Mengwei Zang

Associate Professorzang_dr-mengwei-zang1


1998 Ph.D., Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R.China

1998-1999 Postdoctoral Fellow, Cell Biology and Pharmacology, The Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN

1999-2003 Postdoctoral Fellow, Molecular Biology and Signal Transduction, Diabetes and Metabolism Unit, Boston University School of Medicine, MA

General field of research:

Cell metabolism and Diabetes

Affiliations other than medicine:

Evans Center for Interdisciplinary Biomedical Research
Vascular Biology Unit, Department of Medicine

Contact information:

650 Albany Street, X726
Phone: (617)-638 2799

Phone:  (617)-638 2796
Fax: (617)-638 7113


Other research websites:


Diabetes; Atherosclerosis; Protein kinase; NAD-dependent deacetylase; Cell Metabolism; Hepatocyte

Summary of Research Interest:

The main goal of Dr. Zang’s laboratory is to investigate the the fundamental regulation of novel nutrient sensing and pathways in the control of metabolic homeostasis and in the development of non-alcoholic fatty liver disease (NAFLD), obesity, diabetes, and cardiovascular disease. A major focus of mechanistic studies is to determine how nutrient sensors or their signaling networks modulate hepatic and whole-body glucose and lipid metabolism through protein-protein interaction, kinase phosphorylation, deacetylation, or gene regulation. Her lab’s recent studies have focused on the roles of master nutrient sensors, such as AMP-activated protein kinase (AMPK), the NAD-dependent deacetylase (SIRT1), mammalian target of rapamycin complex 1 (mTORC1), the lipogenic transcription factor SREBP, the nuclear receptor retinoic acid receptor (RAR), and the hepatocyte-derived hormone fibroblast growth factor 21 (FGF21), in the regulation of cell metabolism as well as their impact on metabolic disease. The Zang lab has made major contributions to the elucidation of the roles of these nutrient sensors in metabolic regulation. Specifically, they use transgenic, knockout, and adenovirus-mediated gene delivery approaches to manipulate these nutrient sensors in mice. More recently, they have expanded the research into translational studies in diabetic or obese human subjects. The ultimate goal is to mechanistically understand the nutrient regulation of metabolic homeostasis and energy expenditure as well as to provide new insight into the identification of pharmacological therapeutic or nutrient interventions to combat obesity and its related metabolic disease.

Recent publications:

  1. Li XY, Kover K, Heruth D, Watkins DJ, Moore WV, Zang M, Clements M, and Yun Yan. New insight into metformin action: regulation of ChREBP and FoXO1 activities in endothelial cells. Molecular Endocrinology, 2015; 29:1184-94.
  2. Li Y, Wong K, Giles A, Lee JW, Jiang J, Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L, Zang M. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology (Impact Factor, 12.50), 2014; 146: 539-549. PMCID: PMC4228483.
  3. Li Y, Xu S, Jiang B, Cohen RA, Zang M. Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PLoS One, 2013; 8: e67532. doi:10.1371. PMCID: 3692453.
  4. Li Y, Wong K, Walsh K, Gao B, Zang M. Retinoic acid receptor β stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. Journal of Biological Chemistry, 2013; 288: 10490-10540, PMCID: 3624431.
  5. Li Y, Xu S, Mihaylova M, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin resistant mice. Cell Metabolism (Impact Factor, 17.350), 2011; 13: 376-388. PMCID: 3086578.
  6. Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, Donmez G, Li J, Luo Z, Walsh K, Guarente L, Zang M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB Journal, 2011; 25: 1664-1679. PMCID: 3079300.
  7. Xu S, Jiang B, Hou X, Shi C, Bachschmid M, Zang M, Verbeuren TJ, Cohen High-fat diet increases and the polyphenol, S17834, decreases acetylation of the SIRT1-dependent lysine-382 on p53 and apoptotic signaling in atherosclerotic lesion-prone aortic endothelium of normal mice. Journal of Cardiovascular Pharmacology, 2011; 58: 263-271. PMCID: PMC3168693.
  8. Ponugoti B, Xiao Z, Wu S, Chiang C, Zang M, Veenstra TD, Kemper J Kim. SIRT1 deacetylates and inhibits SREBP-1c activity in hepatic lipid metabolic regulation. Journal of Biological Chemistry, 2010; 285: 33959–33970. PMCID: PMC2962496.
  9. Luo Z, Zang M, Wen G. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncology, 2010; 6: 457-470. PMCID: PMC2854547
  10. Wang J, Ma H, Tong C, Zhang H, Lawlis GB, Li Y, Zang M, Ren J, Nijland MJ, Ford SP, Nathanielsz PW, Li J. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB Journal, 2010; 24: 2066-2076. PMCID: PMC2874473.
  11. Tao R, Gong J, Luo X, Zang M, Guo W, Wen R, Luo Z. AMPK exerts dual regulatory effects on the PI3K pathway. Journal of Molecular Signaling, 2010; 5(1):1. doi: 10.1186/1750-2187-5-1. PMCID: PMC2848036.
  12. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-Activated protein kinase. Journal of Biological Chemistry, 2008; 283: 20015-20026. PMCID: PMC2459285.
  13. Zang M, Gong J, Luo L, Zhou J, Xiang X, Huang W, Huang Q, Luo X, Olbrot M, Peng Y, Chen C, Luo Z. Characterization of S338 phosphorylation for Raf-1 activation. Journal of Biological Chemistry, 2008; 283: 31429-31437. PMCID: PMC2581588.
  14. Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherogenesis in diabetic LDL receptor-deficient mice. Diabetes (Impact Factor, 8.889), 2006; 55: 2180-2191. PMID: 16873680.
  15. Zuccollo A, Shi C, Mastroianni R, Maitland KA, Weisbrod RM, Zang M, Xu S, Cayatte A, Corda S, Lavielle G, Verbeuren TJ, Cohen RA. The thromboxane A2 receptor antagonist, S18886, prevents enhanced atherogenesis caused by diabetes mellitus. Circulation (Impact Factor, 15.282), 2005; 112: 3001-3008. PMID: 16260636.
  16. Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. Journal of Biological Chemistry, 2004; 279: 47898-47905. PMID: 15371448.
  17. Zang M, Dong M, Pinon DI, Ding X, Hadac EM, Miller LJ. Spatial approximation between a photolabile residue in position 13 of secretin and the amino-terminal tail of the secretin receptor. Molecular Pharmacology, 2003; 63: 993-1001. PMID: 12695527.
  18. Dong M, Li Z, Zang M, Pinon DL, Lybrand TP, Miller LJ. Spatial approximation between two residues in the mid-region of secretin and the amino terminus of its receptor. Journal of Biological Chemistry, 2003; 278: 48300-48312. PMID:14500709.
  19. Xiang X, Zang M, Waelde CA, Wen R, Luo Z. Phosphorylation of S338SYY341 regulates specific interaction between Raf-1 and MEK1. Journal of Biological Chemistry, 2002; 277: 44996-45003. PMID: 12244094.
  20. Zang M, Hayne C, Luo Z. Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. Journal of Biological Chemistry, 2002; 277: 4395-4405. PMID: 11733498.
  21. Huang YZ, Zang M, Xiong WC, Luo Z, Mei L. Erbin suppresses the MAP kinase pathway: Down-regulation of AChR epsilon-subunit gene transcription. Journal of Biological Chemistry, 2002; 278: 1108-1114. PMID: 12379659.
  22. Dong M, Zang M, Pinon DI, Li Z, Lybrand TP, Miller LJ. Interaction among four residues distributed through the secretin pharmacophore and a focused region of the secretin receptor amino terminus. Molecular Endocrinology, 2002; 16: 2490-2501. PMID: 12403838.
  23. Zang M, Waelde CA, Xiang X, Rana A, Wen R, Luo Z. Microtubule integrity regulates Pak leading to Ras-independent activation of Raf-1. Journal of Biological Chemistry, 2001; 276: 25157-25165. PMID: 11274179
  24. Dong M, Asmann YW, Zang M, Pinon DI, Miller LJ. Identification of two pairs of spatially approximated residues within the carboxyl-terminus of secretin and its receptor. Journal of Biological Chemistry, 2000; 275: 26032-26039. PMID: 10859300.

Technologies available for sharing upon request:

Molecular Biology; Protein Biochemistry; Protein kinase Assay; Protein-protein interaction; Diabetes mouse model; Atherosclerotic mouse model.