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SUMMARY

In multicellular organisms, dedicated regulatory
circuits control cell type diversity and responses.
The crosstalk and redundancies within these circuits
and substantial cellular heterogeneity pose a
major research challenge. Here, we present CRISP-
seq, an integrated method for massively parallel
single-cell RNA sequencing (RNA-seq) and clustered
regularly interspaced short palindromic repeats
(CRISPR)-pooled screens. We show that profiling
the genomic perturbation and transcriptome in the
same cell enables us to simultaneously elucidate
the function of multiple factors and their interactions.
We applied CRISP-seq to probe regulatory circuits of
innate immunity. By sampling tens of thousands of
perturbed cells in vitro and in mice, we identified in-
teractions and redundancies between develop-
mental and signaling-dependent factors. These
include opposing effects of Cebpb and Irf8 in regu-
lating the monocyte/macrophage versus dendritic
cell lineages and differential functions for Rela and
Stat1/2 in monocyte versus dendritic cell responses
to pathogens. This study establishes CRISP-seq as
a broadly applicable, comprehensive, and unbiased
approach for elucidating mammalian regulatory
circuits.
INTRODUCTION

Functional diversity of immune cells is critical for the generation

of the different regulatory and effector cell types required to safe-

guard the host not only against a broad range of threats, such as

pathogens and cancer, but also from attacking its own healthy

cells and tissues. Cellular diversity and response are controlled

by regulatory networks, which function as decision-making cir-

cuits of the cell (Amit et al., 2011; Beyer et al., 2007; Carter

et al., 2013). Two major confounding factors limit accurate char-
C

acterization of cellular circuitry. The first is the complexity of

biological circuits, which include redundancies and nonlinear

crosstalk between pathways, and the second is cellular plasticity

and heterogeneity within both in vivo and in vitro models (Junker

and van Oudenaarden, 2014; Trapnell, 2015). Although synthetic

lethality screens have greatly enhanced our understanding of the

function of a large number of genes in various pathways (Amit

et al., 2011; Blomen et al., 2015; Scholl et al., 2009; Tong

et al., 2001), genome-wide methods to identify interactions be-

tween genetic elements at single-cell resolution are still lacking.

Myeloid cells are immune cells of hematopoietic origin that

provide crucial innate defense (Geissmann et al., 2010; Hashi-

moto et al., 2011; Lavin et al., 2015). In addition, they have impor-

tant tissue-specific functions that range from clearance of

surfactant from the lungs to neuronal pruning and establishment

of gut homeostasis (Lavin et al., 2015). Differentiation and tissue-

specific activation of myeloid cells require precise regulation of

gene expression (Glass and Natoli, 2016; Gosselin et al., 2014;

Lavin et al., 2014; Lawrence and Natoli, 2011; Okabe and Medz-

hitov, 2014). Understanding the precise regulation of various

immune modulatory pathways will enable improved diagnostics

and cell engineering toward desired responses for better adju-

vants, immunotherapy, and resolution of various neurodegener-

ation and autoimmune diseases. However, the plasticity, niche

specificity, and complexity of immune regulatory networks are

difficult to resolve with current methods applicable to bulk cell

populations (Chattopadhyay et al., 2014; Moignard et al., 2013;

Semrau and van Oudenaarden, 2015).

Single-cell genomic technologies enable unprecedented reso-

lution in characterizing new cell types and states, transitions

from normal to disease, and response to therapies (Junker and

van Oudenaarden, 2014), including in cells of the brain, gut, liver,

pancreas, bone marrow, as well as immune cell types in various

tissues and disease states (Grün et al., 2015; Gury-BenAri et al.,

2016; Jaitin et al., 2014; Junker and van Oudenaarden, 2014; La

Manno et al., 2016; Paul et al., 2015; Segerstolpe et al., 2016;

Shalek et al., 2014; Stegle et al., 2015; Treutlein et al., 2014; Zei-

sel et al., 2015). Single-cell technologies further our ability to

identify potential regulators of the various cell states, promoting

testable hypotheses to elucidatemolecular mechanisms of regu-

lation (Paul et al., 2015; Stegle et al., 2015; Yosef and Regev,
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2016). Yet, current single-cell technologies are descriptive by

nature, lacking the ability to elucidate causality unless they are

combined with gene loss-of-function or knockout (KO) models

(Junker and van Oudenaarden, 2014; Moignard and Göttgens,

2014; Stegle et al., 2015).

Clustered regularly interspaced short palindromic repeats

(CRISPR/Cas)-based technologies have propelled the capacity

to elucidate genetic function (Cong et al., 2013). Current

CRISPR/Cas methods are used either for individual gene KOs or

for pooled screens (Doudna and Charpentier, 2014; Hsu et al.,

2014). While individual gene KOs are effective, they lack in scal-

ability. Pooled genetic screens are powerful tools for the discov-

ery and functional annotation of genetic elements, yet they lack

the resolution needed to elucidate complex phenotypes. These

screens are usually used to identify crude cellular phenotypes,

such as survival, cell shape, or single gene markers (Chen et al.,

2015; Hsu et al., 2014; Shalem et al., 2015). This may result in

false-negative and false-positive results, as perturbations may

change cell compositions and states that are difficult to decom-

pose without more comprehensive phenotyping (Blomen et al.,

2015; Scholl et al., 2009; Tong et al., 2001; Wang et al., 2013).

Together, these hurdles highlight the need for developing

pooled multiplexed technologies for high-resolution character-

ization of mammalian pathways at the single-cell level. We

developed CRISP-seq, an integrated method that combines the

resolution of massively parallel single-cell RNA sequencing

(RNA-seq) with the genome editing scale of pooled CRISPR

screens. Here we demonstrate the potential of the method to

uncover the function of multiple factors and their combinations

ina singleexperiment. To identify theguideRNA (gRNA)combina-

tion that infected eachsingle cell, wedesigneda scalable lentiviral

vector backbone that contains, in addition to the gRNAmodule, a

transcribed poly-adenylated unique guide index (UGI) and a fluo-

rescent selection marker. We observe a high level of phenotype

consistency between gRNAs targeting the same gene in both

in vivo and in vitro models as well as in multiplex or individual

gRNA experiments. We applied CRISP-seq to characterize the

regulatory network controlling the differentiation of myeloid cells

and their response to pathogen components by measuring tens

of thousands of single cells perturbed for critical developmental

and immune response regulators.We identified the role of Cebpb

and Irf8 ascontrolling thecommitment towardvariousmyeloid lin-

eages. In addition, we analyzed the rewiring of signaling-depen-

dent transcription factors (TFs) in the inflammatory and antiviral

pathways, highlighting different functions in monocyte versus

dendritic cells (DCs). Our findings demonstrate CRISP-seq as a

versatile approach to probe and infer thewiring ofmammalian cir-

cuits, fundamental to the future engineering of immune cells to-

ward desired responses, including immunotherapy.

RESULTS

CRISP-Seq: An Integrated Method for Single-Cell
RNA-Seq and CRISPR-Pooled Screens
To elucidate the function of multiple regulatory factors at single-

cell and genome-wide resolution, we developed CRISP-seq, an

integrated method for pooled CRISPR/Cas genome editing fol-

lowed by massively parallel single-cell RNA-seq. For this proto-
1884 Cell 167, 1883–1896, December 15, 2016
col, we engineered a scalable lentiviral backbone (CRISP-seq

vector) that includes, in addition to a gRNA expression cassette,

a transcribed UGI that allows the identification of the gRNA from

single-cell RNA-seq data (Figure 1A; STAR Methods; Key

Resources Table). Importantly, we also engineered the lentivirus

to include a fluorescent selection marker that enabled us to

study perturbed cells from specific niches in animal models.

The combination of a gRNA index with the single-cell transcrip-

tome data allowed us to generate deep and comprehensive

phenotype profiling of multiplexed gene KOs and to study their

function and interactions in a single experiment (Figure 1A).

TheCRISP-seqprotocol ishighly reproducible for identifying the

transcriptome in combination with the gRNA (Figures 1B–1D). To

benchmark CRISP-seq, we cloned into our backbone a gRNA tar-

geting the Itgam gene, which encodes for the CD11b integrin,

alongside a blue fluorescent protein (BFP)marker and anmCherry

fluorescent marker together with a gRNA targeting the Cebpb

gene (STAR Methods; Key Resources Table). Bone marrow cells

fromC57BL/6 femalemiceharboring aGFP-labeledCas9knockin

(Platt et al., 2014) were infected with a mix of lentiviruses ex-

pressing gRNA(CD11b)-BFP-UGI and gRNA(Cebpb)-mCherry-

UGI. Then 5 days later, infected GFP+BFP+/mCherry+CD11c+

myeloid-derived cells were sorted for massively parallel single-

cell RNA-seq analysis (STARMethods; Key Resources Table). In-

formation on BFP, mCherry, and CD11b intensities was recorded

for each cell by index sorting (Paul et al., 2015). Comparison of

CD11b protein expression levels and BFP intensities showed

that, in 81% of the cells with high levels of BFP signal (Itgam-

gRNA+), CD11b protein expression decreased substantially (Fig-

ure 1B). Comparing the UGI read counts with CD11b and BFP

intensities in each cell showed a high concordance among BFP-

positive cells, CD11b perturbation, and CD11b-UGI expression

(Figures 1B and S1A).We detected theCD11b-UGIwith 84%pre-

cision, computed as the sum of true-positive and true-negative

events relative to the BFP fluorescence-activated cell sorting

(FACS) signal, and false-positive and false-negative events of

4% and 12%, respectively (Figures 1B and S1E).

