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   Preface: What’s Old Is New Again 
and Now It’s Red Hot   

 As the worldwide obesity pandemic expands, obesity has been associated with an 
increased risk of more and more cancer types. The original malignancies shown to 
be associated with obesity included esophageal adenocarcinoma, colon cancer, 
renal cell cancer, postmenopausal breast cancer, endometrial cancer, and advanced 
prostate cancer. More recently, obesity has been identifi ed as a risk factor for can-
cers of the pancreas, gall bladder, and ovary and several hematologic malignancies 
including leukemia, lymphomas, and myeloma, and the list continues to grow. 

 From a historical viewpoint, while early studies considered the possibility that 
infl ammation initiated the process of carcinogenesis, this was generally considered 
to be a local effect associated with tissue injury or chronic infection. With elucida-
tion of DNA structure and function and development of the concept of chemical 
carcinogens as mutagens, attention turned to identifi cation of activated oncogenes 
and deactivated tumor suppressor genes in the carcinogenic process. Separate stud-
ies demonstrated that infl ammation extended beyond the local site, mediated by 
cellular and humoral components. As noted above, independent epidemiologic 
studies confi rmed an association of obesity with cancer incidence, morbidity, and 
mortality. Studies to identify the mediators of these processes focused on the effects 
of obesity on growth factors and hormones and the mechanisms of carcinogenesis 
they commonly affect. More recently, it has become apparent that adipose tissue, in 
addition to serving as a fat storage depot, is an intensely active metabolic organ. In 
obesity, low-grade chronic adipose tissue infl ammation occurs, resulting in multiple 
cellular and humoral infl ammatory factors. Seminal studies showing that systemic 
metabolic disorders, such as insulin resistance, could be mediated, in part, by 
infl ammatory cytokines, synthesized and secreted by adipose tissue, resulted in a 
whole new approach to understanding and attempting to control obesity-associated 
comorbidities. Moreover, elucidation of the prostaglandin pathway and its role in 
infl ammation, as well as the observations that anti-infl ammatory agents, especially 
the nonsteroidal anti-infl ammatory drugs (NSAIDs), could prevent the development 
and progression of several forms of neoplasia, provided a major stimulus to the 
fi eld. A major goal of ongoing research is to inhibit infl ammation as an approach to 
cancer prevention and control. 
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 The above brief description traces the complex transdisciplinary evolution of this 
area of research endeavor. Not only does it illustrate the impact of sometimes diver-
gent disciplines on the evolution of a concept, but it also indicates the potential 
value of moving forward in this fi eld with a transdisciplinary approach. Accordingly, 
the goal of this volume of Energy Balance and Cancer, volume 7 in the series, is to 
highlight the cutting-edge transdisciplinary science linking obesity, infl ammation, 
and cancer. We are grateful to all the authors listed below for their contributions to 
this volume and look forward to their collective impact in further advancing this 
rapidly developing fi eld. 

 This volume fi rst provides information on infl ammation as an important link 
between obesity and insulin resistance, which is in itself linked to promotion of 
cancer through hyperinsulinemia. The volume then covers some of the most impor-
tant mechanisms by which obesity leads to infl ammation, including the novel 
infl ammasome concept, alterations in chromatin structure, circulating infl ammatory 
factors, unique cellular interactions between adipocytes and macrophages, and the 
direct link of dietary fat to infl ammation and cancer. Subsequently addressed in this 
volume are a number of target organs and interventional strategies for disrupting 
infl ammation and their effects on cancer prevention and control. 

 In Chap.   1    , Lesley G. Ellies, Andrew Johnson, and Jerrold M. Olefsky (University 
of California, San Diego) describe the mechanisms by which obesity stimulates 
low- grade infl ammation leading to insulin resistance. Chapter   2    , written by Tuo 
Deng, Christopher J. Lyon, Nan Zhang, Helen Y. Wang, Rong-fu Wang, and Willa 
A. Hsueh (Weill Cornell Medical College) and Jun Cui (Sun Yat-sen University), 
reviews the basis for understanding the emerging concept of the infl ammasome and 
its mechanisms of activation and role in obesity. Gerald V. Denis and Deborah J. 
Bowen (Boston University School of Public Health) describe in Chap.   3     chromatin-
based, transcription co-regulatory mechanisms that may link obesity, infl ammation, 
and cancer. Carey Nien-Kai Lumeng (University of Michigan Medical School), in 
Chap.   4    , describes the important role that adipose tissue macrophages play in breast 
and ovarian cancer. In Chap.   5    , Stephanie K. Doerner and Nathan A. Berger (Case 
Western Reserve University School of Medicine) discuss the impact of different 
dietary fatty acids on promoting or suppressing colorectal cancer. In Chap.   6    , 
Anamay Sharma, Ahmed Elebiary, Sonia Chowdhury, and Navtej Buttar (Mayo 
Clinic) describe the contribution of gastric refl ux to infl ammation in Barrett’s 
esophagus and esophageal adenocarcinoma and potential interventions. In Chap.   7    , 
Stephanie K. Doerner (Case Western Reserve University School of Medicine) and 
Jason D. Heaney (Baylor College of Medicine) describe the role of obesity-induced 
intestinal infl ammation on colorectal cancer incidence. In Chap.   8    , Neil M. Iyengar, 
Patrick G. Morris and Clifford A. Hudis (Memorial Sloan-Kettering Cancer Center) 
and Andrew J. Dannenberg (Weill Cornell Medical College) review the emerging 
evidence supporting the contribution of adipose tissue and chronic breast infl amma-
tion to the development of breast cancer. In Chap.   9    , the relation of obesity, infl am-
mation, and hepatocellular cancer is discussed by Naim Alkhouri and Arthur 
McCullough (Cleveland Clinic Lerner College of Medicine at Case Western Reserve 
University), and in Chap.   10    , Jorge Blando, Achinto Saha, Kaoru Kiguchi, and John 
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DiGiovanni (University of Texas at Austin) describes the role of obesity and infl am-
mation in prostate cancer. Louise R. Howe (Weill Cornell Medical College), in 
Chap.   11    , describes the central role of cyclooxygenase-derived prostaglandins as 
potential mediators of obesity- related cancer and outlines how targeting this path-
way may be protective against obesity-associated carcinogenesis. In Chap.   12    , 
Harmony F. Turk, Jennifer M. Monk, Tim Y. Hou, and Robert S. Chapkin (Texas 
A&M University) discuss mechanisms through which n-3 polyunsaturated fatty 
acids interfere with the infl ammatory process to suppress carcinogenesis, and in 
Chap.   13    , Gary Stoner and Li-Shu Wang (Medical College of Wisconsin) describe 
key mechanisms by which naturally occurring dietary compounds reduce the harm-
ful effects of infl ammation and the risk for cancer development. In Chap.   14    , 
Stephen D. Hursting, Nikki A. Ford, Sarah M. Dunlap, and Laura M. Lashinger 
(University of Texas at Austin) and Marcie J. Hursting (Clinical Science Consulting) 
describe the modifi cation of infl ammatory pathways and their impact on cancer by 
diet and caloric restriction. Ahmad Salameh and Mikhail G. Kolonin, in Chap.   15    , 
describe an innovative approach to adipose tissue control by vascular targeting. In 
Chap.   16    , Michael Gleeson (Loughborough University) describes the anti-infl am-
matory effects of exercise. 

