Contents

Welcome 3
Organizational Structure 4
Academic Advisors and Student Mentors 5
Information for New Students 6
CMB Monthly Meetings 7
Rotations 8
 Dates 8
 Presentations 9
 Rotation Evaluation Form 10
List of students in program 11
Graduates and where they are now 13
Academic Requirements and Policies 14
Research Training 18
 Qualifying examinations 18
 Dissertation Advisory Committee 18
 Dissertation Defense 21
 Pre-thesis committee evaluation forms 22
Mini Courses – Past and Present 23
Faculty that participate in CMB 25
Welcome to the Graduate Program

The program accepted its first group of students 13 years ago and today 48 students have received their PhDs and entered industry and academia. Ten students in the program have won the coveted Henry I. Russek Achievement award and an even greater number have been awarded second place and honorable mention awards. This is a real honor! We have had 3 students win the Science Competition at the Charles River Campus. In addition, we have had one student participate in the competitive NSF program (K-12) where students teach in local school systems and take courses on learning how to teach. Many have attended local, national and international meetings and given presentations. Most importantly a large number have a great start on their CV with publications.

As a member of the program you will be required to take a core set of courses in your first year. At the same time you will be doing research in a number of laboratory rotations in departments that belong to the Program. This will allow you to take advantage of the excellent research environment at Boston University before you commit yourself to a laboratory. The departments include Anatomy & Neurobiology, Biochemistry, Microbiology, Molecular and Cell Biology, Pathology & Laboratory Medicine, Pharmacology and Physiology & Biophysics along with the Programs of Molecular Medicine and Genetics and Genomics.

There will be monthly “get-togethers” for all students. The meetings will provide you with the opportunity to discuss the work that you do in your laboratory rotations or listen to the work of senior graduate students in the CMB program. These meetings will provide you with an excellent opportunity to meet graduate students from participating departments and programs. Your fellow students may be your greatest resource!

We have a student mentoring program. The CMB students have joined a number of departments and programs and reflect different levels of seniority. They are available to answer your questions about the program and life in Boston! Please use them!!!

Finally if you have any questions about any aspect of the Program, please do not hesitate to ask us.

My door is always open!

Welcome to BUSM!

Dr. Trinkaus-Randall
Director Cell and Molecular Biology Graduate Program
Organizational structure of CMB

Program Director: Dr. V. Trinkaus-Randall, Biochemistry 8-5099 vickery@bu.edu

Faculty Advisors
Dr. Greg Viglianti gviglian@bu.edu
Dr. Jamie McKnight cjmk@bu.edu

Recruitment and Asst Dir. Dr. R. Zoeller Physiology/Biophysics 8-4010 rzoeller@bu.edu

Admissions Dr. M. Murnane Pathology 8-4926 mmurnane@bu.edu

Steering Committee
V. Trinkaus-Randall Biochemistry 8-5099 vickery@bu.edu
R. Zoeller Physiol and Biophysics 8-4010 rzoeller@bu.edu
S. Dasgupta Genetics and Genomics 4-1520 dasgupta@bu.edu
C. Hirschberg, Molecular and Cell Biol 4-1040 chirsch@bu.edu
M. Murnane Pathology and Lab. Med 8-4926 mmurnane@bu.edu
B. Schreiber Biochemistry 8-5094 schreibe@bu.edu
H. Cohen Molecular Medicine 8-7322 htcohen@bu.edu
G. Viglianti Microbiology and Immunol 8-7790 gviglian@bu.edu
I. Zhdanova Anatomy and Neuro 8-4187 zhdanova@bu.edu
Academic Advisors

All students are assigned to an Academic Advisor. Please arrange a meeting in the first several weeks of the semester with your advisor. In addition please meet with your advisor during the middle of each rotation in both the first and second semester. Your advisor is there to assist you in finding rotations and to advise you in your classes.

Dr. Jamie McKnight
Physiology and Biophysics
cjmck@bu.edu

Dr. Greg Viglianti
Microbiology
vgiglian@bu.edu

List of first year students in the CMB Program and first lab rotation

<table>
<thead>
<tr>
<th>Students</th>
<th>Advisor</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryan Martin</td>
<td>McKnight</td>
<td>Taylor, AW</td>
</tr>
<tr>
<td>Alexzander Szymaniak</td>
<td>McKnight</td>
<td>Rahimi, N</td>
</tr>
<tr>
<td>Connie Slocum</td>
<td>Viglianti</td>
<td>Lu, Weining</td>
</tr>
<tr>
<td>Joseph Goodliffe</td>
<td>Viglianti</td>
<td>Haydar, T</td>
</tr>
</tbody>
</table>

Student Mentors

The goal of the student mentor program is to help incoming students in their transition to graduate school. The students represent different years and different departments / programs that they have entered after the first year. Feel free to contact the students with questions regarding classes and life in general as a graduate student at BUSM. Informal and formal get-togethers will be arranged to make your transition easier. Their names and emails are listed below.

Guy Bushkin
Microbiology
bushkin@bu.edu

Amanda Watkins
Mol Medicine
awatkins@bu.edu

Erica Walsh
Biochemistry
emwalsh@bu.edu

Tyler longmire
Mol Medicine
longmire@bu.edu

Heather Cohen
Pathology
hgcohen@bu.edu

Martin Minns
Biochemistry
mminns@bu.edu

Ryan McClure
Microbiology
ryanmcclure83@gmail.com

Linh Aven
Mol Medicine
lma@bu.edu
Information for new students

First pot-luck get-together hosted by student mentors Guy, Amanda and Martin with help from others!

