Name
n/a

Email
emoses@bu.edu

Institutional Affiliation
Boston University

Campus
Medical Campus

School
Graduate Medical Sciences

Department
Pathology, program in Immunology

Position Held at Institution
Graduate

Poster Submissions

Poster Title
Molecular impact of electronic cigarette exposure on airway epithelium

Authors and their Affiliation
Elizabeth Moses, Boston University
Teresa Wang, Boston University
Sean Corbett, Boston University
George R Jackson, MatTek Corporation
Eddy Drizik, Boston University
Claudia Perdomo, Boston University
Eric Kleerup, University of California Los Angeles
Daniel Brooks, Boston University
George T O'Connor, Boston University
Steven M Dubinett, University of California Los Angeles
Patrick Hayden, MatTek Corporation
Marc E Lenburg, Boston University
Avi Spira, Boston University

Please describe the extent of your work in this research
I oversee the project including all in vitro exposures, as well as running and analyzing the data from all in vitro assays following exposure.

Abstract Submission
- Evans-Day-Abstract-2015-ECIG_v3.docx

Would you like your abstract to be considered for an oral presentation (students and post docs only)?
Objective: Electronic cigarettes (ECIGs) simulate cigarette smoking by delivering nicotine via an aerosol and are advertised as an alternative to tobacco cigarette (TCIG) smoking. However, there are few studies evaluating the physiological impact of ECIG use. Our objective was to determine the cellular and molecular impact of ECIG aerosol on human bronchial epithelial cells (1) in vivo and (2) in vitro.

Methods: For the in vivo arm of this study, we profiled bronchial epithelial cells from the mainstem bronchus of former TCIG smokers (n=10) and former smokers who have transitioned to ECIGs (n=8). For the in vitro arm, human bronchial epithelial cells (HBECs) differentiated at an Air Liquid Interface (ALI) were directly exposed to ECIG vapor or TCIG smoke. ECIG exposures examined the effects of variations in dose, flavoring, and nicotine content.

Results: We identified a signature of 199 genes (p<0.005) associated with ECIG use in vivo. These gene-expression changes are enriched for genes that are induced with TCIG exposure, which suggests that components of the host response to ECIG and TCIG exposure are concordant. In vitro, we found that while there is partial overlap between gene expression changes induced by ECIG and TCIG exposure, there are also unique effects of ECIG exposure related to cell cycle and proliferation. In addition, ECIG exposure, like TCIG exposure, induces genes involved in response to oxidative and xenobiotic stress.

Conclusions: Together, these results indicate that ECIG vapor can induce cellular stress and molecular alterations within airway epithelium that share similarities with the effects of TCIG smoke. These findings underscore the urgent need for physiologically relevant studies to fully determine the type and magnitude of the cellular and molecular response to ECIG exposure in order to determine whether their use may lead to some of the same deleterious health outcomes as those caused by tobacco smoke exposure.