 Overall, this volume on Obesity, Infl ammation, and Cancer provides an up-to-
date status report on the latest developments and state-of-the-art understanding of 
the role of infl ammation in mediating the effects of obesity on cancer and describes 
possible strategies for targeting infl ammation as an approach to cancer prevention 
and control. The book should be useful for students, researchers, and clinicians, 
especially those interested in the role of infl ammation and its impact on cancer. It is 
our expectation that this volume will both stimulate research on the role of infl am-
mation in cancer etiology and progression and lead to new approaches and clinical 
trials for cancer prevention and control by targeting obesity-related infl ammation. 

 New York, NY, USA Andrew J. Dannenberg 
 Cleveland, OH, USA Nathan A. Berger  
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    Abstract     As the epidemic of overweight and obesity spreads, the number of 
 individuals at risk for metabolic complications of obesity, including cardiovascular 
disease, type 2 diabetes, and cancer, is expected to increase. Importantly, the risks 
of complications are not evenly distributed, because not all obesity is biochemically 
identical. Here we describe “metabolically healthy obese” humans and animal mod-
els that show remarkable protection from insulin resistance and glucose intolerance, 
despite severe obesity. A hallmark of these patients and animals is their reduced 
infl ammatory profi le, which we hypothesize confers protection not only from car-
diometabolic risk in obesity but also from obesity-associated cancers. Research is 
urgently required to investigate the basis for this protection, to identify treatment 
options and prevention strategies for at-risk populations. We explore novel insights 
into chromatin-based, transcriptional co-regulator mechanisms that link apparently 
unrelated diseases, with the idea that certain molecularly targeted strategies could 
moderate multiple risks in obesity. We voice concern that low socioeconomic status 
citizens are particularly at risk for cardiometabolic disease and obesity-associated 
cancer, in part because many such individuals live in infl ammatory and obesogenic 
environments. An integrated and hypothesis-driven approach is needed to study and 
protect these vulnerable and underserved populations from the rising tide of obesity- 
associated cancer.  

    Chapter 3   
 Uncoupling Obesity from Cancer: 
Bromodomain Co-regulators That 
Control Infl ammatory Networks 

                Gerald     V.     Denis       and     Deborah     J.     Bowen     
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3.1         The Problem of Obesity-Associated Cancer 

 Diet-induced overnutrition that causes unhealthy weight gain, defi ned in humans as 
 overweight  (Body Mass Index [BMI] 25.0–29.9 kg/m 2 ),  obesity  (BMI ≥30.0–39.9 kg/
m 2 ), and  morbid obesity  (BMI ≥40.0 kg/m 2 ), has many medical complications. The real-
ization that obesity had become a serious public health concern was initially driven by 
projected increases in the prevalence of metabolic complications, such as elevated risk 
for stroke, cardiovascular disease, and type 2 diabetes. The complications of obesity also 
include dyslipidemia, hypertension, sleep apnea, hepatosteatosis, and glucose intoler-
ance [ 1 ]. However, attention has been recently focused on a particularly worrisome 
complication: obesity-associated malignancy [ 2 ,  3 ]. Recent epidemiological reports 
have caused serious disquiet that, despite overall declines in cancer rates, particularly the 
rates for tobacco-associated cancers, the rates of obesity-associated cancers are  climbing. 
Obesity is now thought to be one of the most important preventable causes of several 
cancers [ 4 ]; these include esophageal adenocarcinoma, colorectal cancer, breast cancer 
in postmenopausal women (but not premenopausal women), and cancers of the endo-
metrium, kidney, pancreas, liver, and gallbladder [ 3 ,  5 ,  6 ]. The National Cancer Institute, 
American Cancer Society, and American Association for Cancer Research have been 
using their infl uence and expert opinion in recent years to increase the public profi le and 
research portfolio devoted to this problem and its allied risk factors. Obesity- associated 
malignancies have been estimated to account for 14 % of male and 20 % of female US 
cancer mortality, notably colorectal cancer and postmenopausal breast cancer [ 2 ]. This 
chapter will present some of the molecular, cellular, and immunological features that 
link obesity and its complications to cancer. 