Date –September 7
Time: 7PM and pay attention to future emails!
83 Browne St. Apt 2
Brookline, MA
Walking distance from BU shuttle stop at BU gym (Agganis)

Classes and other activities
Biochemistry GMS BI755 – M,W 10AM and discussion on certain Fridays, as posted at 11:30
Cell Biology GMS CM 753 - L112, 9AM, T,TH. Discussion F,10AM other rooms)
Critical Thinking GMS CM 761 – B2831 at 12:15
Rotation talks with 10 min presentations after each rotation
Senior Graduate student presentations

Class start dates
-GMS BI 755 Biochemistry: Wednesday September 8
-Cell Biology: Thursday September 2
-Critical thinking: Wednesday September 8, 2010 12:15

Rotations
-Rotations will start on September 7, 2009 and each one will last 7 wks with a 10 minute presentation at the end of each one.
-Please email the faculty member that you have been assigned to for your first rotation and set up an appointment in your first week of classes. Please read the section on rotations for more info.
-Questions? Ask your advisor, Dr. Trinkaus-Randall, or Dr. Schreiber

Monthly meetings
These will be either short presentations about your rotation work or research seminars given by senior graduate students.
The first will be held September 10th 12:30 PM L705

-Stipend – please meet with Kayleigh at 11:30 on Tuesday-check overall orientation notes

A great place to see research is at Evans Day (Dec9-10) Heibert and Dr. Kenyon will be speaking at 1:15
Also the Biochemistry Student Research Day will be in September – watch for date
CMB Meetings
Please note that these are required!
Place: L705
Time: Fridays 12:00-2 PM
Lunch provided

September 10 — Senior Graduate Student Talk and fall lunch for everyone. Speaker: Florin Craciun

October 1
Get-together. - Ask faculty and student mentors questions that you didn’t think about during orientation.
Rotation talk format will be given out

October 29
First Rotation talks by first year students – (10 min talks/person) – all CMB students invited

November 10
Senior Graduate Student Talks: S. Seidl, L. Zeng

December 3
looking at evening session with a panel of professionals

January 14
Second Set of Rotation Talks

February 11
Senior Graduate Student Talks: E. Walsh, S. Krawczyk

March 11
Third Set of Rotation Talks

April 8
Senior Graduate Student Talk: H. Naimy, K. Papanicolo
Laboratory Rotations

Schedule of rotations

<table>
<thead>
<tr>
<th></th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Fourth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>September 7 – October 28</td>
<td>November 1 – December 10</td>
<td>January 17 – March 4</td>
<td>March 7 – April 22</td>
</tr>
</tbody>
</table>

As a student in the Cell and Molecular Biology Program, you will be expected to rotate through three to four laboratories during the year. The laboratory rotations will allow you to experience a range of laboratory research environments. Your first rotation has been assigned to you. It may be in an entirely new field or it may not. Since the rotation may be outside your undergraduate experiences this is a great time to learn new technologies and be exposed to new fields.

Please make an appointment to meet with your rotation advisor prior to September 9 so that you can meet him or her.

To find a second rotation it is your responsibility to learn about the faculty research interests at BUSM. Each Department has a website listing faculty and the GMS office also lists faculty and research interests. Please make an appointment with your Faculty Advisor in the first couple of weeks.

Goal of Rotations

To experience a number of research areas and to identify a research advisor for your thesis research.

The choice of the mentor will determine the department that you will join. The rotations are a “two way street”. Your goal is to evaluate the work in the lab to see if it intrigues you. The faculty member will monitor your work to see if you will fit into his/her lab environment. Students will be assigned to the first rotation and your advisor will assist you in choosing subsequent rotations.

Remember !!!!!!

-It is important to rotate in labs that will be able to take on a doctoral student.
-Rotations are to be taken seriously !!!
Students are expected to spend 15-20 hrs per week in the rotation labs.
-You must start each rotation on time!!!

-Please try to attend the weekly laboratory meetings as long as your class schedule permits.

-Your experience in the rotation is your opportunity to impress the faculty member and personnel in the laboratory and to find if you like the laboratory! At the end of the rotation if you liked the laboratory and might want to do your thesis work there – tell
the rotation mentor. Students should expect to give their data to their lab at the end of
the rotation.

-At the completion of the rotation please meet with your mentor and fill out the form
that is included in the handbook. Please sit down with your rotation advisor and
discuss your work in the rotation. This will help you find your strengths and
weaknesses so that you can improve as a student. It needs to be signed by you and
the faculty person and handed in to Dr. Trinkaus-Randall at the completion of each
rotation.

Presentations at the completion of laboratory rotations

At the completion of each rotation students are expected to give a short
presentation (10 minutes) to other students and faculty in the Cell and Molecular
Biology Program on the work that was performed during the lab rotations. Students
will learn how to present their data and learn about the work that is performed in other
laboratories and departments. Please invite your laboratory mentor and/or graduate
students/lab workers that you worked with for the presentation.

Keep in mind that the rotations will enable you to decide what lab you want to
do your thesis work in. Although it seems like an overwhelming task to choose an
advisor, we are here to help you to do that. This is a yearlong process in which you
will choose a research advisor, as well as a department in which you will do your
thesis work.

Feel free to call on any of the members of the Student Advisory Committee or
the Steering Committee in any of the departments. There is a representative from
each department on the Steering Committee and speaking to these individuals will
allow you to get a better sense of the expectations of each department. You can
narrow down the list somewhat by checking in the Graduate School Bulletin for the
research interests of each of the faculty members on the list, but don’t only narrow
yourself to areas you’ve studied in the past. The rotations are a great way to consider
new areas of interest or learn a new technology. For example if you have ever
wondered what it’s like to do NMR, Mass Spec, crystallography, patch clamping, laser
tweezing, or confocal microscopy, this is your chance! Finally, call on the investigators
whose research interests you enjoy, and talk to them about their work; in this way, you
can narrow your list to the 3 labs that you would like to rotate in.
Rotation Evaluation Form

Student ________________________________

Faculty Member ___________________________ (phone and email)

Rotation Dates ____________________________

Describe the student's overall performance in the laboratory rotation

What were the student's strengths that you observed during the rotation? (The might include technical skills, oral skills in explaining work, analytical skills)

What areas should the student work on to improve?

What techniques did the student learn?

Evaluation of lab presentation at end of during rotation talk.

