyral region may have high possibility of CSF contamina-
tion. Oppositely, highly curved structures in deep sulcal region have
low possibility of CSF contamination. Also, sulcal wall may have less
probability of CSF contamination in comparison to top of gyral region.
These properties can be changed due to the sulcal widening process,
which is important factor for analyzing various diseases.

As we showed in Fig. 6, above 20% CSF contamination on local
region induce significant signal bias on GM mean diffusion measure-
ment. Thus, the regional differences in GM mean diffusivity without
CSF contamination correction can be interpreted to local GM
structural changes rather than intrinsic GM diffusivity. Moreover,
the effect of λapp-csf on group statistical analysis needs to be
emphasized for important covariant on GM mean diffusivity analysis.

Considerations for clinical analysis

Relationship between GM mean diffusivity measurement and
various clinical factors were reported in many studies (Bozzali et al.,
2002; Cercignani et al., 2001; Kumar et al., 2006; Liu et al., 2006; Ray
et al., 2006; Rovaris et al., 2002, 2005, 2006). Possible interpretation
for those clinical related characteristics of GM mean diffusivity can be
divided into two factors: tissue loss and microstructural status of the
remaining tissue. As wementioned in the previous section, the former
factor may have higher probabilities to provide direct cause of
heterogeneity. Local shrinkage of volume or sulcal widening can be
followed by tissue loss effect, and such morphological change may
provide more possibilities of CSF contamination. Therefore, multi-
variate analysis including both microscopic and macroscopic GM
structure is critical for explicit analysis. Although some reports applied
it to GMmean diffusivity analysis and successfully describe more clear
interpretations for clinical related GM mean diffusivity changes
(Benedetti et al., 2006; Rovaris et al., 2005), the scope of analysis
was restrict to whole volume level. For assessing localized changes in
relation to clinical symptoms, the scope of analysis needs to be
focused on specific region.

Our proposed modeling framework has three advantages over
previous approaches (Alexander et al., 2001; Liu et al., 2006). Firstly,
localized analysis of GM diffusion measurement with consideration of
possible bias is made possible. To our knowledge, there is no other
suitable localized analysis method providing overall spatial pattern.
Although Liu et al. (Liu et al., 2006) proposed a fully automatic ROI-
based analysis for cortical GM mean diffusivity, our technique is
capable of further, more subtle analysis. Secondly, group analysis may
have more success using the surface-based technique: avoiding the
reslicing effect during volume registration that can induce the
additional bias; providing consistent group registration for analysis
(Lyttelton et al., 2007). Finally, it may be possible to extend analysis to
other structural analyses such as cortical thickness measurement or
functional analysis. Therefore, our proposed framework for GM mean
diffusivitymeasurement under estimation of CSF contamination effect
may provide one efficient way for various clinical analyses. Clinical
application of our proposed method will need to be addressed in our
following study.

Conclusion

We proposed a framework on modeling and analysis of the CSF
contamination effect on GM mean diffusivity measurements. Two-
compartment model with local tissue proportion estimation was
successfully applied to correct and interpret possible measurement
biases which may lead unclear interpretation of clinical GM mean
diffusivity analysis. Our result indicates that the local peripheral
morphology is critical to understand intrinsic meaning of locally
different GMmean diffusion property. Thus, we recommend consider-
ingmultivariate analysis which includes both GMmean diffusivity and
estimated CSF contamination for group-specific studies.
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