 In view of recent data from the US Centers for Disease Control and Prevention 
[ 7 ], showing that all US states now report at least 20 % prevalence of obesity among 
adults, as well as the classifi cation of 1.7 billion people worldwide as overweight 
[ 8 ], obesity-associated cancer is positioned to become one of the defi ning prevent-
able diseases of our time. Diabetes is also a serious complication among the chronic 
disease burdens of obesity. In fact, overweight and obesity are now well established 
to be the direct cause of most cases of type 2 diabetes [ 9 ]. Three hundred and sixty- 
six million cases worldwide was a frequently cited early estimate of the incidence 
of type 2 diabetes by 2030 [ 10 ]. Alarmingly, more recent estimates have adjusted 
upward the anticipated number of diabetic individuals to 439 million by 2030 [ 11 ]. 
Almost all of the incidence will be driven by overweight and obesity. The antici-
pated further increases in BMI worldwide [ 12 ] predict that the seriousness of the 
problem of obesity-associated cancer will also deepen in coming decades.  

3.2     Molecular Features of Insulin-Resistant Obesity 

 The molecular mechanisms that explain how obesity contributes to cancer risk 
are still largely unknown in detail. Early epidemiological investigation of obe-
sity and its comorbidities identifi ed an association between the incidence of 

G.V. Denis and D.J. Bowen
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type 2 diabetes and obesity [ 13 ]. Some of the key features of insulin-resistant 
obesity include elevated concentrations of blood glucose in fasted subjects and 
impaired glucose tolerance, as well as elevated blood concentrations of insulin 
in fasted subjects and reduced insulin sensitivity. Leptin, which is a critical 
regulator of appetite, is produced by adipocytes and is elevated in obesity in 
proportion to adipose tissue mass [ 14 ]. This hyperleptinemia in obesity has been 
frequently described as “leptin resistance,” a term now thought to lack clinical 
utility [ 15 ]. In addition, insulin-resistant obesity frequently features reduced 
serum concentrations of adiponectin [ 16 ,  17 ], an insulin-sensitizing adipokine 
[ 18 ] that exhibits benefi cial, antiatherogenic effects. These characteristics are 
commonly observed together in obese subjects [ 19 – 21 ] and animal models [ 22 ] 
and refl ect the growing inability of peripheral tissues of the obese subject, such 
as skeletal muscle and fat stores, to transport glucose from blood into cells at 
normal levels of insulin present in the circulation. This state has been described 
as peripheral insulin resistance. Commonly, the pancreatic β-cells of such a 
subject are required to secrete ever higher levels of insulin to compensate for the 
peripheral insulin resistance. In humans and certain rodent models, this chronic 
hyperinsulinemia and accompanying β-cell dysfunction are two of the defi ning 
characteristics of insulin-resistant obesity and are often associated with 
increased serum levels and bioavailability of the related mitogenic factor, insu-
lin-like growth factor (IGF)-1 [ 23 ]. 

 These clinical presentations provoked questions about which biochemical 
features of insulin resistance and type 2 diabetes were important for carcinogen-
esis in obesity. Signal transduction through the insulin receptor and IGF-1 
receptor [ 24 ] is thought to increase cancer risk in obesity [ 25 ,  26 ]. Fasting insu-
lin concentrations have been used convincingly as a prognostic factor for overall 
survival among breast cancer patients, with the highest hazard ratio associated 
with the highest insulin concentrations [ 27 ]. Leptin also promotes mitogenic 
[ 28 – 31 ] and invasive [ 32 ] effects in a variety of human cancer cell lines [ 33 – 35 ] 
and tumor models in animals [ 36 ]. For example, leptin-defi cient mice appear to 
be protected from mammary carcinogenesis [ 37 – 39 ]. Adiponectin not only 
protects insulin-sensitive glucose transport but also appears to be inversely 
correlated with susceptibility to certain obesity-associated cancers [ 40 – 42 ]. 
Furthermore, the leptin-adiponectin ratio has been proposed to be a critical pre-
dictor of cancer risk [ 38 ]. These features have been well summarized elsewhere 
[ 43 – 45 ]. However, the co-occurrence of these multiple factors in obesity has 
made it diffi cult to defi ne the relative importance of each. Overall, rodent mod-
els have tended to show that alteration of any single factor in isolation affects 
mitogenesis, tumor progression, or other relevant parameter of the malignancy. 
Experimental designs that use rodent models in which multiple variables are 
manipulated simultaneously to infl uence cancer risk do not permit straightfor-
ward interpretation; thus, the fi eld remains divided about which cellular and 
molecular factors are of paramount importance for specifi c obesity-associated 
cancers.  