To evaluate the potential of applying CRISP-seq for multi-

plexed genome editing, we assessed the accuracy of detecting

individual gRNAs and their combinations. Successful Cas9 edit-

ing cleaves the gRNA complementary seed sequence in the

DNA, creating mutations and small insertions or deletions (in-

dels), but does not necessarily impact RNA expression directly.

Because TFs are often regulated through auto-regulatory loops,

their mRNA expression can potentially serve as a proxy for gRNA

activity. The comparison of Cebpb mRNA expression versus

mCherry intensities (Cebpb-gRNA+) in single cells showed sig-

nificant anti-correlation between the mCherry signal and Cebpb

expression (r = �0.39; Figures 1C, S1B, and S1C). These exper-

iments also confirmed that the BFPmarker was more effective in

labeling infected cells and displayed a lower false-negative rate,

with better correlation among fluorescence intensity, UGI detec-

tion, and gene editing (Figures 1D–1F andS1B–S1E). To evaluate

the genome editing efficiencies within UGI-positive cells target-

ing CD11b, Cebpb, and multiplexed CD11b and Cebpb, we

sorted BFP�/mCherry�, BFP+/mCherry�, BFP�/mCherry+,

and BFP+/mCherry+ cells (Figure 1E). We then amplified and

sequenced the gRNA-targeted loci, which confirmed editing in
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Figure 1. CRISP-Seq: An Integrated Method for Single-Cell RNA-Seq and CRISPR-Pooled Screens

(A) Schematics of the CRISP-seq experimental pipeline. A pooled gRNA library promotes gene KOs in Cas9-expressing cells through lentiviral infection, resulting

in single or multiple gene KOs. Each gRNA in the pooled library is detected together with the cell transcriptome through the expressed unique guide index (UGI)

during single-cell RNA-seq. A fluorescent marker enables selection of relevant cells, and downstream analysis elucidates genotype-to-phenotype relations in

single cells. U6, small nuclear ribonucleoprotein promoter; EF-1a, elongation factor 1-alpha promoter; BFP, blue fluorescent protein; WPRE, Woodchuck

hepatitis virus posttranscriptional regulatory element for enhanced BFP expression.

(B) Scatterplot showing Itgam/CD11b protein expression as recorded by FACS index sorting in each cell sequenced with CRISP-seq. BFP-recorded intensity and

total UGI read count for Itgam are shown on the x and y axes, respectively. LV, lentivirus. Index sorting PerCP/Cy5.5, FACS-recorded intensity levels of the PerCP/

Cy5.5 fluorophore conjugated to the CD11b antibody, is indicative of the CD11b protein expression levels.

(C) Violin plots of CebpbmRNA expression is shown in single cells labeled formCherry (Cebpb-gRNA) at different UGI detection cutoffs in each cell. RMT, random

molecular tags.

(D) Bar graph shows measured error probabilities of false-positive and false-negative events for cells classified with UGI-seq versus BFP or mCherry fluorescent

marker classification.

(E) FACS plot of myeloid cells expressing BFP (Itgam-gRNA+) and mCherry (Cebpb-gRNA+). Shown are cells sorted for indel-seq analysis, namely BFP+,

mCherry+, or double-positive cells.

(F) Bar plots showing the percentage of genome editing around the targeted sites of each gRNA, for each quadrant indicated in (E). BFP/mCherry double-negative

cells (negative control) were sorted from a gate defined outside both the mCherry- and the BFP-positive gates (Figure S1D).
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Figure 2. CRISP-Seq Analysis Identifies a Role for Cebpb in Monocyte Development

(A) Heatmap of 731 single myeloid cells. Top panel: expression of the 830 most differential genes across the clusters is shown. Middle bar: UGI detection of

Cebpb-gRNA (blue) and Rela-gRNA (red) is shown. Bottom panel: expression of marker genes is shown.

(B and C) Bar plots show the ratio between the different gRNAs and their combinations in the different clusters, using either the UGI (B) or fluorescent marker (C).

(D) The t-distributed stochastic neighbor embedding (t-SNE) plot of the 731 single myeloid cells depicts the separation into monocytes (orange), immature DCs

(green), and mature DCs (purple).

(E and F) Projection of the fluorescent marker (E) or UGI labeling (F) onto the t-SNE plots is shown.

(G) Projection of key marker genes onto the t-SNE plot is shown.
the expected quadrants (Figures 1F and S1F). Together, these

results demonstrate the value of combining massively parallel

single-cell RNA-seq and a UGI strategy for accurate identifica-

tion of gRNA or combinations of gRNAs in single cells.

CRISP-Seq Analysis Identifies a Major Role for Cebpb in
Monocyte Development
Next, we assessed the effectiveness of CRISP-seq in decipher-

ing the function of genetic elements in a multiplexed experiment.

The myeloid compartment is composed of environmental plastic

cells with functional diversity in both cell state and response

(Ginhoux and Jung, 2014; Glass and Natoli, 2016; Gosselin
1886 Cell 167, 1883–1896, December 15, 2016
et al., 2014; Lavin et al., 2014, 2015). To better understand the

pathways regulating this complexity, we infected bone marrow

cells with gRNA targeting a combination of response (mCherry/

Rela-gRNA) and developmental (BFP/Cebpb-gRNA) regulators

and sorted CD11c+ myeloid cells, indexed for BFP and mCherry

intensities, for CRISP-seq analysis.

Unsupervised graph-based clustering (PhenoGraph) (Levine

et al., 2015) identified threemajormyeloid cell types in the culture

(Figure 2A; Table S1; STAR Methods; Key Resources Table): a

monocyte population expressing Lyz2, CD11b, Ly6c2, Cebpb,

and lysosomal peptidases (Ctsb, Ctsd, and Ctss) and two DC

populations expressing high levels of the MHC-II pathway



components (CD74,H2-Aa, etc.), Cst3, aswell as checkpoint and

co-stimulatory molecules (e.g., PD-L2 and CD86) (Helft et al.,

2015) (Figure 2A). The two DC types could be subdivided into

mature migratory DCs expressing CCR7, CCL22, CD83, and

Irf8 and an immature subpopulation expressing Csf1r, Ifitm1,

Fcgr3, and Lgals3 (Schlitzer et al., 2015). Using either the

guide-specific fluorescent marker or the UGI indexes revealed

that the two DC subtypes were significantly enriched for Cebpb

KO cells, whereas the monocytes were enriched for wild-type

(no UGI) and Rela KO cells (hyper-geometric p value < 1 3

10�4; Figures 2A–2F and S2A). We confirmed these results by in-

fecting separate cultureswith a single gRNA targetingCebpb or a

control gRNA and obtained comparable cell type phenotypes

and distributions to the CRISP-seq pool (Figures S2B–S2E).

To further characterize these populations and their response

to pathogens, we infected bone marrow cells with the same

combination of Cebpb and Rela gRNAs and stimulated the

myeloid culture with the Toll-like receptor 4 (TLR4) agonist lipo-

polysaccharide (LPS) (Akira et al., 2006; Amit et al., 2009), a pu-

rified component from gram-negative bacteria, for 4 hr prior to

sorting. Clustering analysis identified the same three cell types

(i.e., monocytes and immature andmature DCs), which exhibited

highly diverse responses to LPS (Figures 3A and S3A–S3C;

Table S2). The monocytes elicited a robust inflammatory

response exemplified by the induction of IL1a/b, IL12b, and

Cxcl2, as well as an antiviral response (e.g., Cxcl10, Oasl1,

and Ifit2) (Figures 3A and 3B). In contrast, the DC subtypes acti-

vated the antiviral pathway and induced many co-stimulatory

and checkpoint molecules, withminor induction of the inflamma-

tory genes (Figures 3A, 3B, S3B, and S3C). Similar to the unsti-

mulated culture, the two DC populations were significantly

enriched for cells expressing the Cebpb-gRNA (hyper-geometric

p value < 1 3 10�5; Figures 3A–3D). We observed a diminished

inflammatory response in cluster II of themonocytes. This cluster

was enriched for the UGI sequence matching the Rela-gRNA

(hyper-geometric p value < 13 10�5). The response in this clus-

ter was perturbed for dozens of inflammatory genes (Cxcl2, Il1b,

Il12b, and Tnf), but not for antiviral response genes (Figures 3A–

3E, S3D, and S3E).

In summary, CRISP-seq analysis identified the known role of

Rela in regulating the inflammatory response in monocytic cells.

Yet, it unexpectedly uncovered Cebpb as an important factor

regulating the balance between DC and monocyte development

(Feng et al., 2008; Heinz et al., 2010). When Cebpb was per-

turbed, cells were pushed toward the DC lineage expressing

high levels of Irf8. Furthermore, our analysis showed that these

two myeloid types boosted a dramatically different response to

LPS. The plasticity in differentiation and rewiring of response

pathways of myeloid cells would have made these results diffi-

cult to interpret without single-cell analysis coupled to perturba-

tions (Paul et al., 2015).