Faculty signature __________________________ Date ____________

Student signature __________________________ Date ____________
<table>
<thead>
<tr>
<th>Year</th>
<th>Student</th>
<th>Mentor</th>
<th>Department</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII</td>
<td>Mike Breen</td>
<td>Pilch</td>
<td>Biochemistry</td>
<td>mbreen@bu.edu</td>
</tr>
<tr>
<td></td>
<td>*Craciun, Florin</td>
<td>Remick</td>
<td>Pathology</td>
<td>fcraciun@bu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>S. Narasimhan</td>
<td>Sherr</td>
<td>Pathology</td>
<td>nsupraja@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Andrew Rankin</td>
<td>Faller</td>
<td>Molecular Med</td>
<td>arankin@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Liling Zeng</td>
<td>Cohen,H.</td>
<td>Molecular Med</td>
<td>lzeng79@bu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>*Kelly Daughtry</td>
<td>Allen</td>
<td>Phys & Biophys</td>
<td>kddaught@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Sarah Krawczyk</td>
<td>Corkey</td>
<td>Molecular Med</td>
<td>krawczyk@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Hicham Naimy</td>
<td>Zaia</td>
<td>Biochemistry</td>
<td>hich@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Kyriakos PapaniccoloWalsh</td>
<td></td>
<td>Molecular Med</td>
<td>kyriakos@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Stephanie Seidl</td>
<td>Schreiber</td>
<td>Biochemistry</td>
<td>seidl@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Erica Walsh</td>
<td>Xiao</td>
<td>Biochemistry</td>
<td>emwalsh@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Ziyang Wu</td>
<td>Sonenshein</td>
<td>Biochemistry</td>
<td>zyyu@bu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Jian Guan</td>
<td>Seldin</td>
<td>Molecular Medicine</td>
<td>jianguan@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Jing Wang</td>
<td>Bullitt</td>
<td>Phys & Biophys</td>
<td>jing@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Tyler Longmire</td>
<td>Kotton</td>
<td>Molecular Medicine</td>
<td>longmire@bu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Anna Belkina</td>
<td>Dennis</td>
<td>Molecular Medicine</td>
<td>belkina@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Gary Bushkin</td>
<td>Sammuelson</td>
<td>Microbiology</td>
<td>bushkin@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Heather Cohen</td>
<td>Trojanowska</td>
<td>Pathol and Lab Med</td>
<td>hgcohen@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Allison Mathes</td>
<td>Lafyatis</td>
<td>Molecular Medicine</td>
<td>alk812@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Martin Minns</td>
<td>T-R</td>
<td>Biochemistry</td>
<td>mminns@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Sait Ozturk</td>
<td>Thiagalingam</td>
<td>Molecular Medicine</td>
<td>saito@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Wei Qiu</td>
<td>Shirai/Corkey</td>
<td>Molecular Medicine</td>
<td>qiwei@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Amanda Watkins</td>
<td>Rifkin</td>
<td>Molecular Medicine</td>
<td>awatkins@bu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Dana Buckler</td>
<td>Kandror</td>
<td>Biochem</td>
<td>danab@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Edward Hartsough</td>
<td>Rahimi</td>
<td>Pathol and Lab Med</td>
<td>edharts0@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Ryan McClure</td>
<td>Genco</td>
<td>Microbiology</td>
<td>mcclur30@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Nicolae Sandler</td>
<td>Marintchev</td>
<td>Phys & Biophys</td>
<td>nlsandor@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Dolly Thomas</td>
<td>Mostoslavsky</td>
<td>Molecular Medicine</td>
<td>dollytc@bu.edu</td>
</tr>
<tr>
<td></td>
<td>Kathleen Tumelty</td>
<td>Layne</td>
<td>Biochemistry</td>
<td>ktumelty@bu.edu</td>
</tr>
<tr>
<td>Year II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Linh Ma Aven</td>
<td>Xingbin Ai</td>
<td>Mol Med</td>
<td>lma@bu.edu</td>
<td></td>
</tr>
<tr>
<td>Ariana Darcy</td>
<td>Montano</td>
<td>Mol Med</td>
<td>arianad18@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Brian Fluharty</td>
<td>Harris</td>
<td>Biochemistry</td>
<td>fluharty@bu.edu</td>
<td></td>
</tr>
<tr>
<td>Sarah Rozelle</td>
<td>Murphy</td>
<td>Mol Med</td>
<td>srozelie@bu.edu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year I</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryan Martin</td>
<td></td>
<td>rdmartin@bu.edu</td>
</tr>
<tr>
<td>Alexzander Szymaniak</td>
<td></td>
<td>szymanad@bu.edu</td>
</tr>
<tr>
<td>Slocum, Connie</td>
<td></td>
<td>cslocum@bu.edu</td>
</tr>
<tr>
<td>Goodliffe, Joseph</td>
<td></td>
<td>jwg@bu.edu</td>
</tr>
<tr>
<td>Year of graduation</td>
<td>Department</td>
<td>Mentor</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2000</td>
<td>Pathology</td>
<td>(transfer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Pathology</td>
<td>(transfer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Biochemistry</td>
<td>Ravid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Phys/Biophys</td>
<td>Allen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Microbiology</td>
<td>Hu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>Biochemistry</td>
<td>Trinkaus-Randall</td>
</tr>
<tr>
<td></td>
<td>Cell/Mol. Bio</td>
<td>Sahin-Toth</td>
</tr>
<tr>
<td></td>
<td>Biochemistry</td>
<td>Kandror</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microbiology</td>
<td>Faller</td>
</tr>
<tr>
<td></td>
<td>Pathol</td>
<td>Cardoso</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biochemistry</td>
<td>Xiao</td>
</tr>
<tr>
<td></td>
<td>Molecular Med</td>
<td>Cohen,R</td>
</tr>
<tr>
<td></td>
<td>Biochemistry</td>
<td>Kirsch</td>
</tr>
<tr>
<td>2007</td>
<td>Biochemistry</td>
<td>Sherman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Physiol /Biophys</td>
<td>Lehman</td>
</tr>
<tr>
<td></td>
<td>Genetics / Genom</td>
<td>Vaziri</td>
</tr>
<tr>
<td></td>
<td>Microbiology</td>
<td>Rothstein</td>
</tr>
<tr>
<td></td>
<td>Mol Medicine</td>
<td>Bolotina</td>
</tr>
<tr>
<td></td>
<td>Biochemistry</td>
<td>Ravid</td>
</tr>
<tr>
<td></td>
<td>Biochemistry</td>
<td>Ravid</td>
</tr>
<tr>
<td></td>
<td>Mol Medicine</td>
<td>Loscalzo</td>
</tr>
<tr>
<td></td>
<td>Pathology</td>
<td>Thiagalingam</td>
</tr>
<tr>
<td></td>
<td>Gen / Genomics</td>
<td>Thiagalingam</td>
</tr>
<tr>
<td></td>
<td>Pathology</td>
<td>Xiao</td>
</tr>
<tr>
<td></td>
<td>Biochemistry</td>
<td>Xiao</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Florin Craciun in the Department of Pathology will be defending his thesis work on October 5 in EVANS 614!!
ACADEMIC REQUIREMENTS

This guide is intended to provide all graduate students and faculty members within the Cell and Molecular Biology Program with a list of requirements. In addition, students must adhere to the guidelines of the Division of Graduate Medical Sciences at Boston University School of Medicine as well as Boston University at large. Students are advised to consult the appropriate personnel if they have further questions regarding policies concerning graduate study at Boston University.