3 Uncoupling Obesity from Cancer: Bromodomain Co-regulators…
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3.3     Insulin-Resistant Obesity Is Also an Infl ammatory Disease 

 One of the earliest described immunological features of insulin-resistant obesity 
was subclinical, unresolved, chronic infl ammation, which occurs both systemically 
[ 47 ,  67 ] and in white adipose tissue [ 48 ], which is infi ltrated with pro-infl ammatory 
macrophages [ 49 – 52 ]. Specifi cally, such patients demonstrate elevated serum con-
centrations of acute phase proteins and pro-infl ammatory cytokines [ 53 ], such as 
interleukin (IL)-1β, IL-6, and C-reactive protein, that improve over time after inten-
tional weight loss [ 54 ,  55 ,  67 ] or bariatric surgery [ 56 ]. Exposure of glucose- 
transporting cells to the pro-infl ammatory cytokine tumor necrosis factor (TNF)-α 
was demonstrated as long ago as 1993 to promote insulin resistance directly [ 57 ]. 
Adipose tissue depots, composed of white adipocytes, are typically infl amed, that 
is, infi ltrated with Th1- and Th17-polarized T cells [ 58 ] and pro-infl ammatory mac-
rophages, both in obese humans [ 59 – 63 ] and animal models [ 50 ,  51 ,  59 ,  64 – 66 ] of 
diet-induced obesity. In insulin-resistant obesity, the pro-infl ammatory macro-
phages that infi ltrate these depots secrete signifi cant amounts of pro-infl ammatory 
cytokines, which, in addition to TNF-α [ 57 ], include IL-6, IL-8, and monocyte che-
moattractant protein (MCP)-1/chemokine (C–C motif) ligand (CCL)2 [ 46 ,  67 ]. 
Systemic infl ammation is also a feature of insulin-resistant obesity, as indicated by 
elevated serum levels of C-reactive protein [ 68 ] and several of the aforementioned 
and other cytokines [ 61 ]. Furthermore, chemokines such as MCP-1/CCL2 also 
serve to recruit additional leukocytes, such as peripheral blood monocytes that 
express the C–C motif chemokine receptor (CCR) 2 [ 50 ,  51 ,  60 ], to infi ltrate the 
insulin-resistant adipose depot in a deepening cycle of unresolved, chronic 
 infl ammation. Thus, a feed-forward loop is established that is diffi cult for homeo-
static forces in the immune system to oppose [ 58 ]. Failure of the anti-infl ammatory 
balance may also be an independent, critical factor in the emergence of the many 
comorbidities of obesity. 

 Moreover, certain specifi c, histological features defi ne insulin-resistant adipose 
tissue. The adipocytes frequently become stressed as their storage limits are 
exceeded, leading to a large number of apoptotic adipocytes, a process that is 
thought to recruit additional leukocytes [ 59 ]. The dead and dying adipocytes of 
stressed white adipose tissue appear surrounded with a ring of pro-infl ammatory 
macrophages (CD68 +  in humans [ 69 ]) that are histologically termed “crown-like 
structures” [ 59 ] and are associated with fi brosis [ 70 ] and increased metabolic risk 
[ 71 – 74 ]. How these structures arise and are resolved by weight loss or drug treat-
ments is not well understood. In mouse models, the macrophages that infi ltrate 
metabolically unhealthy white adipose tissue tend to express a surface phenotype, 
that is, CD11b +  CD11c +  F4/80 +  by fl ow cytometry, that identifi es them as pro-
infl ammatory. These pro-infl ammatory macrophages have been directly implicated 
in the decline of metabolic health of adipocytes in white adipose tissue in different 
adipose depots in animal models [ 75 ,  76 ] and humans [ 101 ]. Early in the kinetics of 
diet-induced obesity in rodent models, adipocyte death and the development of 
whole-body insulin resistance [ 65 ] also correlate with a switch in macrophage 
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polarization toward the classically activated, pro-infl ammatory (so-called M1) 
 phenotype and away from the alternatively activated, anti-infl ammatory (“M2”) 
phenotype [ 78 ]. The CD11c +  adipose tissue macrophage populations also tran-
siently remodel the white adipose tissue, which then exhibits activities connected 
with M2-associated genes, such as increased expression of arginase, IL-10, IL-4, 
and transforming growth factor (TGF)-β [ 79 ]. The net balance of these M1 and M2 
inputs defi nes the profi le and magnitude of white adipose tissue infl ammation. 
Relatively high expression of M1 cytokines is associated with metabolic complica-
tions of obesity, including insulin resistance. However, in human adipose depots, 
the molecular details of putative M1 phenotypes and function, and the M1/M2 
switch, are less well understood than in animal models. 

 T cells are also recruited to white adipose tissue in diet-induced obesity through 
“regulated on normal T cell expressed and secreted” (RANTES/CCL5) and its 
receptor CCR5 in white adipose tissue [ 80 ,  81 ], where the Th1/Th2 polarization 
and proliferation of T cells are infl uenced by macrophage-produced cytokines 
[ 82 ]. T cells play a major role in insulin resistance [ 62 ] through macrophage 
recruitment [ 83 ]. T cell polarization between the pro-infl ammatory (interleu-
kin-17 producing) subtype (Th17 [ 84 ]) and the anti-infl ammatory (IL-10 produc-
ing) T regulatory subtype (Foxp3 +  Treg [ 85 ]) also infl uences metabolism in white 
adipose tissue. A pro- infl ammatory imbalance in CD4 +  T cell subsets has been 
demonstrated both systemically and in adipose depots of type 2 diabetic subjects 
[ 58 ]. The balance of pro-infl ammatory and anti-infl ammatory cytokines and T cell 
subsets remains perturbed in insulin-resistant obesity; some investigators hypoth-
esize the adipocyte/T cell cross talk is the critical factor that promotes disease 
pathogenesis, whereas others hypothesize that macrophages have primary impor-
tance. The interpretations have remained controversial. Recent data from human 
studies also supports a central role for B cells in the pathogenesis of type 2 diabe-
tes in obese subjects [ 58 ,  86 ,  87 ]. The independent and interdependent roles of T 
cell subsets, B cell subsets, and monocyte/macrophage polarization, and their 
specifi c cross talk with adipocytes that infl uences risks for obesity-associated can-
cer and type 2 diabetes, defi ne a central focus of the exciting new fi eld of immu-
nometabolism [ 58 ]. 