Decoupling of Antiviral and Inflammatory Pathways by
Multiplexed Perturbations
To better characterize the genotype-to-phenotype relation in

single cells by CRISP-seq and to identify multiplexed perturba-

tions, we developed an algorithm that would most accurately

detect perturbed single cells with distinct phenotypes. Our
framework relies on the assumption that cells with similar geno-

types will be in close proximity in the phenotypic space; hence, a

cell with a true loss-of-function hit will generate a similar pheno-

type that is different from in-frame mutations or non-targeted

cells. Using this assumption, we sought to overcome two sour-

ces of potential outliers in our data, namely false-positive and

false-negative cells. Regarding the former, targeting of Cas9 to

a specific gene locus generates loss-of-function mutation/indels

in up to 80% of the loci (Sternberg and Doudna, 2015). This im-

plies that for any single cell for which aUGIwas detected, there is

at least a 20% chance that the targeted gene is fully or partially

active. Conversely, with the current CRISP-seq/UGI strategy,

up to 20% of the cells remain undetected but can potentially ex-

press the gRNA. To overcome the noisy and missing genotype

labeling, we developed a label refinement algorithm based on

k-Nearest Neighbors (kNN) graph (Blondel et al., 2008; Girvan

and Newman, 2002; Levine et al., 2015) to correct the genotype

labeling based on the genotype of neighboring cells (Figures 4A

and 4B; Table S3; STAR Methods; Key Resources Table). In the

first step after graph generation, cells that are connected to other

cells with the same genotype more than expected by chance

(bootstrap p value < 0.05) maintained their UGI label, whereas

cells that are in disagreement with their neighbors lost their label.

In the second step, we propagated the genotype labels to cells

with missing labels based on the genotype of their neighbors.

To evaluate the effect of monocytic cells perturbed for multi-

plexed inflammatory and antiviral pathways, we infected bone

marrow cultures with a pool of gRNAs targeting Rela and Irf9,

known regulators of the two pathways, respectively. Then, we

stimulated the culture with LPS for 4 hr and sorted cells

(GFP+CD11c+) for CRISP-seq analysis (Figures 4B–4D). Pheno-

Graph clustering identified 691 monocytes and 81 DCs (Fig-

ure S4A). Because the DC populations are minor in this culture

without Cebpb perturbation, we analytically removed all DCs

from further analysis. Projecting the kNN graph after label refine-

ment revealed four distinct genotype compartments correspond-

ing to wild-type cells (no UGI), cells enriched for Rela KO, cells

enriched for Irf9 KO, and cells enriched for Rela and Irf9 double

KO (Figures 4B and S4A–S4C). The cells enriched for Irf9 KO dis-

played a diminished antiviral gene module response (e.g., Ifit2

and Cxcl10) (Figures 4C, 4D, 4F, and S4D). In contrast, the cells

enriched for Rela KO displayed a diminished inflammatory

response, including Il12b and Cxcl2 (Figures 4C–4E and S4D).

We confirmed these results by infecting separate cultures with

single gRNA targeting Rela or Irf9, and we obtained comparable

phenotypes anddistributions to theCRISP-seqpool (FiguresS4E

and S4F). The combination of Rela and Irf9 KO had, in most

cases, an additive effect (A + B = C; Figures 4D, 4G, 4H, and

S4D), indicating that, in monocytes, the inflammatory and anti-

viral pathways largely regulate different gene modules (Medzhi-

tov, 2007; Napolitani et al., 2005). Among the few exceptions

werePtx3 andCxcl3, a chemokine that controlsmonocytemigra-

tion. Cxcl3 displayed interesting combinatorics, repressed by

IRF9 and activated by Rela, suggesting that this chemokine

may have opposing effects depending on the immune stimuli.

Together, our results demonstrate the ability of CRISP-seq to

dissect multiplexed perturbations and non-overlapping regula-

tion of inflammatory and antiviral responses in monocytes.
Cell 167, 1883–1896, December 15, 2016 1887
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Figure 3. CRISP-Seq Analysis of Myeloid Cells Activated with LPS

(A) Heatmap of 1,186 singlemyeloid cells stimulatedwith LPS for 4 hr.Middle panel: expression of the 222most differential genes across the clusters is shown. Left

panel: expression of same genes from 731 unstimulated myeloid cells is shown. Bottom panel: enrichment of the different gRNAs across the clusters is shown.

(B) Expression level (RMT counts) of selected marker genes from different biological processes across the clusters following LPS stimulation. Perturbation of key

inflammatory genes is observed within the cluster enriched for Rela KO.

(C) The t-SNE plot of the 1,186 single myeloid cells stimulated with LPS depicts the separation into the six different clusters shown in (A).

(D) Projection of the UGI onto the t-SNE plots is shown.

(E) Projection of key marker genes onto the t-SNE plot is shown.
Perturbations of Developmental and Signaling-
Dependent TFs Reveal the Rewiring of Regulatory
Circuits in Myeloid Cells
In order to extend our analysis to a larger group of TFs regulating

the inflammatory and antiviral circuits, we screened for candi-

date TFs that are transcriptionally upregulated following LPS

stimulation and may regulate these processes (Amit et al.,

2009). We infected bone marrow cells with a pool of 57 gRNAs

covering 22 genes and performed CRISP-seq on 6,144 cells
1888 Cell 167, 1883–1896, December 15, 2016
stimulated with LPS for 4 hr (Figures 5A and S5A). In order to

evaluate gRNAs effects on the antiviral or inflammatory pro-

grams, we calculated a significance score per gRNA for each

program (Figure S5B). Significant perturbation (p < 0.01) was

observed for 17 gRNAs covering 8 genes, and in all cases, the

observed perturbations were specific to one of the programs

(Figure S5B). Following this screen, we proceeded with a

focused pool of TFs that robustly regulate the antiviral, inflamma-

tory, or developmental processes, including Irf9, Irf4, Stat1,
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Figure 4. Decoupling of Antiviral and Inflammatory Pathways by Multiplexed Perturbations

(A) Cartoon showing the different processes and stages of UGI label refinement applied in our algorithm to most optimally model single cells targeted by Cas9.

White circles indicate unlabeled cells, undetected UGI (no UGI).

(B) Projection of the UGI onto the kNN graph of 691 monocytes stimulated with LPS for 4 hr, before (left) and after (right) UGI assignment correction, is shown.

(C) Projection of key inflammatory and antiviral response genes onto the kNN graph is shown.

(D) Density histograms depict the expression of key inflammatory and antiviral response genes in the different KO combinations.

(legend continued on next page)
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Stat2, Rela, Nfkb1, Cebpb, and Irf8 and performed CRISP-seq

on 6,749 myeloid cells. Clustering analysis identified similar

cell states as in previous perturbations, including two DC states

enriched for Cebpb, and monocyte cells that were perturbed in

the antiviral response module (Stat1, Stat2, Irf8, and Irf9) and

in the inflammatory module (Rela and Nfkb1) (Figures 5B–5D).

The monocytic cells perturbed for the antiviral regulators dis-

played a diminished antiviral response (e.g., Ifit2 and Cxcl10)

and regulatory factors (Irf7 and Stat2), with almost no effect on

the inflammatory gene module (Figures 5B–5D). In contrast,

the cells perturbed for inflammatory regulators displayed a

diminished inflammatory response (Cxcl2 and Il12b). To deter-

mine if these effects are direct or indirect, we compared the

DNA-binding pattern of Stat1, Stat2, and Rela in monocytes to

the transcriptional change upon perturbation of each factor (Fig-

ures 5E and 5F) (Garber et al., 2012). We found that most genes

that were downregulated in Stat1/2 KOs also were bound

directly by these factors (Pearson correlation r = �0.52), specif-

ically within enhancer regions, suggesting that many of the tran-

scriptional effects for these factors are direct.

We next addressed the rewiring of the same inflammatory and

antiviral circuits in other myeloid cell types. We analyzed only

factors perturbed in more than 30 cells, namely Rela and

Stat2. KO of Stat2 in DC mimicked to a large degree the effects

that we observed in monocytes, namely perturbation of a large

set of antiviral genes (Figure S5C), of DC-specific response

genes such as the migratory chemokine Ccr7, as well as of co-

stimulatory molecules (CD83 and CD86). Since the inflammatory

genes are not upregulated in DCs, we did not expect a specific

effect of Rela KO in these cells. Surprisingly, Rela was found to

affect a large number of activated DC genes (Ouaaz et al.,

2002). These included co-stimulatory molecules, chemokines,

and antiviral response genes (Figure S5C). Together, our ana-

lyses suggest that inflammatory and antiviral response circuits

are rewired in different myeloid cells and that specific regulators

control different gene modules in a cell-type-specific manner.

In Vivo CRISP-Seq Analysis Uncovers the Complexity of
Myeloid Regulatory Circuits in Immune Niches
In vitro models identify many aspects of gene regulation and

cellular function, but they do not recapitulate the full complexity

of physiological interactions of diverse cell types within specific

tissues (Chen et al., 2015). Immune niches within the spleen,

lymph node, brain, or tumor represent a highly complex and dy-

namic network of interactions of various immune and non-im-

mune cell types. Understanding the precise function of different

regulatory circuits in these niches is important for both basic and

clinical research. To study the regulatory function of develop-

mental and signaling-dependent factors in immune niches, we

sorted Lin� Sca1+ c-kit+ (LSK) hematopoietic progenitors from

GFP-labeled Cas9 knockin mice, and we infected them with a

pool of Cebpb, Irf8, Rela, Stat1, Stat2, and two control gRNAs
(E and F) Scatterplots show the differentially expressed genes in control, Rela KO

are colored red.

(G) Scatterplot shows gene fold change for Rela/Irf9 double-KO cells over unper

(H) Scatterplot compares –log10 p values (Mann-Whitney U test) for differentially

Rela KO population versus the unperturbed population.
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(Figure 6A; Table S4). The infected Cas9 (GFP+) donor popula-

tions were mixed with unlabeled wild-type supportive bone

marrow cells and injected into lethally irradiated recipient mice

(Figure 6A; STAR Methods; Key Resources Table). Then,

7 days following transplantation, successful engraftment was

observed and mice were injected with LPS (Figure S6A).