The program is designed so that all entering students take coursework during the first year to fulfill the requirements of the Cell and Molecular Biology Program, as well as the participating departments within the Division of Graduate Medical Sciences. In addition, students will rotate through 4 laboratories during the first year so that they can be exposed to a number of departments and laboratories. The students will then ask to enter a faculty’s laboratory and have her/him serve as mentor throughout the remainder of the student’s graduate school career. At the end of the first academic year, the student will join a laboratory. Students will become a member of the department of the mentor. At that time, the student will be financially supported by the mentor and respective Department and must fulfill the requirements of that department, as well as the Cell and Molecular Biology Program.

Academic Advisors

All students will be assigned a faculty member as academic advisor when they enter into the program. The advisors are assigned by the Student Advisory Committee. The academic advisor will function as the student’s first formal advisor. The role of the academic advisor is to provide assistance and advice on all academic issues. Students, please keep in touch with your advisor throughout the year. He/she will counsel you on academic issues and guide you in your choice of lab rotations throughout the first year. If you have any questions please make sure to ask your advisor. Upon completion of the first year of study, students will choose a mentor who will serve as permanent research advisor for the remainder of his/her graduate school career. All decisions and discussions should be discussed with your advisor in this important decision.

Academic Requirements

The Post bachelor’s Ph.D. program requires 64 credits. The M.D./Ph.D. and Postmasters Ph.D. programs require 32 credits. The number of lecture credits will vary with requirements for each department. Each student will need to check the requirements for Cell and Molecular Biology Program students in the department of their choice as the number of required courses differs. Students who enter the program are required to take the following courses in the first year.
GMS BI 755/756 Biochemistry (8)
GMS CM 753 Cell Biology (4)
GMS CM 761/762 Critical Thinking (4)
GMS BI 782 Molecular Biology (4).

In the second year, the student will take courses required by the specific department he/she joins. In addition, to fulfill the requirements of the Cell and Molecular Biology Program, a minimum of 2 credits of a mini course(s) are required.

GMS CM 765/766 Mini Courses (2).

The subjects of GMS CM 765/766 Mini Courses change each year. Each course is given for half a semester and 2 such courses must be taken to complete the requirement (1 credit/course). Both of the courses are given in the second semester of the second academic year and after the completion of both courses, the student will be given 2 credits. One of the courses is a Proposal writing course.

The course of graduate study is designed so that the Ph.D. student can complete the required coursework during the first two years of graduate work. In addition to taking all courses required by the department in which the student will complete his/her studies, each student must take the qualifying examination of the chosen department/program. The qualifying examinations are specific for each department/program and may differ in format. In addition the timing for taking the examination depends on the department/program. Students who join the laboratory of a faculty member in the Department of Molecular and Cell Biology are requested to meet with their advisor, the Chair of the Department and Dr. Trinkaus-Randall, to develop the course of study. In addition please see the list of requirements below under qualifying exams and thesis committee.

Once students have completed their academic classes the remaining credits will be fulfilled by registering for research credits. Students may take additional courses for credit. The emphasis after the second year, however, should be on research in the laboratory. Students should register for research credits (research credits in Cell and Molecular Biology are GMS CM 952-), until they have taken the required total number of credits required for their degree.

Additional Requirements and Guidelines/Academic Policies

Academic Policies

Academic policies and procedures dictated by the Division of Graduate Medical Sciences are described in the Division of Graduate Medical Sciences Bulletin. All students are required to maintain a minimum cumulative grade point average of B (3.0) or better in their courses. Any student receiving a grade of C or below must repeat the course and must attain a grade of B (not B-) or above in the course. Please note that if students receive 8 credits of a grade(s) of B- or lower, they will be placed on academic probation. Any students placed on academic probation will receive a
letter detailing the expectations for remediation and will be re-evaluated at the end of each semester. Students on academic probation are not allowed to take Departmental Qualifying or Thesis Defense examinations. If the grade point average is not rectified in 1 year, the student will be dismissed from the program.

All students are expected to finish the Ph.D. in a timely manner, having made a significant contribution to their field of research. Financial assistance is dependent upon the student remaining in good standing within the CMB program as well as the department/program the student joins after the first year in the program. The Department will only provide financial aid for courses, which fulfill requirements of the candidate’s degree program.

All students are required to be registered every semester at Boston University unless they are on an approved leave of absence. An absence from the lab or from courses for more than 2 weeks per year should be brought to the attention of the Student Affairs Committee and if needed the Executive Committee. Student stipends will be suspended during any extended leave.

M.D. Ph.D. students are required to have successfully completed a minimum of their first year of BUSM curriculum prior to entering the program. Students may not join if they are not in good standing in the medical school.
Research Training and Dissertation Advisory Committees

Qualifying Examinations

Relax!

Your job in the first year is to do well on your coursework and to find a laboratory in which you will do your thesis work. The examination will follow after that and differs with each department. All students must pass a qualifying examination to qualify as a PhD student. The structure of the examination(s) depends on the individual departments.

Students who join the Department of Molecular and Cell Biology will take a qualifying examination after their second year. The committee is assembled by the Chair of the Program and the Chair of the Department. The Qualifying Exam Committee will include 5 faculty members, including 2 members from the Department of Molecular and Cell Biology and 3 members from the Executive Committee in the Cell and Molecular Biology Program. The examination consists of a written proposal on a field outside the research field of the student and an oral component. It is similar in scope to the examination format for the Department of Microbiology, and the Molecular Medicine Program.