 Outside the adipose depots, the immune system of the obese and insulin-resistant 
subject demonstrates systemic, pro-infl ammatory changes in T cell, B cell, and 
myeloid subset differentiation and function that exacerbate the deepening cytokine/
chemokine imbalance as metabolism deteriorates in diet-induced obesity. Animal 
models demonstrate that stoppage of immune cell-mediated infl ammatory cascades 
by any one of several diverse techniques (e.g., genetic, small molecule, or antibody- 
based) frequently delays or prevents insulin resistance [ 88 ,  89 ]. If metabolic param-
eters improve through dietary intervention, adipose tissue infl ammation also 
typically improves [ 90 ]. The long-established links between chronic, unresolved 
infl ammation and cancer therefore provide a basis to hypothesize that the presence 
of crown-like structures, for example, or elevation of other local and systemic 
infl ammatory markers, is positively associated with cancer risk for obesity- 
associated cancers that have an infl ammatory component.  
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3.4     Insight from Unexpected Results 

 Obesity-associated malignancies are not linked to every type of cancer. Apart from 
lung cancer, which is associated with cigarette smoking [ 91 ,  92 ] or asbestos inhala-
tion and not with obesity [ 3 ], certain other cancers are also clearly not associated 
with obesity, including but not limited to astrocytoma; glioma; Kaposi’s sarcoma; 
neuroblastoma; head, neck, and oral cancer; pituitary cancer; retinoblastoma; sali-
vary cancer; and testicular cancer. A possibly relevant, shared feature of these can-
cers is that they do not originate in or near visceral adipose tissue. Compared to 
subcutaneous depots, the visceral or “central” adipose depot [ 63 ,  93 ,  94 ] is the most 
infl amed in obese insulin-resistant patients [ 95 – 97 ] and is independently associated 
with cardiometabolic risk. In animal models, the epididymal adipose depot of male 
mice is regarded as a good model for visceral adipose tissue infl ammation in diet- 
induced obesity [ 59 ,  65 ,  66 ]. Likewise, many (but not all) of the obesity-associated 
cancers are resident in or likely infl uenced by infl amed visceral adipose tissue. All 
female breast carcinomas, for example, are surrounded by signifi cant adipose depots 
in humans and the mammary fat pad in mice. It is likely that the metabolic and 
infl ammatory properties of this adipose depot are highly relevant to specifi c aspects 
of breast cancer progression, invasiveness, metastasis, or recurrence, although this 
area has not received suffi cient attention from investigators. 

 The observation that insulin-resistant obesity features  systemic  elevations of pro- 
infl ammatory cytokines, as well as systemically elevated glucose, insulin, IGF-1, 
leptin, and depleted adiponectin, raises a problem. Why are not all cancers obesity- 
associated? If the argument is made that insulin and IGF-1 signaling cross talk, as 
well as leptin-promoted, broad-spectrum mitogenesis or diminished protection 
from adiponectin, are critical factors that explain obesity-associated cancers, why 
should so many cancers be unrelated to obesity? Presumably these systemic factors 
affect diverse tissues roughly equally, although different cells of origin of the tumor 
likely respond differently to the complex endocrine and metabolic microenviron-
ment in each tissue. A recent repeated measures study from the Women’s Health 
Initiative suggests that, at least in the case of colorectal cancer risk in postmeno-
pausal women, the most important association is with elevated glucose, not elevated 
insulin [ 98 ]. It seems likely that additional features of the obese subject infl uence 
carcinogenesis and perhaps stratify risk for obesity-associated cancer. 

 Although insulin-resistant obesity is a chronic infl ammatory disease, 20–30 % of 
adult obese individuals preserve a  reduced  infl ammatory profi le. The white adipose 
tissue of these un-infl amed, adult subjects shows lower numbers of infi ltrating leu-
kocytes [ 72 ], while systemically, serum concentrations of pro-infl ammatory cyto-
kine are lower [ 99 ,  100 ] than in insulin-resistant obese adult subjects. These 
un-infl amed subjects exhibit normal or near-normal glucose tolerance [ 72 ] (Fig.  3.1 ), 
reduced cardiovascular disease risk [ 77 ], and lack metabolic syndrome [ 72 ,    102, 169 ]. 
They remain relatively “metabolically healthy” with low-infl ammatory profi les 
despite obesity [   103 ,  104 ,  169 ] and represent an important off-diagonal population 
for which cardiovascular risk appears to be uncoupled from obesity [ 105 ,  106 ]. 

G.V. Denis and D.J. Bowen



67

The well-established association between unresolved, chronic infl ammation and 
cancer [ 107 ,  108 ] (e.g., between Crohn’s disease and colorectal cancer [ 109 ]) sug-
gests that infl amed adipose tissue in insulin-resistant obese adults plays a critical 
role in obesity-associated carcinogenesis. We have previously hypothesized that the 
low-infl ammatory features and preserved glucose tolerance of these subjects  also 
protects against risks for obesity-associated cancers  [ 110 ].

