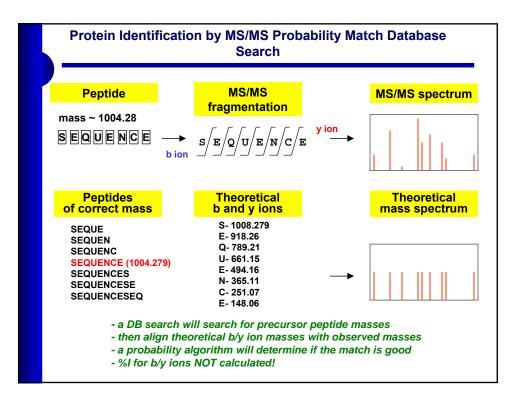

A Software Application for MS Data Processing and Post Translational Modification Database Generation

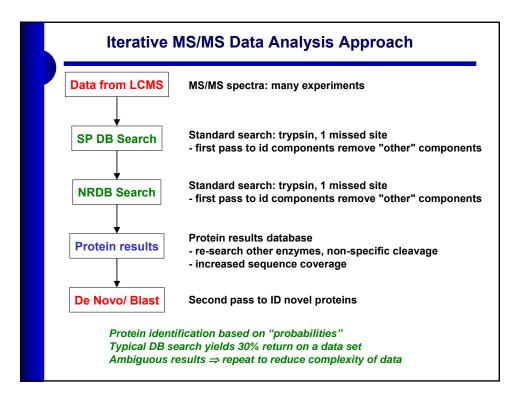
James West, Hua Huang, Weiwei Tong, Yang Su, David H. Perlman, Catherine E. Costello, Mark E. McComb

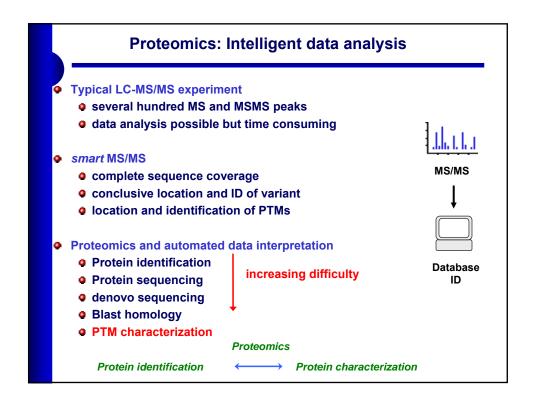
Cardiovascular Proteomics Center Boston University School of Medicine Boston, MA

MS and Proteomics

- Mass spectrometry is widely used for characterization of protein primary structure and structural changes, such as sequence mutations and posttranslational modifications.
- It is now possible to apply MS to protein based diseases
- Mass spectrometry (protein based)
 - Speed
 - Sensitivity
 - Direct protein characterization
 - Post-translational modifications
 - Unambiguous sequence determination
 - A one size fits all methodology
- Advent of new instrumentation
 - high resolution, high mass accuracy, robustness, cheaper
 - advent of friendly instrumentation
- Advent of powerful data analysis tools
 - able to rapidly process large and complex data sets correctly
 - advent of friendly data analysis tools




MS and MS/MS Information


- Qualitative information → m/z: tentative: ID, map, % coverage, PTMs
- Quantitative information → %I
- m/z: Instrument dependent: Trap vs QTOF vs FT
 - Accuracy: Resolution: Dynamic range
- · %I: MALDI vs ESI
 - $\bullet \quad \text{MS \%I} \rightarrow \text{chemical constitution of peptide}$
 - PTM may be lost in MALDI
 - LC > TOF, FT for quantitation
 - ullet ICAT o quantitation via relative abundance
- Normal vs Control
- ID via map: yes/no expression QTOF FT %I: differential expression 10k 50k 100 10 5 ppm Variant: differential expression 10³ S/N 10³ 10⁵ PTM: yes/no, ID, location .001 1 pmol .200 %PTM: differential expression

Protein and Gene Databases

- SWISSPROT and TREMBL
 - Small and highly curated protein knowledge and sequence database
 - Manually confirmed sequences.
- NCBI non-redundant (NCBInr)
 - Non-redundant database from the National Center for Biotechnology Information
 - Used for BLAST and Entrez
 - Comprised of translated sequences from the Genbank, SwissProt, Protein Information Resource (PIR), and Brookhaven Protein Data Bank (PDB)
- EST Clusters (dBEST)
 - "single-pass" cDNA sequences, or Expressed Sequence Tags (EST's)
 - Short, usually 3' end sequences from isolated mRNA.
 - expressed sequences (no introns) including splice variants
 - · Short lengths, redundancy, and low quality affect results
 - DB search: nucleic acid sequences are translated in all 6 reading frames
 - dbEST is a very large database: EST_human, mouse, others