Dissertation Advisory Committee

The role of the Dissertation Advisory Committee is to both advise the student and to assess his/her progress throughout the research component of the Ph.D. program. Ultimately, this Committee will be responsible for determining the acceptability of the Ph.D. candidate’s research. Failure to maintain an acceptable research program will result in termination of Ph.D. candidacy.

The Dissertation Advisory Committee is set up by each department and must include 2 members of the Cell and Molecular Biology Program. The committee will consist of 5-6 members, including the research advisor, one other representative of the host department and 3 members of the Cell and Molecular Biology Program faculty. At least 1 member of the committee must be from a department, which is not the host department.

For students in the Department of Molecular and Cell Biology the Committee will be established once the student has passed his/her qualifying examination. The Dissertation Advisory Committee will consist of 5 members. One will be the research advisor. A second member must be a member of the Department. Three additional faculty must be members of the Cell and Molecular Biology Program and be faculty
outside the Department of Molecular and Cell Biology.

The first (research advisor) and second readers of the student’s dissertation will be members of the Committee. The Committee Chair must be appointed prior to the first meeting by the student and research advisor. The Chair may be of any rank but must have his/her primary appointment within the Department and must have prior experience serving on thesis committees. The Chair, who should not be the research advisor, will keep written records of the meetings. The Committee Chair cannot be the first or second reader. The Second Reader will be selected by the student and research advisor at the last Committee meeting.

It is the committee's responsibility to provide an objective evaluation of the project as well as to contribute to the research direction. A vital function of the committee is to help focus and limit the scope of the research so that the trainee has a clear concept of the overall design of the dissertation proposal. It is expected that this design will change in response to experimental findings; however, it is critical that the trainee be guided to define scope and quality. Research in the advisor's lab will commence in the summer after the first year of courses. Full time research is expected to begin the summer of the second year (after successful completion of all required courses and the qualifying examinations). Failure to maintain an acceptable research program will result in termination of Ph.D. candidacy.

Frequency of meetings

Within 6 months of passing the qualifying examination, the trainee is expected to present a research proposal to a Thesis Advisory Committee that will monitor his/her research progress on a regular basis, meeting at least once a year. One week prior to each meeting, the student will present a written summary of research progress to the committee for review. The Thesis Advisory Committee will meet annually with the student (or more frequently if determined by the Committee). All committee members should be present, however in an emergency a quorum of four members are required to be in attendance. It is mandatory that the first meeting be scheduled no later than a year after completion of the qualifying examinations. At the end of each meeting the student will be excused and the Committee Chair, in consultation with the Committee, will complete a Thesis Advisory Committee meeting report form (at the time of the meeting).

For the first meeting with the committee a formal written research proposal detailing the Background, Objectives, Specific Aims, and Experimental Approaches of the dissertation research should be presented to the Thesis Advisory Committee one week prior to the first meeting. The format of the proposal will vary from Department to Department. The intention of the committee is to offer insight, expertise and if needed, assistance in selecting appropriate avenues of research. The first committee meeting should not be viewed as an examination, but as a think-tank that will increase the likelihood of generating presentable/cohesive data.
Dissertation Committee

The Thesis Advisory Committee will, in most instances, become the Dissertation Committee. Again, the format of the individual departments will be adhered to. If any member of the Dissertation Committee is not a faculty member of the Division of Graduate Medical Sciences at Boston University then a special faculty appointment in the Division must be obtained.

Dissertation

All graduate students within the Program are required to maintain a research program that will eventually lead to the dissertation. An acceptable research program will be judged by the research advisor and the Thesis Advisory Committee.

The following is a guideline for the preparation and defense of the Ph.D. thesis. When the student and advisor decide that the laboratory work is nearly completed, a Thesis Advisory Committee meeting should be held for the presentation of a proposal to finish. The Thesis Advisory Committee will then, in conjunction with the student and advisor, implement a specific plan for the student to curtail laboratory work and begin writing the thesis using the timeline advised below. This will be done in accordance with each department or program.

The student should investigate the guidelines and deadlines for thesis preparation from the Division of Graduate Medical Sciences Office (Room L317). If you have questions please view completed theses that are present in many laboratories. Each student should discuss the expectations for the thesis with their advisor prior to writing the thesis. In particular the student should establish a general system for how drafts are to be submitted and what time frame will be required for review. It is expected that the first reader should be reasonably satisfied with the complete contents of the thesis within approximately 10 weeks from the beginning of the full time writing period. At this point the first reader will approve the submission of the thesis to the second reader. The second reader is expected to review the thesis within approximately 2 weeks. If necessary, at this time, the student and the two readers can plan a meeting to discuss the status of the thesis (particularly when there might be conflicting opinions). Once the thesis has been approved by the first and second readers, the thesis can be distributed to the full committee. The Thesis Dissertation Committee is given 2 weeks to review the thesis prior to the defense. The presentation of the thesis to the committee is not to be taken lightly and should be considered to be a “finished product” by the first reader.

Prior to scheduling a defense date, a dissertation outline must be completed (using the Division cover sheet), approved by the Thesis Advisory Committee, and submitted to the Department and Division office. The dissertation abstract and approval form must be signed by the research advisor, the Graduate Director, and the Chair of the Department, and these materials must be filed by the student in the Department and Division of Graduate Medical Sciences offices at least three weeks
before the defense. Students must obtain written approval of the dissertation by the first and second readers and distribute the final dissertation to the Thesis Advisory Committee at least two weeks prior to the defense. The defense will consist of an oral presentation of the research results open to all, and a separate dissertation defense meeting with the Dissertation Committee, which should immediately follow. Four out of five Dissertation Committee members must agree to pass the student. Once the Dissertation Committee has agreed to pass the student, he/she must submit a final copy of the thesis to the Department and the Division offices.

Below is a brief list of the sequence of events leading to the granting of the Ph.D. Almost all forms are available in the Division of Graduate Medical Sciences Office.