   How do these metabolically healthy obese individuals remain un-infl amed? We 
have focused on a recently described transcriptional mechanism that may link 
chronic infl ammation, obesity, and cancer [ 140 ]. Bromodomain-containing tran-
scriptional co-regulators [ 112 ] bind to acetylated histones [ 113 – 115 ] in the 

  Fig. 3.1    “Metabolically healthy obesity.” ( a ) Glucose infusion rates (GIR) in 237 subjects for a 
broad range of BMI and metabolic health. Insulin sensitivity was determined by GIR during the 
steady state of a euglycemic-hyperinsulinemic clamp. The highest and lowest quintiles of GIR are 
marked ( horizontal boxes ) to show that the frequency of insulin resistance is very low in healthy 
obesity. A regression curve ( dotted line ) of GIR over BMI is based on all available patients. The 
BMI stratum 39–40 identifi es a continuous distribution ( vertical box ) of rates to show that there is 
no clear separation between insulin-sensitive and insulin-resistant obesity. Note that certain, rare 
individuals with unusually high BMI (>60) nevertheless display normal, healthy GIR during the 
clamp. (Subject exclusion criteria were diabetes, hypertension, acute or chronic infl ammatory dis-
ease with leukocyte count >8,000 Gpt/L, CRP >5.0 mg/dL or clinical signs of infection, and other 
relevant criteria as detailed in ref. [ 77 ].) ( b ) Prevalence of insulin-sensitive (GIR >80 μmol glu-
cose/kg/min) and insulin-resistant (GIR <40 μmol glucose/kg/min) healthy obesity (data from 
Blüher M (2010). The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. 
 Curr Opin Lipidol , 21(1):38–43 are reproduced with permission from M. Blüher and Wolters 
Kluwer, publishers)       
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nucleosomal chromatin of mammals and target specifi c genes for transcriptional 
activation or repression. In this way, they functionally resemble SWItch/Sucrose 
NonFermentable (SWI/SNF) nucleosome remodeling complexes, which also con-
tain bromodomain subunits and function to activate or silence coordinated networks 
of genes [ 116 ]. Bromodomains are protein motifs of about 110 amino acids in 
length [ 117 ,  118 ], comprised of four antiparallel α-helices that are linked by con-
necting loops, which form a binding pocket that is specifi c for acetylated lysine 
[ 119 ]. These motifs are found in transcription factors, histone acetylases, and related 
chromatin-directed proteins that are important for gene regulation [ 117 ,  120 ,  121 ]. 
Previous work has shown that the double bromodomain-containing proteins Brd2 
[ 122 ,  123 ] and Brd4 [ 124 ] couple histone acetylation to transcription [ 125 ,  126 ] and 
are critical for transcriptional control of cell cycle genes [ 127 – 131 ]. Increased or 
deregulated expression of either protein is oncogenic. In humans, reciprocal 
chromosomal translocation of  BRD4  [ 132 ] creates a dangerous oncoprotein that 
promotes an aggressive, poorly differentiated, and incurable carcinoma of the mid-
line, called NUT midline carcinoma, that affl icts relatively young people [ 133 ,  134 ]. 
Remarkable recent studies with small molecule inhibitors of the binding interface 
between the acetylated lysines and bromodomain have revealed that the chromatin- 
bromodomain interaction is “druggable” [ 135 ], which came as a surprise to the 
fi eld. Conventional wisdom had held that interactions with such protein motifs in 
chromatin were unappealing targets for the development of small molecule inhibi-
tors. In the case of midline carcinoma [ 136 ] and other human malignancies [ 137 –
 139 ], such drugs appear to have signifi cant anticancer benefi t [ 140 ]. These 
developments linked Brd2 and Brd4 with cancer and chromatin-controlled networks 
of gene expression that are coordinated through shared complexes, analogous to the 
SWI/SNF-regulated array of genes. But the chromatin-based connections between 
cancer, obesity, and infl ammation remained obscure until unexpected results from a 
bromodomain-manipulated mouse model appeared. 

 We initially developed a mouse model for Brd2 transgenic expression [ 141 ] and 
showed that upon B cell-restricted expression of Brd2, mice upregulate B cell mito-
genic responses through cyclin A transactivation [ 131 ] and eventually develop a B 
cell malignancy [ 141 ]. This cancer exhibits a transcriptional fi ngerprint most simi-
lar to the “activated B cell” (ABC) form of diffuse large B cell lymphoma in humans 
[ 142 ], with an infl ammatory signature. Surprisingly, whole-body reduction of Brd2 
in “Brd2 hypomorph” mice, by  lacZ  gene disruption, caused the development of a 
glucose-tolerant type of obesity that features elevated serum adiponectin and a 
remarkably attenuated infl ammatory profi le [ 143 ]. These results suggested that the 
Brd2 hypomorphic mouse might represent a useful model for human subjects who 
are metabolically healthy obese (Fig.  3.1 ) [ 144 ]. These humans share with the Brd2 
hypomorphic mice a low-infl ammatory profi le [ 77 ,  103 ,  105 ] and less reduction in 
serum adiponectin concentrations despite obesity [ 72 ]. The elevated concentrations 
of adiponectin measured in adiponectin transgenic mice are also metabolically pro-
tective [ 170 ], although neither adiponectin expression nor any other loci apart from 
 Brd2  were directly manipulated in Brd2 hypomorphic mice. More signifi cantly, the 
chromatin-directed networks that these bromodomain-containing co-regulators 
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control likely connect cancer, obesity, and infl ammation directly, through 
 coordinated co-activation or co-repression of interacting networks of genes; certain 
diseases likely share the same or overlapping sets of gene expression co-regulators. 
This topic has been reviewed [ 140 ]. 