To focuson the regulationofmyeloidcell response topathogens

in the splenic niche, 4 hr following LPS stimulation, 2,768 splenic

myeloid cells (CD11b+ or CD11c+) positive for Cas9 (GFP+) and

gRNA (BFP+) were sorted for CRISP-seq analysis. Unsupervised

analysis of the single myeloid cells identified nine myeloid cell

types and states (Figures 6B and S6B), including granulocytes,

monocytes, conventional DCs (cDCs), and plasmacytoid DCs

(pDCs). Similar to the in vitro model, monocytes were associated

with high expression levels of antibacterial enzymes (Ctsc and

Lyz2) and of the Cebpb TF (Figures 6B, 6C, and S6B). The cDCs

were associated with high levels of MHC-II pathway genes and

cysteine protease inhibitors (H2-Eb1 and Cst3), whereas pDCs

were associated with the expression of classical markers of this

type, such as Ly6D and Siglech, and relevant TFs (Irf8 and Tcf4).

Granulocytes were associated with two clusters: an immature

state expressing enzymes associated with neutrophil granule

formation, namely MPO and Elane, and a more mature state ex-

pressing high levels of the antimicrobial peptide CAMP (Figures

6B, 6C, and S6B). Projecting the perturbation indexes (genotype)

on this graph showed that perturbation of Cebpb was linked to

the generation of cDCs (p < 10�8), similar to the in vitro model,

whereas perturbation of Irf8 was associated with granulopoiesis

(p< 10�12) (Figures 6DandS6C–S6E). Toconfirm the link between

Irf8 KO and increased granulopoiesis, we infected bone marrow

cells in vitro with mixtures of Cebpb, Irf8, and control gRNA, and

wesortedbothCD11c+ andCD11c� cells for CRISP-seq analysis.

Similar to the in vivomodel,weobserved thatCebpbwasessential

for the monocyte state, whereas Irf8 was essential for the DC and

monocyte states (Figures S6D and S6E). These results are in

agreement with KO experiments showing that Irf8 is required for

the development of pDCs, cDCs, monocytes, and macrophages

while inhibiting the generation of neutrophils (Becker et al., 2012;

Kurotaki and Tamura, 2016).

Focusing on the perturbations of Stat1 or Stat2 resulted in

largely overlapping phenotypes enriched for different activation

states of monocytes, pDCs, and cDCs (Figures 6D–6F and

S6C). Comparison of Stat1/2-perturbed versus wild-type cells

within and across cell types revealed Stat1/2-dependent antiviral

genes thatwere either common to variousmyeloid cell types (e.g.,

Irf7 and Isg15) or associated with specific cell types (Cxcl10,

Ifi204, and Ifi27l2b) (Figures 6E and S6C). Together, these data

show that the CRISP-seq technology is a powerful tool to eluci-

date the function of genes and pathways within various cell types

in specific immune niches. In the future, CRISP-seq analysis of a

larger set of developmental and signaling-dependent factors, in

combination with different environmental and small molecule
(E), and Irf9 KO (F) cells. Genes differentially expressed with significant p values

turbed cells compared to the linear combination of each individual KO effect.

expressed genes in Irf9 KO population versus the unperturbed population and
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conditions, will enable engineering of immune cells toward

desired responses within specific niches, including for improved

immunotherapy.

DISCUSSION

Gene regulatory networks function as decision-making circuits

of the cell. Functional characterization of the regulatory path-

ways controlling cell fate and response is critical for the develop-

ment of the next generation of targeted and combination thera-

pies. Specifically, the plasticity and diversity in immune cell

types and their responses have limited progress toward linking

specific regulators with immune outcomes. CRISPR-based

technologies have dramatically accelerated these efforts; how-

ever, they are used either for individual perturbations, assuming

homogeneity in the population, or to measure interactions in

particular loci (Parnas et al., 2015). Despite these important ef-

forts, a robust technology that would systematically decipher

the function of genetic elements at single-cell and genome-

wide resolutions is still lacking. Here we describe a new and ver-

satile method, CRISP-seq, which identifies in the same cell the

specific perturbation and cell state. By generating a scalable len-

tiviral backbone that contains, in addition to the gRNAmodule, a

fluorescent marker and a transcribed UGI, we show that CRISP-

seq enables one to uncover in a single experiment the function of

dozens of factors and their combinations. We successfully

applied CRISP-seq to uncover regulators of cell state and

response of myeloid cells, and we showed that our unique

design is broadly applicable for both in vitro models and, impor-

tantly, for studying the regulation of immune cells in specific

niches within animal models.

Biological circuits buffer, amplify, or temporally regulate sig-

nals from the environment through dedicated circuit designs.

Genetic interactions can reveal functional relationships between

genes and pathways in different cellular contexts, i.e., cell types

and environmental conditions (Alon, 2006). Synthetic lethality

screens in yeast and mammalian cells have greatly enhanced

our understanding of the function of a large number of genes in

various pathways, such as cytoskeletal organization in yeast

(Tong et al., 2001), the KRAS pathway in cancer (Scholl et al.,

2009), and the secretory pathway in viral budding (Blomen

et al., 2015). We successfully applied CRISP-seq for multiplexed

perturbations of an antiviral and inflammatory regulator and

showed the potentially broad utility of CRISP-seq to screen for

many-by-many interactions, limited only by the number of single

cells that can be sequenced. Potentially, by using different fluo-

rescent reporters, it is possible to sort via FACS the interacting

markers of one or a few factors against a large pooled library

of another fluorescent marker (few-by-many interactions).
Figure 5. Perturbations of Developmental and Signaling-Dependent TF

(A) Cxcl10 expression per single cell is shown for a pool of 57 gRNAs targeting sign

for 4 hr. Cells are grouped by detected gRNA/UGI and ordered by expression le

(B) PhenoGraph clustering of 6,749 myeloid cells stimulated with LPS for 4 hr is

(C) Projection of the gRNA enrichments after UGI label refinement onto the kNN

(D) Histograms of 5,674 monocyte cells depict the expression of key inflammato

(E) ChIP-seq genome browser view of Stat1/2- and Rela-binding pattern in mono

(F) Correlation of ChIP-seq binding (max peak height) compared to the transcrip
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Such screens would effectively identify the genetic interactions

of a smaller set of factors against a large genetic pool.

Our experiments also highlight several remaining challenges.

First, more accurate identification of the UGI in every cell will

improve the efficiency of CRISP-seq. This will be achieved by

the expected improvements in the sensitivity of single-cell

methods and by the second generation of CRISP-seq vectors

with higher UGI expression levels. Second, although we have

optimized the BFP and mCherry fluorescent markers used in

CRISP-seq, additional fluorescent markers will enable multiplex-

ing several in vivo experiments in one animal and focusing on

specific interactions. Third, an additional gRNA expression

cassette (multiplex gRNA vector) can be intuitively integrated

into the CRISP-seq toolkit and further expand multiplexing of

perturbations in single cells as well as testing for desired combi-

nations (Sakuma et al., 2014; Vidigal and Ventura, 2015). Fourth,

the analytical challenge of identifying false positives/negatives

as well as of correctly modeling pathway hierarchies will require

the development of new algorithms that optimally deal with the

sparse and noisy nature of the data, such as a variant of the

kNN graphs used here. Fifth, while our study focused on a small

circuit of dozens of factors, the number of genetic elements that

can be profiled in one experiment can be augmented signifi-

cantly. As a rule of thumb, for most genes we found that �50–

100 cells are sufficient to accurately identify the perturbation

phenotype. Sixth, while we developed CRISP-seq on the

massively parallel RNA single-cell sequencing (MARS-seq) plat-

form, it can be intuitively adopted for drop-based methods.

Despite these limitations, our proof-of-principle study shows

that CRISP-seq can now be applied to investigate the function

of a large number of genetic elements and their interactions.

When profiling bulk cell populations following perturbations, a

homogeneous population is tacitly and, in most cases, wrongly

assumed. Hence, conclusions on gene function may be the

misleading result of population heterogeneity. Our application

of CRISP-seq to characterize the myeloid compartment

following stimulation identified such heterogeneity in immune

differentiation and response, highlighting the potential of using

CRISP-seq for accurate dissection and characterization of im-

mune circuits. The approach is not limited to coding genes or

gene knockdown, but it can be used to perturb other genetic

elements, such as non-coding RNA, promoters, and enhancers,

as well as to induce specific gene expression, using a nuclease-

dead Cas9 protein fused to a transcriptional activation domain

together with a pool of indexed gRNAs targeting specific gene

promoters. CRISP-seq also can be intuitively scaled in terms

of the function of different circuit components under different

environmental conditions. We have tested here two conditions,

namely unstimulated and LPS-stimulated cells. However, the
s Reveal the Rewiring of Regulatory Circuits in Myeloid Cells

aling-dependent TFs in 2,600 UGI-confident myeloid cells stimulated with LPS

vel in each group. Red line, median expression per gRNA/UGI.

shown.

graph.

ry and antiviral response genes in the different KOs.

cytes of key inflammatory and antiviral genes.

tional fold change upon perturbation of Stat1, Stat2, or Rela.
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pool of gRNA-perturbed cells can be stimulated by different con-

ditions or treated with various small molecules, with consider-

ably greater flexibility and scalability than other approaches.