Post-translational Modifications (PTMs)

- PTMs change the way proteins behave and interact with other proteins in the cell.
- While some PTMs have been identified and are well know to occur, many PTMs remain unknown and so far undetected. These PTMs may be involved in many disease states and therefore their identification is important.
- Identification of PTMs poses a complex problem for researchers principally due to a lack of methodology and therefore many unknown PTMs are only discovered by chance.
- MS based proteomics is only just beginning to be applied to the characterization of post-translational modifications of proteins.
- With accurate mass tandem mass spectrometry (MS/MS) data obtained from LC-MS/MS experiments of proteolytic digests of proteins, it is possible to characterize a limited number of known PTMs. However, for the discovery of unknown PTMs or the identification of unknown localization sites, the use of a standard PTM database fails.

Database Design: for targeting PTMs

- Large non-redundant protein database:
 - >1,000,000 proteins
 - many false positives for single protein analysis
 - assignments forced to tryptic peptides
 - false negative results for PTMs
- · Single protein database:
 - single amino acid "corrected sequence"
 - search the digital dataset against the experimental data
 - eliminate false negatives
 - improved positive results for PTMs
- Single peptide database
 - ie: >gi|TC1-15| Mass 1533 → GPTGTGESBCPLMVB
 - with and without PTMs preprogrammed
 - maximum results

Construct custom databases to solve custom datasets Single protein/peptide databases target PTMs

Characterization of PTMs Via MS and MS/MS

- Post-translational-modifications
 - 100s known and unknown PTMs are possible
 - multitude of locations feasible
 - dynamic range

temporal probability ⇒ biochemical processes

- Characterization
 - simple amino acid substitution matrices are insufficient
 - PTM databases ⇒ knowledge of the sample is required
 - PTM follow biochemical rules

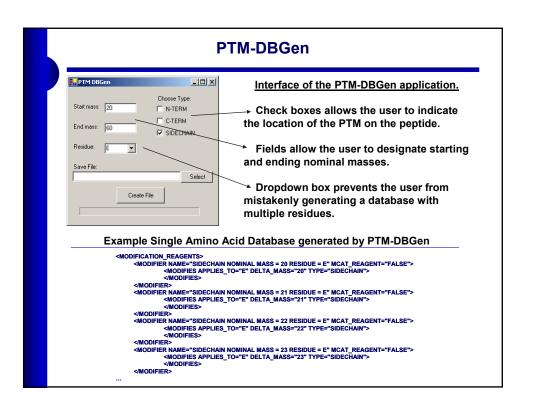
[Protein] x 1 to 1E-2

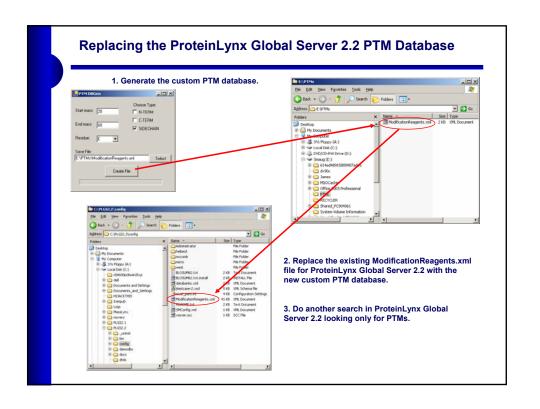
- Catalog of known PTMs
 - RESID Database >800 known PTMs!
 - PTM change ΔMass