 In forthcoming work, we show that small molecule inhibitors of these bromodo-
main proteins or shRNA ablation are effective as anti-infl ammatory strategies, act-
ing as global “uncouplers” of signal transduction that normally activate transcription 
of diverse cytokine genes [ 111 ]. Because many cancers have an infl ammatory com-
ponent, it is reasonable to hypothesize that the infl ammatory microenvironment of 
certain tumors will exacerbate carcinogenesis, tumor progression, invasion, metas-
tasis, or recurrence. Targeted uncoupling of signal transduction from transcription 
through bromodomain protein-specifi c small molecule inhibitors [ 140 ] may prove 
to be a novel and effi cacious therapeutic or preventive approach to reduce the 
infl ammatory cascades that contribute to obesity-associated cancer. The combined 
anti-infl ammatory [ 145 ] and anticancer [ 136 – 138 ] effects of bromodomain protein 
inhibition are already established. Our previous work has shown that reduced 
expression of Brd2 protein, equivalent to a haploinsuffi cient phenotype, de-represses 
specifi c genes that are important for metabolism. These reduced levels are suffi cient 
 simultaneously  to stimulate insulin gene transcription in β-cells [ 143 ,  146 ], to 
increase adipogenesis in pre-adipocytes through stimulation of peroxisome 
proliferator- activated receptor (PPAR)γ-directed transcriptional programs [ 143 , 
 147 ]. The hyperadiponectinemia of obese Brd2 hypomorphic mice [ 143 ] suggests 
that Brd2 is also normally required to corepress transcription of the murine adipo-
nectin gene ( Adipoq ), although this hypothesis has not yet been tested. Conversely, 
Brd2 reduction also ablates the production of pro-infl ammatory cytokines in macro-
phages such as TNFα, IL-1β, IL-6, and MCP-1 [ 111 ,  140 ,  144 ]. Taken together with 
the anticancer properties of Brd2 reduction through attenuated cell cycle progres-
sion, as discussed above, these coherent transcriptional and metabolic features 
(stimulated insulin production, increased adipogenesis, and increased adiponectin 
production; and reduced production of multiple pro-infl ammatory cytokines) lead 
us to propose a Brd2 mechanism for broad protection against obesity-associated 
malignancy. Small molecule inhibitors that target this family of transcription co- 
regulators, or naturally occurring single nucleotide polymorphisms in the human 
 BRD2  locus that reduce Brd2 expression, may therefore confer multiple forms of 
metabolic and cancer protection to obese patients. 

 Several phenotypes of unintended weight loss, such as chronic heart failure [ 148 ], 
share a systemic infl ammatory profi le [ 149 ], with marked elevations in serum levels 
of IL-1β, IL-6, and TNFα. These observations suggest a mechanistic relationship 
between the immune system, metabolism, and energy balance, reinforcing the afore-
mentioned argument. Furthermore, it has been noted that “unhealthy aging” [ 150 ] is 
often associated with a pro-infl ammatory, pro-senescent phenotype in somatic cells, 
the local production in skeletal muscle and adipose depots of infl ammatory cytokines 
that are associated with muscle wasting syndromes, and frailty in geriatric patients 
[ 151 – 153 ]. Investigators have been considering the cause and effect relationships 
among unresolved, chronic infl ammation, energy imbalances associated with weight 
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loss or weight gain, and cancer risk. Many of these  relationships may work in both 
directions. It is reasonable therefore to  hypothesize that a chromatin-based therapeutic 
strategy to treat these connected phenotypes may have broad benefi t for more than one 
type of risk and may be useful for  geriatric patients.  

3.5     Other Links Between Obesity, Infl ammation, 
and Social Determinants 

 One social determinant that plays a role in infl ammatory disease processes is socioeco-
nomic status (SES). Asthma rates in children are two to three times higher in poor fami-
lies than in wealthy families; SES shows a dose response relationship with asthma 
diagnosis and severity [ 154 ]. Public housing residents and inner city dwellers, who are 
among the poorest of urban dwellers in the United States, report higher rates of asthma 
than do private home and apartment dwellers [ 155 ]. This disease arises from allergic 
reactions to irritants and allergens that are commonly found in public housing, including 
dust mites, pets, rodents, mold, and cockroaches [ 156 ]. Massachusetts public housing 
has been linked to some of the highest national rates of asthma [ 157 ]. The prevalence of 
asthma is highest among African American families, with overall prevalence of 40 % of 
adults and 56 % of children [ 158 ]. These same populations, that is, poor and low SES 
individual and public housing residents, report two to three times the obesity rates of 
other residents who are higher along the SES continuum [ 159 ]. According to the 
American Lung Association, there is no evidence that asthma can cause lung cancer. 
However, there is evidence that asthma is associated with obesity [ 155 ,  160 – 162 ]. The 
risk of asthma has been reported in one study [ 163 ] to be up to three times greater for 
obese subjects compared to lean subjects (odds ratio for obese vs. normal BMI = 2.28, 
95 % CI: 1.76, 2.96). These observations suggest that socioeconomic factors also infl u-
ence risk for obesity-associated morbidity, including type 2 diabetes and cancer. 
Specifi cally, there may be a rationale to investigate the relationship between asthma, 
obesity, and obesity-associated cancer. For example, does poverty produce obesity and 
infl ammation, enhancing opportunities for the development of asthma? Are these issues 
causally related or simply comorbidities of living in high poverty settings? If we are able 
to reduce one set of comorbid conditions, as is under investigation now in Boston and 
elsewhere [ 164 – 166 ], will that outcome reduce or alter others? 