Considering the high plasticity of myeloid and other immune

cells, our results demonstrate the potential of using CRISP-seq

to engineer immune cells for desired outcomes, immunotherapy,

and other applications.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENTS or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD11c APC (clone N418) eBioscience 17-0114-81; RRID: AB_469345

Anti-mouse CD11b PerCP/Cy5.5 (clone M1/70) Biolegend 101228; RRID: AB_893232

Anti-mouse CD117 (c-kit) APC (clone 2B8) eBioscience 17-1171-81; RRID: AB_469429

anti-mouse Sca-1 (Ly-6A/E) BV605 (clone D7) Biolegend 108133; RRID: AB_2562275

Anti-mouse B220 Pacific Blue (clone RA3-6B2) Biolegend 103227; RRID: AB_492876

Anti-mouse CD11b Pacific Blue (clone M1/70) Biolegend 101224; RRID: AB_755986

Anti-mouse CD19 Pacific Blue (clone 6D5) Biolegend 115523; RRID: AB_439718

Anti-mouse CD3 eFluor 450 (clone 17A2) eBioscience 48-0032-82; RRID: AB_1272193

Anti-mouse CD4 eFluor 450 (clone GK1.5) eBioscience 48-0041-82; RRID: AB_10718983

Anti-mouse CD8a eFluor 450 (clone 53-6.7) eBioscience 48-0081-82; RRID: AB_1272198

Anti-Mouse Ly-6G (Gr-1) eFluor 450 (clone RB6-8C5) eBioscience 48-5931-82; RRID: AB_1548788

Anti-mouse Ter-119 eFluor 450 (clone TER-119) eBioscience 48-5921-82; RRID: AB_1518808

Anti-mouse Ly-6G APC/Cy7 (clone 1A8) Biolegend 127624; RRID: AB_10640819

Anti-mouse CD3 PE (clone 17A2) Biolegend 100205

Anti-mouse CD19 PE (clone 6D5) Biolegend 115508; RRID: AB_313643

Anti-mouse TCR-beta PE (clone H57-597) Biolegend 109208; RRID: AB_313431

Anti-mouse NK-1.1 PE (clone PK136) Biogems 83712-60-25

CD117 MicroBeads, mouse Miltenyi Biotec 130-091-224

Chemicals, Peptides, and Recombinant Proteins

LPS-EK Ultrapure (used for in vitro cell stimulation) Invivogen tlrl-peklps

LPS E. coli 055:B5 (used for in vivo experiments) Sigma-Aldrich L2880

Ampicillin Sigma-Aldrich A1593

jetPEI, DNA in vitro transfection reagent Polyplus Transfection 101-10N

Red blood cell (RBC) lysis solution Sigma R7757

GM-CSF PeproTech 315-03-20

Murine TPO PeproTech 315-14-10

Murine IL-3 PeproTech 213-13-10

Murine SCF (stem cell factor) PeproTech 250-03-50

Commercial Kits

QIAprep Spin Miniprep Kit QIAGEN 27104

ZymoPURE Plasmid Maxiprep Kit Zymo research D4203

NucleoSpin Gel and PCR Clean-up Macherey-Nagel 740609

Cloning Reagents

BamHI NEB R0136S

Gibson Assembly Master Mix - 50 rxns NEB E2611L

FastDigest BsmBI (Esp3I) Thermo Scientific FD0454

FastAP Thermosensitive Alkaline Phosphatase Thermo Scientific EF0651

T4 Polynucleotide Kinase NEB M0201L

Quick ligase NEB M2200S

Stable Competent E. Coli (High Efficiency) NEB C3040H

GoTaq Green Master Mix Promega M7122

CRISP-Seq Library Reagents

Superscript III Invitrogen 18080-085

Exonuclease I NEB M0293

(Continued on next page)
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REAGENTS or RESOURCE SOURCE IDENTIFIER

Second Strand Synthesis module NEB E6111

T7 High Yield RNA Synthesis Kit NEB E2040

Turbo DNase I Ambion AM2239

RNA fragmentation reagents Ambion AM8740

T4 RNA Ligase 1 (ssRNA Ligase) NEB M0204

AffinityScript Multi-Temp RT Agilent 600109

Kapa HiFi HotStart PCR ReadyMix Kapa Biosystems KK2601

Sequence-Based Reagents

All DNA oligonucleotides and primers were purchased from Integrated DNA Technologies (IDT), and appear below in dedicated tables.

Deposited Data

LentiGuide-Puro Addgene Addgene: 52963

CRISP-seq BFP backbone Addgene Addgene: 85707

CRISP-seq mCherry backbone Addgene Addgene: 85708

Raw data files for single-cell CRISP-seq NCBI GEO GEO: GSE90486

Raw data files for Indel-seq NCBI GEO GEO: GSE90487

Raw data files for CHIP-seq NCBI GEO GEO: GSE36104

Experimental Models: Organisms/Strains

Cas9-GFP transgenic mice The Jackson Laboratories 024858

C57BL/6JOlaHsd wild-type mice Harlan 705

Software and Algorithms

MATLAB R2016a software MathWorks http://mathworks.com/

Hisat (Kim et al., 2015) https://github.com/infphilo/hisat

PhenoGraph (Levine et al., 2015) https://www.c2b2.columbia.edu/

danapeerlab/html/cyt-download.html

R version 3.2.3 (2015-12-10) The R Project https://www.r-project.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by Lead Contact Ido Amit (ido.amit@

weizmann.ac.il).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Cas9-GFP transgenic mice were previously described (Platt et al., 2014). A founding breeding pair was purchased from The Jackson

Laboratory. These mice were bred in the Weizmann Institute animal facility and backcrossed with wild-type black (C57BL/6); their

progeny was crossed to produce Cas9-GFP homozygotes on a cleaner C57BL/6 background. In all experiments, wild-type black

or Cas9-GFP young adult (7-11 weeks old) females were used. Mice were provided with food and water ad libitum and housed under

a strict 12 hr light-dark cycle. All experimental procedures were approved by the Institutional Animal Care and Use Committee

(IACUC).

METHOD DETAILS

Cloning of guide RNA and Unique gRNA Index (UGI)
For targeted loss-of-function screening using cell cytometry, we used the lentiviral vector lentiGuide-Puro (Platt et al., 2014) (plasmid

#52963, Addgene) and replaced the puromycin resistance marker coding sequence (CDS) with either fluorophore EBFP or mCherry

CDS. The gRNA cannot be identified during single-cell gene expression library construction, due to its short size and lack of a poly-

adenylation tail. Therefore, to detect the gRNA in single cells in experiments where a mix of lentiGuide vectors with different gRNAs

are used, we designed a unique gRNA identifier (UGI) barcode to be expressed at the 30 end of the fluorophore transcript, immediately

downstream to the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) (Zufferey et al., 1999) and upstream to
e2 Cell 167, 1883–1896.e1–e7, December 15, 2016
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the polyadenylation signal in the lentiviral construct (Figure 1A). A library of UGIs, located 372 base-pairs (bp) upstream to the SV40

poly(A) signal, is processed in parallel to single-cell gene expression profiling (Jaitin et al., 2014), where the cell identifier links the cell

to the gRNA through the UGI.

To incorporate UGIs in the lentivectors, we first introduced a BamHI restriction site immediately downstream to theWPRE, creating

the CRISP-seq (BFP or mCherry) backbone vectors. Next, the random (N) 8 bp-long UGI sequences were synthesized in single

stranded DNA (ssDNA) oligonucleotides with flanking sequences of homology with to a vector insertion site (‘‘UGI coding oligo’’

in the table below). The insertion of the barcode sequences was performed by Gibson assembly cloning (Gibson et al., 2009). The

CRISP-seq backbone vectors were digested with the restriction enzyme BamHI (NEB) and dephosphorylated using FastAP (Thermo

Fisher): 6 ml 10X NEBuffer 3.1, 3 ml FastAP, 3 ml BamHI, 3 mg plasmid, water up to 60 ml. Incubate at 37�C for 1 hr. The digested plasmid

was purified using a Nucleospin column (Macherey-Nagel), and Gibson assembly reactions were performed: 150 ng cut vector, 20 ng

UGI oligo, 7.5 ml 2X Gibson master mix, water up to 15 ml. Incubate at 50�C for 1 hr. 10 ml were transformed into competent bacteria,

which were plated on five 100 mg/L ampicillin LB agar plates. Plates were incubated overnight at 30�C and > 5,000 colonies were

collected by scraping the plate surface and suspension in sterile media. A plasmid pool of UGIs was then purified from the suspended

colonies using a plasmid maxiprep kit (Zymo research).

Guide RNA oligos were cloned into the CRISP-seq vectors as previously described (Sanjana et al., 2014). Briefly, gRNAs synthe-

sized in pairs of oligonucleotides (IDT) with BsmBI-compatible overhangs were phosphorylated with T4 polynucleotide kinase (NEB)

and annealed. The fragments were then ligated with purified, BsmBI-digested CRISP-seq plasmids. Ligated constructs were trans-

formed into competent bacteria and single clones were picked and propagated. Finally, plasmids containing the fluorophore, a gRNA

and a UGI were purified, and each gRNA was paired with its identifying UGI barcode by Sanger sequencing (see table below).
Primer name Sequence

UGI coding oligo ctccctttgggccgcctcCCCGCGTCGACGGATCCNNNNNNNNG

acttacaaggcagctgtaga, N = random base

UGI Sanger sequencing AATCCAGCGGACCTTCCT

gRNA Sanger sequencing ATAATGATAGTAGGAGGCTTGG

fluorophore Sanger sequencing TGGAGTACGTCGTCTTTAGG
A list of gRNA sequences used in this work appear in Table S5.