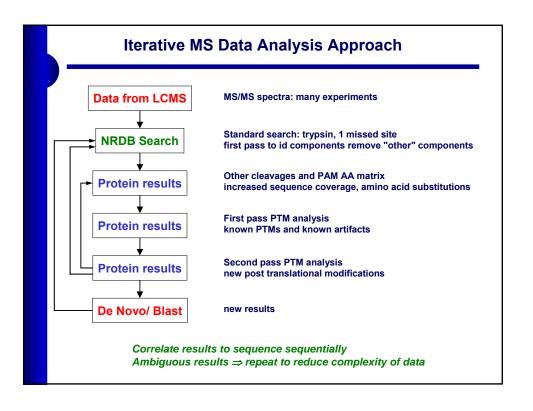
 Create a PTM Database

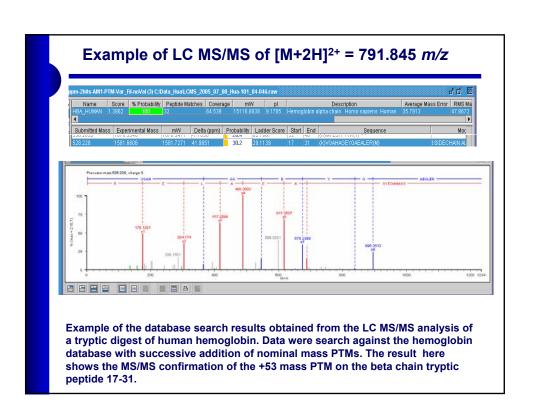
 Nominal mass

 PTM change ΔMass

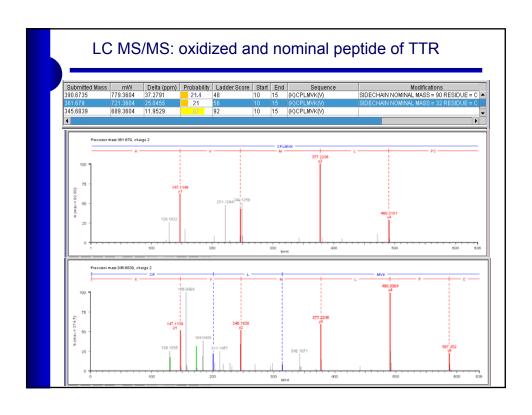

 S-Cysteinyl C3H5NO2S 119.0041


 unknown CnHxNyOzSm n,x,y,z,m>1
 - Exact mass


Validation: Are the results real? ⇒ in vitro modification Fortunately PTMs follow some rules ⇒ analysis possible


Nominal Mass and Exact Mass Databases

- We have constructed a database of nominal mass and exact mass PTMs and have applied a series of successive searches to determine the feasibility of using this approach for PTM characterization.
- The PTM Database Generator (PTM-DBGen) software application was developed using Microsoft Visual C# .NET utilizing the Microsoft .NET Framework 1.1 (version 1.1.4322 SP1) in the Microsoft Visual Studio .NET 2003 Development Environment and was used to generate these custom nominal mass PTM databases in an XML format that ProteinLynx Global Server 2.2 (Waters Corporation) can use.
- LC-MS and LC-MS/MS data sets that were obtained in house and derived from a large number of ongoing projects were processed using ProteinLynx Global Server 2.2 and the results were matched against the SwissProt database and the custom generated protein databases from PTM-DBGen.



PTM Database Search Results from a Hemoglobin Sample

- 403 MS/MS returned results from the database search
- 201 results returned with a probability > 0
 - 0 is the cutoff for probability in PLGS 2.2
- 111 results returned with a ladder score > 14
 - 14 is the cutoff we use for the ladder score in PLGS 2.2
 - ~ 75% false positive
- Manual confirmation identified over 100 assignable MS/SM spectra
- 27 PTMs were observed including dehydration, deamidation, oxidation and 2 novel PTMs which were previously not seen
- The example here shows a PTM of Δmass = 53 which we would not normally expect: this mass difference is due to iron adduction on the hemoglobin molecule