 Several sociological, economic, and behavioral factors have been established to 
link obesity and type 2 diabetes incidence to cancer incidence. As discussed above, 
there is strong epidemiological evidence that SES is correlated with both the preva-
lence of obesity and diabetes and with lung cancer mortality, a malignancy that is 
associated with smoking (Fig.  3.2a ). There is no known molecular association 
between lung cancer and obesity [ 3 ]. However, the use of tobacco in cigarette, cigar, 
and pipe smoke is strongly associated with lung, tracheal, and oral  cancers  [ 167 ]. 
Furthermore, low SES individuals suffer disproportionately higher health risks due 
to increased prevalence of smoking [ 168 ]. These correlations among chronic dis-
eases that have no downstream molecular connection suggest that the problem of 
obesity- associated cancer is more complicated in its structural and upstream origins 
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than a one-to-one correspondence between an obesity exposure and a cancer rate. In 
other words, the same causal factors that produce increased levels of obesity might 
also be at work to promote increased rates of lung cancer and lung cancer mortality, 
as well as type 2 diabetes (Fig.  3.2b ). Obesity and cancer are likely to be linked 

  Fig. 3.2    Overlapping morbidities. ( a ) Lung cancer mortality. Mortality among 3,056 United 
States counties for cancer of the lung, trachea, bronchus, and pleura in white males of all ages, 
1970–2004 (age-adjusted 2000 US population). Calculated from  National Cancer Institute data 
drawn from Atlas of Cancer Mortality in the U.S., 1950–1994 ; rates per 100,000 person-years 
presented here in nine equal intervals with a diverging  red / blue  color scheme. The national rate 
was 80.83 (CI 80.73–80.93) per 100,000, with the total number of deaths 2,481,728.   http:// ratecalc.
cancer.gov/ratecalc/    . ( b ) Diabetes and obesity diagnoses. Estimates among 3,141 United States 
counties for age-adjusted rates of both diagnosed diabetes and obesity presented together. Estimates 
were calculated from Census and Behavioral Risk Factor Surveillance System (self- reported) data 
for 2006–2008. The national proportion of US adults who were obese in 2008 was 26.1 %. In 2007, 
8 % of the US population, or 24 million individuals, were diabetic, of which 5.7 million were 
estimated to be undiagnosed.   http://www.cdc.gov/diabetes/pubs/factsheets/countylvlestimates.
htm    . ( c ) Socioenvironmental map of poverty. County-level data from United States Census Bureau 
statistics for 2004. Estimated percentage of population living below the poverty threshold as 
defi ned by US Census methods is defi ned by size of family and ages of members and includes 
information about earnings, unemployment compensation, workers’ compensation, Social 
Security, Supplemental Security Income, public assistance, veterans’ payments, survivor benefi ts, 
pension or retirement income, interest, dividends, rents, royalties, income from estates, trusts, 
educational assistance, alimony, child support, assistance from outside the household, and other 
miscellaneous sources (  http://www.cdc.gov/dhdsp/maps/sd_poverty_2004.htm    ,   http://www. 
census.gov/hhes/www/poverty/about/overview/measure.html    )       
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through their upstream causes: downturns in the economy, the nature of work and 
labor markets, social stratifi cation and economic inequality (Fig.  3.2c ), and lack of 
 opportunity and local infrastructure that set the stage for and contribute to the human 
biochemical mechanisms at work in carcinogenesis. As research identifi es the cen-
tral role of social determinants in chronic disease development, investigators need 
to pay closer attention to the common origins, even if not directly biologically 
linked. The social and structural origins of this problem demand structural solutions 
beyond the power of the prescribing physician’s pen: it is clear that  certain specifi c 
environments are both obesogenic / diabetogenic and carcinogenic . Solutions will 
require focused political will, participation of corporations and community groups, 
entrepreneurs, school districts, and local employers, not just obese Americans and 
their physicians.

3.6        Interactions Among Biological and Social Factors 

 Ultimately, we need to understand both the biology and the social forces that govern 
obesity to reduce this burden in modern, industrialized societies. The movement 
toward tailored or “personalized” medicine may be one way in which both perspec-
tives can be not only accommodated but relied upon as translated intervention tools 
to reduce obesity. For example, identifi cation of an individual’s likelihood of being 
a metabolically unhealthy obese person may provide additional motivation to 
engage in healthy behaviors. Alteration of the shape of environments for individuals 
and groups, such that there are clear and accessible food and activity choices, will 
help families facing both obesity- and asthma-related health issues. Increasing the 
opportunity for non-obesogenic activities might be a necessary investment for indi-
viduals who become infl amed if they become obese or maintain obesity. It may be 
helpful for the current conditions to consider obesity as a health problem that, for 
some, causes clear measurable changes related to a variety of chronic diseases, but 
that is ultimately preventable. Translating the basic research on vulnerability to 
infl ammation with obesity into usable interventions will require new ways of think-
ing about environment, motivation, and human behavior. From the discussion in this 
chapter, it is clear that we have begun to consider the broad, powerful mechanistic 
connections among infl ammation, obesity, and cancer and the need to link the cel-
lular, serological, and dietary environments of obese, at-risk individuals to expo-
sures in the built environment, urban infrastructure, and economic policy. Without 
transdisciplinary, innovative, “out-of-the-box” thinking, the problem of obesity- 
associated cancer will prove too diffi cult to address effectively. We therefore call for 
additional funding and research to investigate these unexpected connections among 
important variables, with focused conversation among molecular biologists, immu-
nologists, geneticists, cancer and endocrine clinicians, epidemiologists, sociolo-
gists, public housing offi cials, and public health offi cials. In view of the increasing 
seriousness of the obesity epidemic, time is running out for this conversation to plan 
for research and policy priorities.     
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