Lentivirus production
CRISP-seq-UGI lentiviral particles were produced by transfecting 293T cells growing in 15-cm. tissue culture dishes together with

packaging plasmids, using the jetPEI transfection reagent (Polyplus-transfection) according to the manufacturer’s instructions

and following the standard lentivirus production protocol (Klages et al., 2000). Transfection efficiency was assessed by microscopic

inspection of cell fluorescence one day later. Media was replaced with RPMI medium without additives 18 hr post transfection, and

media containing virus particles were collected 48 and 72 hr post transfection. Virus particles from one or two plates (26mL per 293T

plate) were concentrated using Amicon 100 KDa 15mL columns (Millipore) in a cold centrifuge at 1000 xg to a final concentration of

200-250 ml per virus, aliquoted and stored at �80�C until use.

Isolation and culture of bone marrow-derived myeloid cells
Micewere sacrificed by cervical dislocation. To isolate the bonemarrow, femora and tibiae from one leg were removed, cleaned from

flesh, and flushed with C10 culture medium (RPMI supplemented with 15% serum, 1% x100 non-essential amino acids, 10mM

HEPES buffer, 1mM sodium pyruvate, 2mM L-glutamine, 1% L-glutaine and 50mM b-mercaptoethanol) using a G21 needle syringe.

The bone marrow was filtered through a 70-mm cell strainer and spun down in a cold centrifuge at 300xg for 5 min. Cells were resus-

pended in 250 ml RBC lysis solution (Sigma) per leg and incubated for 5 min at room temperature, washed, and resuspended in C10

medium. Cultures were set by plating 6x105 cells in 1mL C10 supplemented with 15 ng/ml GM-CSF in a 6-well non-tissue culture

plate, and incubated under standard culture conditions (37�C, 5% CO2). Cells were infected on culture day 2 by adding lentivirus

and 8 mg/ml polybrene, and plates were centrifuged 1000 xg at 37�C for 45 min to enhance infection. At the end, 1mL C10 supple-

mented with GM-CSF was added. Cells were fed with 200 ml C10 supplemented with 30 ng/ml GM-CSF every second day.

Flow cytometry and single-cell capture
On day 7, cells were either treated with 100 ng/ml lipopolysaccharide (LPS) for 4 hr or left untreated as control. To obtain cell

suspension, cells were scrapped from the well, washed and resuspended in cold FACS buffer (0.5% BSA and 2 mM EDTA in phos-

phate-buffered saline), stained with fluorophore-conjugated anti-mouse CD11c (and CD11b where indicated) antibody, and filtered

through a 40-mm strainer. Cell sorting was performed using a BD FACSAria Fusion flow cytometer (BD Biosciences), gating for GFP

(Cas9), and relatively high BFP or mCherry fluorescence (Figure S1C; CRISP-seq lentivirus-infected cells). This gate was chosen ac-

cording to the maximal CD11bmarker mean signal reduction in cells infected with Itgam-gRNA (the gene coding for CD11b), used to
Cell 167, 1883–1896.e1–e7, December 15, 2016 e3



calibrate the system. Single cells were sorted into 384-well capture plates containing 2 ml of lysis solution and barcoded poly(T)

reverse-transcription (RT) primers for single-cell RNA-seq as described previously (Jaitin et al., 2014). To record marker levels of

each single cell, the FACS Diva 7 ‘‘index sorting’’ function was activated during single-cell sorting. Results were exported into an

Excel file containing the information about flow parameters of each cell (each well). Immediately after sorting, plates were spun

down to ensure cell immersion into the lysis solution, snap frozen on dry ice and stored at �80�C until further processing.

In Vivo CRISP-seq Assay
Hematopoietic stem cells (HSCs) and multiple pluripotent progenitors (MPPs) were isolated from the bone marrow of Cas9-GFP

donor mice, infected with a pool of CRISP-seq lentivirus containing the BFP fluorophore gene and different gRNAs, and injected

into wild-type recipient mice (Figure 6A). Seven days post-transplantation, spleens were removed and single cell sorted for

CRISP-seq analysis. On day 1, bone marrow from Cas9-GFP mice was isolated frommouse tibiae femora and ilia leg bones, filtered

through a 70 mm cell strainer, and the cell suspension enriched for c-kit (CD117) expressing cells using magnetic cell separation

(Miltenyi Biotec, Germany) according to manufacturer’s instructions. Cells were then stained and FACS-sorted using a sterilized

FACSAria Fusion cell sorter (BD Biosciences) into a tube already containing 500 ml of StemSpan supplemented with standard tissue

culture penicillin/streptavidin (pen/strep) antibiotics. HSCs and MPPs were defined as GFP+ Lin� (lineage negative) Sca-1+ c-kit+

(LSK). Lineage markers included: anti-mouse Ter-119, Gr-1, CD11b, B220, CD19, CD3, CD4, and CD8, as previously described

(Paul et al., 2015). About 90,000 donor cells were infected with a CRISP-seq lentivirus pool in tissue-culture 96-well plates for about

18 hr. The infection was carried out in 200 ml StemSpan Serum-Free Expansion medium (SFEM; StemCell technologies) supple-

mented with the cytokines Flt3, Il3, Tpo and SCF (stem cell factor), each at 10 ng/ml, and pen/strep antibiotics. On day 2, prior to

bone marrow transplantation, wild-type recipient 8 weeks-old female mice were lethally irradiated with two subsequent X-ray doses

of 550 cGy and 500 cGy that were administered 3 hr apart. After irradiation, drinking water was supplemented with 200 mg cipro-

floxacin/ml. Four to six hours post irradiation, the donor cells were collected, washed twice with PBS and injected intravenously

(tail injection) together with 200,000 recipient isogenic (wild-type) flushed whole bone marrow carrier cells for myeloprotection,

200 ml per mouse. On day 8, recipient mice were IP injected with either LPS (Sigma), 1 ng per 5 gr mouse, or PBS and 4 hr later,

mice were sacrificed, their spleen extracted and dissociated into single splenocytes with a gentleMACS Dissociator (Miltenyi Biotec,

Germany), filtered through a 70-mm strainer and incubated 5 min. in RBC lysis solution (Sigma). After washing, cells were stained and

single-cell sorted as as described above. The myeloid niche coming from the donor was defined as GFP+ BFP+ lymphocyte-neg-

atives (as CD19- TCRb- CD3- NK1.1-), and CD11c+ (DCs), CD11b+ or Ly-6G+ (granulocytes).

CRISP-seq library preparation
Libraries of single-cell gene expression (MARS-seq) and single-cell gRNA detection (UGI-seq) together with CRISP-seq, were pre-

pared in parallel. For automated library production, Bravo robot station was used in combination with Nanodrop Express (BioNex,

San Jose, CA). MARS-seq libraries were prepared as previously described (Jaitin et al., 2014). Briefly, mRNA from sorted cells

was simultaneously barcoded, converted into cDNA and pooled using an automated pipeline. The pooled samples were then linearly

amplified by T7 in vitro transcription (IVT). After DNase I treatment, the samples were cleaned up with 1.2x SPRI beads and the ampli-

fied RNA (aRNA). Half of the aRNA was fragmented and converted into a sequencing-ready library by tagging the samples with pool

barcodes and Illumina sequences during ligation, RT, and PCR. For the corresponding gRNA information in each cell, a UGI-seq

library was obtained from 10%–12% of the aRNA material, and processed in parallel as follows: Fragmentation was skipped and

ligation was done together with MARS-seq samples, using the UGI ligation primer (see table below; pool barcode was added at a

later step). Ligation cleanup and the subsequent reverse transcription (RT) reaction were the same as for MARS-seq samples, except

for the use of a different RT primer (see table below). Then, an intermediate 10-cycle PCR step was done to amplify and add pool

barcodes, using a barcoded forward primer and the reverse primer used in MARS-seq final step (see table below); PCR conditions

were the same as in MARS-seq. Finally, another PCR reaction, as in MARS-seq, was done to complete and enrich the UGI-seq

library. The resulting CRISP-seq product is a MARS-seq library and a corresponding UGI-seq library. Library quality assessment

and concentration measurements were performed as previously described (Jaitin et al., 2014). The table below shows the sequence

of primers used for UGI-seq library construction.
Primer name Sequence

UGI ligation adaptor ATGATCAAGCGACCACCGAG, modified with a phosphate group at the 50 end, and a C3 spacer (blocker)

at the 30 end

Second RT UGI primer CTCGGTGGTCGCTTGATCAT

Barcoded PCR forward CTACACGACGCTCTTCCGATCTNNNNNXXXXTCCCCGCGTCGACGGATC, N = random base and

XXXX = 4-bases plate barcode

P7_Rd2 PCR reverse CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
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Sequencing and low-level processing
CRISP-seq libraries, pooled at equimolar concentrations, were sequenced using an Illumina NextSeq 500 sequencer, at a

sequencing depth of 60K-80K reads per cell for MARS-seq and about 4K reads per cell for UGI-seq. Reads are condensed into orig-

inal molecules by counting same random molecular tags (RMT, a.k.a. unique molecular identifier or UMI). We used statistics on

empty-well spurious RMT detection to ensure that the batches we used for analysis showed a low level of cross-single-cell contam-

ination (less than 1%).