- Submit an outline, approved by the Thesis Advisory Committee, using the Division cover sheet to the Department and the Division.
- Submit an abstract, approved by the Advisor, Director of Graduate Studies for your department and the Chair to the Department and the Division at least 3 weeks prior to the defense.
- Submit a first and second reader approval form at least 2 weeks prior to the defense. (The first and second readers must approve the complete version of the thesis prior to scheduling the defense).
- Having completed the above, the defense may be scheduled. Please make sure you are advised of all specific departmental requirements.
- The Schedule of Exam form must be approved and submitted to the Department and the Division at least 2 weeks prior to the defense.
- A complete copy of the thesis must be given to each member of the Dissertation Committee at least 2 weeks prior to the defense.
- 4 out of 5 committee members must agree to pass the student.
- A final copy of the thesis must be submitted to the Department (1 copy) and the Division (2 copies on specific grade paper as described by Division staff).

On the page below is a form that can be used to document committee meetings. Each department may have their own form.
THESIS ADVISORY COMMITTEE MEETING REPORT FORM

Name of Student: ________________________________

Meeting number: ______ Date: __________________

Ph.D. Start Date: ______________ Research Start Date: ______________

Committee members present (identify chair):

Essential points presented by student:

Committee recommendations:

Committee concerns:

Student concerns:

Committee’s overall impression of progress:

Date recommended for next meeting:

This form was filled in by _________________________________.

(committee chair signature)

(date)

This completed form was discussed with _________________________.

(student signature) (date)
A list of previous minicourses

These are 1 credit courses that generally last 6 weeks and meet once per week for 2 hrs. They may be theory or practice based. All second year students are required to take the mini-courses in their second year. This is merely a list of past courses to give you a feeling of the diversity of the courses. They are given in the spring semester.

1997
V. Trinkaus-Randall Cell Biology of Wound Healing
Barbara Seaton Proteins: Form and Function
James Head
Karen Allen
1998 (Spring)
Peter Brecher Mechanism of Angiotensin II Action
Mary Walsh Biophysical Techniques in Cell and Molecular Biology
1999 (Spring)
Michael Holick Translational Medicine: The Skin Connection
David Larson Gap Juncitons: Connexins in Health and Disease
Jim Xiao Cell Cycle and Cancer
1999(Fall)
Robert Moreland Signalling and crosstalk in G-protein coupled receptors
2000 (Spring)
Andrew Zoeller Somatic Cell Genetics
2000(Fall)
Nader Rahimi Cellular Signal Transduction and Angiogenesis
2001 (Spring)
Carlos Hirschberg The Fungal Cell Wall: Signaling, Differentiaion and Pathogenicity
2001 (Fall)
Esther Bullitt Electron Microscopy and Image Processing as tools for understanding Cellular Assemblies
2002 (Spring)
Sam Thiagalingam Cancer Genomics
2002 (Fall)
Vickery Trinkaus-Randall Imaging of Cells- Theory and Practice Thursday s 2-4 PM starting October 24
2003 (Spring)
Joseph Ozer Transcriptional Regulation
2004 (Spring)
Vickery Trinkaus-Randall Imaging of Cells- Theory and Practice
Ron Corley Transcription Regulation
2005 (Spring)
Vickery Trinkaus-Randall Imaging of Cells: Theory and Practice
Kenneth Albrecht A Mouse Embryonic Cell Model
2006 (Spring)
Vickery Trinkaus-Randall Imaging of Cells: Theory and Practice
Jefferey Moore Molecular Motors
<table>
<thead>
<tr>
<th>Year (Season)</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 (Spring)</td>
<td>Vickery Trinkaus-Randall</td>
<td>Imaging of Cells: Theory and Practice</td>
</tr>
<tr>
<td></td>
<td>Trinkaus-Randall and Schreiber</td>
<td>Proposal Writing</td>
</tr>
<tr>
<td>2008 (Spring)</td>
<td>Vickery Trinkaus-Randall</td>
<td>Imaging of Cells: Theory and Practice and Proposal Writing</td>
</tr>
<tr>
<td>2009 (Spring)</td>
<td>Vickery Trinkaus-Randall</td>
<td>Imaging of Cells: Theory and Practice and Proposal Writing</td>
</tr>
<tr>
<td>2010</td>
<td>Trinkaus-Randall</td>
<td>Imaging of Cells: Theory and Practice and Proposal Writing</td>
</tr>
</tbody>
</table>
CMB Faculty Faculty belong to many different departments and have many different interests. If you are interested in a person please go first to pubmed and read some of their articles and then contact the faculty person and set up a meeting to speak with them.

Carmela Abraham, PhD
Amyloid and inflammation in the brain during normal aging and Alzheimer's disease

Xingbin Ai, PhD
Matrix dependent mechanisms that regulate extracellular signalling during embryogenesis and regeneration, functions of heparan sulfate editing enzymes (Sulfs) in the skeletal and nervous system

Christopher Akey, PhD
Structural biology of channels and chaperones

Kenneth Albrecht, PhD
Mechanism of human sex reversal and adrenal dysmorphogenesis, gonad development

*Karen Allen, PhD
Protein structure and function using x-ray crystallography and kinetics

Salomon Amar, DMD., PhD
Molecular and cellular events associated with inflammatory processes; emphasis is placed on the cytokine control of gene expression with potential applications into various animal models.

J. Krzysztof Blusztajn, PhD
Acetylcholine synthesis and release; signal transduction by lipid messengers

Victoria Boilotina, PhD
Cardiovascular diseases, ion channels and mechanisms of calcium signaling

Esther Bullitt, PhD
Protein structure and function by electron microscopy

Wellington Cardoso, MD., PhD
Mechanisms that regulate lung development

Herbert Cohen, MD
Molecular basis of renal cancer, renal cystic disease and renal development

Richard A. Cohen, MD
Nitric oxide regulation of vascular cells, oxidative stress and atherosclerosis

Wilson Colucci, MD
Mechanisms that mediate myocardial remodeling and failure

John H. Connor, PhD
Determining how viruses interact with infected cell hosts, mechanisms controlling switch to viral translation, use of VSV in targeting destruction of tumor cells

Lawreen H. Connors, PhD
Role of protein structure in mechanisms of systemic forms of amyloidosis

Barbara Corkey, PhD
Metabolic regulation of signal transduction, calcium handling and fatty acyl CoA in pancreatic beta cells and fat cells

R.B. Corley, PhD
Chair of Microbiology
M. Carter Cornwall, PhD
Visual transduction and light adaptation in rods and cones of the vertebrate retina

Catherine E. Costello, PhD
Biopolymer studies based on development and application of mass spectral studies; glycobiology

Shoumita Dasgupta, PhD
Admissions Committee

Gerald Denis, PhD
Non-Hodgkin's lymphoma, Function of the BRD2 gene in normal and diseased B cells

Isabelle Dominguez, PhD
To characterize the mechanism of Wnt signaling in development and cancer. We are studying the function, regulation and mechanism of action of two components of the Wnt pathway: the serine-threonine kinases CK2 and GSK3beta.