Typical Results Table for TTR Protein

m/z	Exp. mW	mW	Δ(ppm)	Prob.	L-Score	Start	End	Sequence	Modifications	Subs.	OI
345.684	689.352	689.360	12	67	92	10	15	(K)CPLMVK(V)			у
361.679	721.342	721.360	25	21	56	10	15	(K)CPLMVK(V)	SC Nom. MASS = 32 AA = (1)		у
390.674	779.331	779.360	37	21	48	10	15	(K)CPLMVK(V)	SC Nom. MASS = 90 AA = (1)		y
526.274	1050.532	1050.540	8	7	2.0408	16	25	(K)VLDAVRGSPA(I)	SC Nom. MASS = 67 AA = (9)		y
482.757	963.498	963.514	16	44	46.9388	22	31	(R)GSPAINVAVH(V)			у
590.264	1178.512	1178.524	10	34	36.7347	35	44	(R)KAADDTWEPF(A)			у
526.220	1050.424	1050.429	5	52	39.5349	36	44	(K)AADDTWEPF(A)			у
537.206	1072.396	1072.429	31	10	11.6279	36	44	(K)AADDTWEPF(A)	SC Nom. MASS = 22 AA = (7)		у
697.811	1393.606	1393.615	6	90	70.1493	36	48	(K)AADDTWEPFASGK(T)			у
713.802	1425.589	1425.615	18	18	28.3582	36	48	(K)AADDTWEPFASGK(T)	SC Nom. Mass = 32 AA = (8)		у
713.804	1425.592	1425.656	45	11	26.8657	36	48	(K)AAFDTWEPFASGK(T)		F for D (3)	у
515.240	1028.465	1028.477	12	63	65.3061	49	58	(K)TSESGELHGL(T)			у
616.287	1230.559	1230.573	12	57	50.8197	49	60	(K)TSESGELHGLTT(E)			у
680.808	1359.601	1359.615	10	52	49.2537	49	61	(K)TSESGELHGLTTE(E)			у
482.223	1443.645	1443.677	22	50	36.0656	59	70	(L)TTEEEFVEGIYK(V)			у
722.840	1443.664	1443.677	9	74	59.0164	59	70	(L)TTEEEFVEGIYK(V)			у
557.748	1113.480	1113.487	6	25	11.6279	61	69	(T)EEEFVEGIY(K)			у
621.791	1241.566	1241.582	13	63	71.4286	61	70	(T)EEEFVEGIYK(V)			у
557.273	1112.530	1112.539	8	66	58.1395	62	70	(E)EEFVEGIYK(V)			у
352.701	703.387	703.390	5	55	61.2903	81	87	(K)ALGISPF(H)			у
485.746	969.476	969.492	16	33	58.1395	81	89	(K)ALGISPFHE(H)			у
484.232	966.449	966.456	7	62	37.8378	88	95	(F)HEHAEVVF(T)			у
634.326	1266.636	1266.646	8	55	62.2951	115	126	(Y)SYSTTAVVTNPK(E)			у
509.276	1016.537	1016.550	13	17	34.6939	117	126	(Y)STTAVVTNPK(E)			I,

Results Table Discussion

- The table is an example of typical results from a series of database searches using multiple PTM databases.
- Each PTM database allowed for 1 PTM on a single amino acid.
 PTM databases of this sort were used for all 20 amino acids, A thru Y.
- The table is truncated: replicate positive results and all negative results (score < correct score) were removed for clarity.</p>
- Oxidation as well as other unknown PTMs are seen in this table.

The TTR database that we used

>sp(P02766) TTHY_HUMAN Transthyretin precursor Prealbumin corrected GPTGTGESKCPLMVKVLDAVRGSPAINVAVHVFRKAADDTWEPFASGKTSESGELHGLTT EEEFVEGIYKVEIDTKSYWKALGISPFHEHAEVVFTANDSGPRRYTIAALLSPYSYSTTA VVTNPKE

>sp(P02753) Retinol binding protein holoform corrected ERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGR VRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSC RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSER NI.

>sp(P00761) TRYP_PIG Trypsin precursor

FPTDDDDKIVGGYTCAANSIPYQVSLNSGSHFCGGSLINSQWVVSAAHCYKSRIQVRLGE
HNIDVLEGNEQFINAAKIITHPNFNGNTLDNDIMLIKLSSPATLNSRVATVSLPRSCAAA
GTECLISGWGNTKSSGSSYPSLLQCLKAPVLSDSSCKSSYPGQITGNMICVGFLEGGKDS
CQGDSGGPVVCNGQLQGIVSWGYGCAQKNKPGVYTKVCNYVNWIQQTIAAN

Discussion

- Results included a significant number of false positives
 - Scores generated from the probability and ladder scores
 - Scores assigned by ProteinLynx Global Server 2.2
 - Scores for all false positives were below a determined acceptable range
 - All false positives could thus be easily filtered out
- The result set was manually inspected
 - Contained several peaks that had previously been missed by ProteinLynx Global Server.
- This test resulted in a manageable number of false positives
 - Allowed for the identification of several PTMs that had previously been missed as false negatives.

Summary

- Amino acid variants always observed
 - Real and DB sequence errors
- PTMs always observed
 - Redox induced, enzymatic, signaling, etc.
- Targeted database search improves results
 - search faster
 - better orientation forces positive match
 - easier to handle the results
- Accurate mass and high resolution
 - Increases likelihood of accurate results
- Dynamic range and sensitivity
 - Better MS/MS of low abundance PTMs

Acknowledgements

- We are thankful to Waters Corporation for support with PLGS
- This project was funded by NIH grants P41-RR10888 and NHLBI contract N01-HV-28178.
- Thanks to all the members of the Mass Spectrometry Resource and the Cardiovascular Proteomics Center.