CRISP-seq reads were processed as previously described (Gury-BenAri et al., 2016). Mapping of reads was done using HISAT

(version 0.1.6); reads with multiple mapping positions were excluded. Reads were associated with genes if they were mapped to

an exon, using the UCSC genome browser for reference. Exons of different genes that shared genomic position on the same strand

were considered a single gene with a concatenated gene symbol. Cells with less than 1500 UMIs were discarded from the analysis.

Genes with mean expression smaller than 0.005 RMTs/cell or with above average expression and low coefficient of variance (< 1.2)

were also discarded.

UGI-seq low-level processing
Sequenced reads containing the UGI-seq 50 primer (TCCCCGCGTCGACGGATCC) up to 2 bpmismatches were extracted for further

UGI-seq processing. We first extract plate barcode, cell-specific barcode (7bp), Random Molecular Tags (RMT - 8bp) and Unique

Guide Identifier (UGI – 8bp) for each read. Reads with low quality (Phred < 27) or without a valid UGI sequence (up 1 bp mismatch),

cell barcode (up 1 bpmismatch), or plate barcode (exactmatch) were discarded. Sequencing errors within a RMTmay undermine the

UGI counts by creating spuriously identified molecules from real molecules; this number is expected to increase linearly with

sequencing depth. As UGI molecules were over-sequenced, these ‘satellite’ reads were easily detectable, and real molecule reads

(in log scale) were normally distributed with an average of 210 duplicated triplets (cell barcode, RMT, UGI) and a standard deviation

of 2. Triplets with less than 30 reads were discarded as errors (p < 0.01, see Figure S1D) and each cell received a vector of UGI mole-

cule counts. In some analyses, we consider the total number of readswith the same cell barcode andUGI (e.g., y axis in Figure 1B). To

assign a binary label per cell, we consider UGI molecules > 1 as positive cells (See Figure S1D).

Graph-based clustering analysis
In order to assess the heterogeneity of cells in the samples, we used the PhenoGraph clustering algorithm (Levine et al., 2015). Briefly,

low-level processing of CRISP-seq reads results in a matrix U with n rows andm columns, where rows represent genes and columns

represent cells. Entry Uij contains the number of uniquemolecular identifiers (UMIs) from gene i that were found in cell j. The first step

of the algorithm is to build a graph structure from this expression matrix. PhenoGraph first builds a k-Nearest Neighbors (kNN) graph

using the Euclidean distance (we chose k = 30 and tested k = 15, 20, 25, 30, 40, 50, and got very similar results, not shown) and then

refines this graph with the Jaccard similarity coefficient, where the edge weight between each two nodes is the number of neighbors

they share divided by the total number of neighbors they have (Levine et al., 2015). To partition the graph into modules/communities

PhenoGraph uses the Louvain Method (Blondel et al., 2008).

The graph is constructed and partitioned into modules based on the expression profile of the cells. We can now overlay the ge-

notype information obtained from UGI-seq to calculate the enrichment of gRNA within clusters. We calculate the UGI enrichment

p value within each cluster using the hyper geometric distribution, where N is the total number of cells, K is the number cells with

UGIA, n is the size of cluster ci and k is the number of cells with UGIA in cluster ci. The probability of drawing k or more cells with

UGIA is:

p=Fðk jN;K;nÞ=
Xn

i = k

�
K
i

��
N� K
n� i

�
�
N
n

� :

Graph based label refinement algorithm
UGI-seq provides information on the expression of the reporter gene introduced in our lentivirus construct. This information is trans-

lated to a specific gRNA which was integrated together with the reporter gene. This gRNA will target Cas9 to a specific gene locus,

but only in 70%–80% will generate true loss-of-function of the targeted gene (Sternberg and Doudna, 2015). In other cases, Cas9

may generate a non-harmful mutation (such as in-frame deletion) or no mutation at all. This implies that in 20%–30% of the cells

with a detected UGI, the gene can be active or partially active and show a wild-type phenotype (false positive). On the other

hand, as single-cell data is sparse by nature, cells with true edited gene loss-of-function can remain undetected by UGI-seq,

becoming false negative events. We quantify the single-cell RNA detection error as 20% by comparing UGI-seq to FACS-based

detection of the BFP fluorophore. In order to overcome the noisy and missing genotype label problem we developed a label refine-

ment algorithm that can modify the labels themselves. Our algorithm is based on the assumption that the labels ( = genotype) of the

cells are consistent with their nearest neighborhoods, i.e., that cells sharing the same knockout mutation will have similar phenotype

and this phenotype is distinct from the wild-type phenotype. The input data dataset S = (X,Y). The expression matrix is denoted as X,
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where X = fx1; x2;.; xNg each cell expression x ˛RM is an M-dimensional vector. Their corresponding UGI labels are

Y = fy1; y2;.; yNg, where y ˛ f0;1gK is a binary vector representing the UGIs detected in each cell. Our algorithm refines each

UGI label separately. Based on the expression matrix we first build a Jaccard graph, similar to a PhenoGraph construction of the

graph. An initial kNN graph in constructed based on the Euclidean distance between cells and the Jaccard index is calculated for

every pair of nodes. The weight between nodes i and j, is given by:

Wij =
jvðiÞXvðjÞ j
jvðiÞWvðjÞ j
where vðiÞ is the k-neighborhood of cell i. Our two-step algorithm fi
rst remove labels which disagree with their neighborhood and then

assign labels to cells with significant neighbor’s enrichment. For each cell, we define a neighborhood score for each UGI u as the sum

of the Jaccard coefficients with all other labeled nodes in the graph:

sðiÞ=
X

j˛V;yu
j
= 1

Wij
(most coefficients will be zero as most cells do not share common
 neighbors in the kNN graph). To calculate the p value of observing

this score at random, we used bootstrapping, shuffling the labels randomly 100K times and counting the number of times sðiÞ is
bigger than the score obtained in each shuffled graph. Labels were removed from cells with p value > 0.05. In the next step, we

repeated this process with the new filtered labels and added labels for cells with p value < 0.001. Changing the bounds within a

reasonable range (0.01-0.2 for filtering out labels and 0.01-1e-5 for adding labels) modified the total number of labeled cells, but

they still remained in the same neighborhood.

Perturbation fold change analysis
We calculated the perturbation effect for each gene knockout by comparing the average profile of the perturbed cells with the

corresponding control cells. Two different strategies were used to select the group of cells, either by selecting cells by clusters

(For Figures 2, 3, 5, and 6), or by selecting cells based on their labels after applying the refinement algorithm (Analysis done in

Figure 4). When using the first strategy, clusters were assigned to genotype based on the UGI enrichment score. Scatterplots

show log2 mean RMT counts in each group. p values were calculated using the Mann-Whitney U test (MATLAB 2016a ranksum

function).

CRISPR/Cas9 editing assessment (Indel-seq analysis)
Cell sorting

About 4,000 cells per sample were sorted into a microfuge tube already containing 500 ml of cold FACS buffer. Tubes were gently

vortexed and cells were pelleted in a cold centrifuge, at 1,500xg for 15 min at 4�C, to aspirate most of the supernatant, leaving about

50 ml, and stored at �80�C until further processing.

Genomic DNA extraction

Cells were lysed by three cycles of freeze/thaw by 37�C and dry ice incubation of 3 min each. Then SDS was added to a final con-

centration of 0.5% and the samples were incubated for 5 min at room temperature. Then, samples were incubated in RNase, DNase-

free (Roche), 0.5 mL per 50 mL sample, for 30 min at 37�C. Next, two units of proteinase K (NEB) and 5 nM EDTA were added and

samples were incubated at 37�C for 2 hr, followed by incubation at 65�C overnight. Alternatively, samples were incubated at

37�C for 30 min and then at 95�C for 10 min. Genomic DNA was cleaned up using 2.5 volumes of SPRI beads, and mass concen-

tration was measured in a Qubit fluorometer with high-sensitivity DNA reagents (ThermoFisher Scientific).

Indel-seq library construction

Libraries were constructed around each exon-specific region in two PCR reactions, using target-specific primers with Illumina par-

tial tags as overhangs for PCR1, and a second PCR to amplify and add the missing parts for Illumina sequencing (see table below).

PCR1 protocol: To 5 ng of genomic DNA add 2 ml primer mix at 10 mM each primer, 25 ml 2x KAPA high-fidelity PCR mix (KAPA

Biosystems, Roche), 50 ml reaction volume, 28 cycles. PCR program: 2 min at 98�C, 2 min, 28 x [20 s. at 98�C, 30 s. at 60�C, 40 s.

at 72�C], 5 min at 72�C, 4�C end. Clean up the PCR1 product with 40 ml of SPRI beads (0.8 volumes). Measure concentration and

assess expected size in a TapeStation instrument using high-sensitivity DNA reagents (Agilent Technologies) before PCR2. PCR2

protocol: To 5 ng of PCR1 product, add 1 ml of 10 mM P5_Rd1 primer, 1 ml of 10 mM indexed reverse primer, choosing specific

barcodes for each sample, 10 ml 2x KAPA high-fidelity PCR mix, 20 ml reaction volume, 5 cycles. PCR program: 2 min at 98�C,
2 min, 2 cycles x [20 s. at 98�C, 30 s. at 58�C, 45 s. at 72�C], 3 cycles x [20 s. at 98�C, 30 s. at 65�C, 45 s. at 72�C], 5 min at 72�C,
4�C end. Clean up the PCR2 product with one volume of SPRI beads. Measure molar concentration with Qubit and TapeStation.