Douglas Faller, MD., PhD
Molecular and cellular biology of virus and oncogene-transformed cells and tumors

Stephen Farmer, PhD
Tissue specific gene expression; role of matrix interactions and cell morphology

Rachel Fears, PhD
Molecular biology of human respiratory syncytial virus, control of virus gene expression and genome replication

Caroline Genco, PhD
Characterization of bacterial virulence factors produced by mucosal pathogens

Terrell Gibbs, PhD
Modulators of amino acid receptor function in the brain

Rahm Gummuluru, PhD
Virus-host interactions in HIV-1 pathogenesis

Hwai-Chen Guo, PhD
Protein structure/function using x-ray crystallography and molecular biology

Olga Gursky, PhD
Folding structure and stability of apolipoproteins

James A. Hamilton, PhD
Lipid/protein interactions and lipid/membrane dynamics

David Harris, MD, PhD
My laboratory investigates the molecular and cellular mechanisms underlying human and animal prion diseases. Our work has two broad objectives. First, we wish to understand how the cellular form of the prion protein (PrPC) is converted into the infectious form (PrPSc). Encompassed in this objective are efforts to elucidate the cellular localization and trafficking of both PrPC and PrPSc, the nature of their association with cell membranes, as well as the molecular features of the conversion process itself. Second, we want to understand how prions kill nerve cells.

Tarik Haydar, PhD
The Haydar lab uses cellular and molecular techniques to study mammalian forebrain development, specifically focusing on the neural stem cells and precursors in the neocortex and hippocampus. The lab also investigates the cellular and genetic mechanisms of developmental disorders including those underlying mental retardation in Down syndrome.
James Head, PhD
Regulatory role of high affinity intracellular calcium binding proteins

Andrew Henderson, PhD
Interested in investigating how cellular signals regulate HIV transcription and replication

Alan Herbert, MBChB, PhD
Gene discovery, genome wide screen to type high density of single nucleotide polymorphisms in families, identifying novel classes of coRNAs and their impact on alternative splicing of RNA

Carlos Hirschberg, PhD
Novel regulation of posttranslational modifications in mammals and yeast
Chair Molecular Cell Biology BUSM Dental School

Michael Hollick, MD., PhD
Physiology and molecular biology of skin and bone, vitamin D and peptide hormones

Kevin Jarrell, PhD
Molecular mechanisms of RNA splicing and catalysis

Matthew Jones,
Our research is focused on how AU-rich element binding proteins and microRNAs target cytokine mRNAs to control inflammation in integrated animal models of acute bacterial pneumonia.

Konstantin Kandror, PhD
Regulated vesicle traffic in different eukaryotic cells

Kathrin Kirsch, PhD
Molecular mechanisms important for tumor initiation and progression with interest on adapter proteins

Darrell Kotton, MD
Stem cell biology and gene therapy, embryonic lung development and repair

Neil Kowall, MD
Mechanisms of cell death in the central nervous system

Maria Kukurizinska, PhD
Protein N-glycosylation in growth and development

Shinichiro Kurosawa, MD, PhD
New therapeutics and novel diagnostics for patients using in vitro approaches, and exploring model systems, Sepsis, Inflammation, Thrombosis and Hemostasis.

Robert Lafyatis, M.D.
Regulation of sclerosis, member of Scleroderma Program

Matthew Layne, PhD
Transcriptional control of genes upregulated in vascular smooth muscle cells and fibroblasts in cardiovascular and pulmonary disease

William J. Lehman, PhD
Structural studies on actin filament function

Adam Lerner, MD
Apoptosis in lymphoid malignancies and role of adhesion-associated proteins in breast cancer anti-estrogen resistance
David E. Levin, PhD.
The Levin lab uses yeast as a model system for the molecular genetic dissection of stress signaling pathways. We are interested in the mechanisms by which fungal cells maintain the structural integrity of their cell walls in response to osmotic stress and other challenges. Our work is directed at the identification of potential anti-fungal drug targets in pathogenic species.

Weining Lu, PhD
The long-term goal of our research is to understand the molecular basis of congenital anomalies of the kidney and urinary tract (CAKUT). CAKUT is a family of diseases with a diverse anatomical spectrum, including kidney anomalies (e.g. renal dysplasia, duplex kidney, multicystic kidney, hydronephrosis), and ureteric anomalies (e.g. vesicoureteral reflux, megaureter, ureterovesical and ureteropelvic junction obstruction).

Jennifer I. Luebke, PhD
Normal aging and Alzheimer’s disease

Zhijun Luo, Ph.D.
Regulation and function of Raf kinase and AMP-activated protein kinase, both of which have been implicated in cancer and other diseases

Assen Marintchev, PhD
Our work is focused on studying the architecture of the translation initiation complexes, the molecular mechanisms of key steps in the process, and their regulation. The long-term goal is to build a detailed mechanistic and quantitative model of translation initiation as a whole, and learn how to rationally manipulate the system for the purposes of cancer therapy and treatment of metabolic disorders. Two areas of particular interest are the coordination between start codon selection and ribosomal subunit joining and the regeneration of the eIF2-GTP:Met-tRNA$_i$ complex.

Jay Mizgerd, ScD
Innate immunity, lung infections, transcriptional and post-transcriptional regulation of cytokines

C. James McKnight, PhD
Protein structure/function and folding using NMR

Monty Montano, PhD
Dr. Montano’s laboratory is broadly interested in HIV pathogenomics, immune and muscle cell interactions and the effects of aging on these processes. Research initiatives in the Montano laboratory include 1) analysis of the interaction between host immune factors (e.g., macrophages) and muscle stem cell remodeling during normal muscle remodeling and in muscle wasting disease, 2) the molecular phenotyping of candidate genes in aging and 3) the identification of prognostic serum biomarkers for anabolic response.