Indel-seq libraries were sequenced using a Miseq Illumina sequencer. The table below shows the sequence of the primers used

for Indel-seq library construction.
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Primer name Sequence

Cebpb Indel-seq partial Rd1 ACACGACGCTCTTCCGATCTCCTGGTAGCCCAGGTAGGC

Cebpb Indel-seq partial Rd2 CTGGAGTTCAGACGTGTGCTCTTCCGATCTTCTCCGACCTCTTCGCCG

Itgam Indel-seq partial Rd1 ACACGACGCTCTTCCGATCTTGTCTGGTTAACAGCCTTTG

Itgam Indel-seq partial Rd2 CTGGAGTTCAGACGTGTGCTCTTCCGATCTCCATTTCCCATCCTAACTTC

P5-Rd1 forward AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

P7-i7-partial Rd2 reverse CAAGCAGAAGACGGCATACGAGATXXXXXXXGTGACTGGAGTTCAGACGTGTGCT, XXXXXXX = 7 bases index
QUANTIFICATION AND STATISTICAL ANALYSIS

Significance of UGI enrichments in unsupervised clusters was calculated using the hypergeometric p value. A p value < 10�3 was

considered significant. Significance in gene expression differential was estimated using the non-parametric Mann-Whitney U test;

all p values were corrected using FDR < 0.01. For in vivo experiments, at least two mice were analyzed as biological replicates.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The accession number for the sequencing data reported in this paper is NCBI GEO: GSE90488. This parent directory includes the

following datasets: GEO: GSE90486 (single-cell CRISP-seq) and GEO: GSE90487 (Indel-seq).
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Figure S1. A UGI Strategy Is Effective in Detecting gRNA in Single Cells, Related to Figure 1

(A) Scatterplot showing BFP fluorescent reporter expression levels as recorded by FACS index sorting in each cell sequenced with CRISP-seq. Unique guide

index (UGI) count for Itgam (CD11b) and for Cebpb are shown on the X and Y axes, respectively.

(legend continued on next page)



(B) Same as in (A), showing mCherry fluorescent reporter expression levels in the same experiment.

(C) Single cells sorted by BFP levels (bottom) show downregulation of Cebpb mRNA as BFP increases. Red line, Cebpb expression trend.

(D) FACS plot showing the gating strategy to identify CD11c+ myeloid cells. Single cells were sorted from either LV+ gate, as the union between the BFP and

mCherry gates.

(E) Calculation of UGI-based detection sensitivity and specificity compared to the index sorting-based gRNA detection (mCherry signal, Cebpb-gRNA). Bar plot

showing detection accuracy as a function of (well,UGI,RMT) triplet count threshold. Top panel consider UGI count > 0 as positive cells and bottom panel consider

UGI count > 1 as positive. Rightmost bar shows the FACS positive/negative cells ratio.

(F) Interactive genome viewer (IGV) of mutations (indels, insertions, SNPs) in the genomic loci around the Itgam-gRNA target.
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Figure S2. Validation of gRNA Detection from Single Cells Infected with a Pool of gRNAs, Related to Figure 2

(A and B) Violin plots of lentivirus marker expression in single cells labeled for BFP (Rela-gRNA) (A) or for mCherry (Cebpb-gRNA) (B) in binned UGI counts.

(C) Density histograms of representative genes in cells infected with a control gRNA (upper panels), in cells infected only with Cebpb-gRNA (individual; middle

panels), and Cebpb UGI positive cells from CRISP-seq mix from Figure 2.

(D) tSNE plot of 349 cells infected separately with control gRNA (gray dots) combined with 359 cells infected with only Cebpb-gRNA.

(E) Projection of representative genes of each cell type onto the tSNE plot.



A B

E

-10 -8 -6 -4 -2 0 2 4 6 8

log2 mean expression C1.2 (Monocyte RelA KO, 4h LPS)

-10

-8

-6

-4

-2

0

2

4

6

8

Saal1

Saa3 Il6
Cxcl2Cxcl3

Il12b
Il1a

Tnf

Il1b

Ptgs2
Tnfaip3

lo
g2

 m
ea

n 
ex

pr
es

si
on

 C
1.

1 
(M

on
oc

yt
es

 W
T,

 4
h 

LP
S

)

Fscn1 (0-6) Ifitm1 (0-5) Cst3 (0-7) Ccl6 (0-7) Il1b (0-7) Il6 (0-6)

-10 -8 -6 -4 -2 0 2 4 6 8

log2 mean expression - Monocytes untreated

-10

-8

-6

-4

-2

0

2

4

6

8
lo

g2
 m

ea
n 

ex
pr

es
si

on
 - 

M
on

oc
yt

es
 4

h 
LP

S

Nos2

Il6
Cxcl3
Il12b

Ptgs2

Cxcl2

Il1b
Cxcl10

Il1a Tnf

Rsad2
Ccl3

Ccl2Ccl5Cmpk2

Ifit2
Ifit1

Nfkbiz

Fth1
Lyz2

Ccl6
Actb

-8 -6 -4 -2 0 2 4 6 8

log2 mean expression - Immature DC untreated

-8

-6

-4

-2

0

2

4

6

8

lo
g2

 m
ea

n 
ex

pr
es

si
on

 - 
Im

m
at

ur
e 

D
C

 4
h 

LP
S

Ccl17Ccl22

Ccl5Il12b
Il1b

Cxcl10

Nfkbiz Il6
Cxcl2

Cmpk2

Rsad2
Oasl1 Ifit1

Ifit2

Ifi205

Actb
Cst3

Fth1

Cd74
H2-Aa

-8 -6 -4 -2 0 2 4 6 8

log2 mean expression - DC untreated

-8

-6

-4

-2

0

2

4

6

8

lo
g2

 m
ea

n 
ex

pr
es

si
on

 - 
D

C
 4

h 
LP

S Ccl17
Rsad2

Il12b Isg15
Ifit1

Ifit2
Cxcl10

Tnf

Ccl22
Actb

Cst3

Csf2rb

Cd74
H2-Aa

C D

Figure S3. The Cebpb TF Is Essential for the Monocyte State, Related to Figure 3

(A–C) Scatterplots showing differentially expressed genes in 4h LPS stimulated cells compared to untreated cells inmonocytes (A), immature DCs (B), andmature

DCs (C).

(D) Scatterplots of mean expression in cluster 1.1 (unperturbed monocytes) versus cluster 1.2 (RelA KO monocytes).

(E) Projection of additional key marker genes onto the t-SNE plot (Figure 3E).



Figure S4. Multiplexed Perturbations of Irf9 and Rela in Single Cells, Related to Figure 4

(A) PhenoGraph clustering of 772 myeloid cells.

(B) Clustering analysis of 691 monocytes cells identified five distinct clusters, defined by their different UGI composition.

(C) Pie charts of the distribution of UGIs per cluster in (B).

(D) Heatmap showing fold change from unperturbed cells for RelA KO, Irf9 KO and RelA/Irf9 double KO. Bottom row correspond to levels computed as the sum of

the individual KO.

(E) Combined tSNE plot of cells infected with individual gRNAs (three separate cultures): left, projection of cells infected with a control gRNA (red dots, 180 cells);

middle, for Irf9-gRNA only (81 cells); right, for Rela-gRNA only (80 cells).

(F) Projection of representative inflammatory or antiviral gene expression levels onto the tSNE plot of individual plates.
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Figure S5. Perturbations of Developmental and Signaling-Dependent TFs, Related to Figure 5
(A) Expression of Actb (top), Ifit1 (middle), and Rsad2 (bottom) per single cell is shown for a pool of 57 gRNAs targeting signaling-dependent TFs in 2,600 UGI-

confident myeloid cells stimulated with LPS for 4 hr. Cells are grouped by detected gRNA/UGI and ordered by expression level in each group. Red line, median

expression per gRNA/UGI.

(B) Effect of each gRNA on the inflammatory (y axis) and the antiviral (x axis) pathways, indicated by their Z statistic. The signatures are defined by the expression

10 most induced inflammatory or antiviral genes. The p values (Mann-Whitney U-test) are indicated both by color and size of label.

(C) Histograms of 1,075 dendritic cells depict the expression of key inflammatory and antiviral response genes in the different KOs.
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Figure S6. In Vivo CRISP-Seq Analysis Identifies Non-overlapping Targets of Stat1/2 in Different Myeloid Cells, Related to Figure 6

(A) FACS plot showing the gating strategy to identify the donormyeloid cells from the spleen. Cas9-GFP+ BFP+ (infection positive) cells we single-cell sorted after

excluding recipient lymphocytes and cells with no markers (negative for both CD11b and CD11c).

(legend continued on next page)



(B) Projection of the expression levels of additional developmental genes onto the t-SNE plot (Figure 6C).

(C) Heatmap of 2768 myeloid cells from in vivo experiment, clusters correspond to Figure 6B. Bottom panel show UGI enrichment of different gRNAs within

clusters. (D–F) Ex vivo validation of Irf8 and Cebpb role in myeloid development.

(D) tSNE analysis of 925 myeloid cells infected with Cebpb/Rela/Control gRNAs depicting their separation into monocytes/macrophages (green), DCs (blue) and

granulocytes at different developmental stages (red and orange).

(E) Left, refined UGI labels of Cebpb overlapping the DC cluster; right, refined Irf8 UGI labels overlapping the granulocytes clusters.

(F) Projection of the expression levels of Irf8, Cebpb and three representative genes onto the tSNE.
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