Jeffrey R. Moore, PhD
Cystoskeletal dynamics and motor proteins

Gustavo Mostoslavsky, MD.,PhD
Stem cell biology and gene therapy; embryonic stem cell modeling of intestinal differentiation
Mary Jo Murnane, PhD
Tumor markers within a proteolytic cascade in tumorogenesis
Director of Admissions

George J. Murphy, PhD
Stem cells

Caryn Navarro, PhD
When members of the dynein complex (molecular motors) are mutated, loss of function of the dynein associated protein Lissencephaly 1 (Lis-1), leads to neurodegenerative disease due to a lack of neuronal migration. Lis-1 is important for RNA localization, cell division and nuclear migration in the Drosophila ovary, and neuronal migration in the mammalian nervous system. My goal is to understand the mechanisms of dynein directed molecular transport and how intracellular transport is affected by mutations in piRNA (piwi-interacting) pathway components.

Barbara Nikolajczyk, PhD
Activation of immunologically critical genes in context of chromatin, regulation of IL-1 beta gene transcription, inflammation in type 2 diabetes,

Matthew Nugent, PhD
Cell proliferation, growth factor-receptor interactions, proteoglycans, extracellular matrix

Paul Piich, PhD
Membrane trafficking and cell biology of insulin action

Nader Rahimi, PhD
Receptor tyrosine kinase regulation of angiogenesis and signal transduction

Maria Ramiriz, PhD
To identify the molecular mechanisms that drive the formation of different lineages of lung epithelial cells during development

Katya Ravid, PhD
Genetic and signaling mechanisms regulating blood cell development; vascular biology

Daniel G. Remick, MD
Inflammatory response; soluble mediators of inflammation, role of inflammatory response on tissue/organ injury and death

Ian Rifkin, MD
Association of autoantibodies to nucleic acids as potential activators of innate immunity, systemic lupus erythematosus

Phillip W. Robbins, PhD
Glycoprotein processing and secretion

Douglas Rosene, PhD
Neurobiological basis of normal learning and memory in normal brain and in neurodegenerative diseases

Sayon Roy, PhD
Diabetic retinopathy, regulation of extracellular matrix

Neil Ruderman, PhD, D.Phil
Insulin action, gene expression and diacylglycerol protein kinase C in skeletal muscle

Shelley Russek, PhD
Gene expression in neurons, tissue specific promoters as targets for therapeutic targets
Miklos Sahin-Toth, MD., PhD
Proteases and their inhibitors in the pathogenesis of pancreatitis/crystallography of mutated trypsinogens

David Salant, MD
Glomerular epithelial biology, proteomic analysis of components that constitute the glomerular filtration barrier

John C. Sammuelson, MD., PhD
Pathogenesis and evolution of parasites that cause disease

Barbara Schreiber, PhD
Atherosclerosis and aortic smooth muscle cells, effect of atherotgenic lipoproteins on proliferation and biosynthesis of collagens and apolipoproteins

John H. Schwartz, MD
Targeting of proteins in epithelial transport, renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells

Barbara Seaton, PhD
Structure/function using x-ray crystallography and other biophysical/biochemical technologies

David Seldin, MD., PhD
Oncogenes and tumorogenesis as modeled in transgenic mice
Dir. of Amyloid Program

Jacqueline Sharon, PhD
Generation and use of polyclonal antibody libraries for therapeutics and diagnostics

Michael Sherman, PhD
Molecular mechanisms underlaying role of heat shock protein Hsp72 in prevention of cell death

David Sherr, PhD (Director of Immunology Training Program)
Mechanisms through which environmental chemicals suppress immune apoptosis, molecular signaling leading to carcinogenic and spontaneous breast cancers

Barbara Smith, PhD
Changes in gene expression of connective tissue components associated with transformation and differentiation

Jean-Jacques Soghomonian, PhD
Neuroanatomy of the basal ganglia, neurobiological basis of motor control, sensoriomotor and learning

Deborah Stearns-Kurosawa, PhD
Sepsis and pathophysiology of anthrax

Karen Symes, PhD
Role of cell-cell interaction in embryonic development

Andrew Taylor
Immunology

Sam Thiagalingam, PhD
Smad signaling and cancer metastasis; role of p53 in genome stability; genetic susceptibility and molecular markers of lung cancer

Phillip Trackman, PhD
Gene regulation of extracellular matrix diseases
Vickery Trinkaus-Randall, PhD
Regulation of purinergic and EGF receptors in cell migration and wound repair
Role of metalloproteases (MMPS) and heparin sulfate on Amyloid and its fibril formation,

Maria Trojanowska, PhD.
Program in Inflammatory Disorders: Characterization of animal models of fibrosis in the context of scleroderma. Our lab focuses on signaling events that lead to an overproduction of collagen and other extracellular matrix proteins.

Gregory A. Viglianti, PhD
Molecular biology of HIV-1; role of virus-host cell interactions in pathogenesis

Kenneth Walsh, PhD
Signalling and transcriptional-regulatory mechanisms that control normal and pathological tissue growth in the cardiovascular system

Benjamin Wolozin, MD., PhD
Pathophysiology of neurodegenerative diseases; Alzheimers and Parkinsons, genetic models in cell culture

Zhi-Xiong Jim Xiao, PhD
Tumor suppressor genes in cell cycle, proliferation and differentiation

Qian Yu, PhD
Tyrosine phosphorylation, cell signaling, apoptosis and metastasis

Joseph Zaia, PhD
Structure and function of proteoglycans and glycosaminoglycans using mass spectrometry as a primary tool

Irina V. Zhdanova, MD., PhD
Role of endogenous factors secreted into the cerebrospinal fluid and/or blood circulation in sleep regulation; interested in the effects of these factors on sleep, cognitive performance and drug abuse

Vassilis I. Zannis, PhD
Mechanisms of transcriptional regulation of apolipoprotein genes in vivo and in vitro, transgenic mice, adenovirus-mediated gene transfer

R. Andrew Zoeller, PhD
Somatic cell genetics to define roles of lipids in stroke, myocardial infarction and neurodegerative diseases

Dr. Allen has moved to the Charles River Campus in the Department of Chemistry.