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Overview

o Mass spectrometry is widely used for characterization of protein
primary structure and structural changes, such as sequence 
mutations and post-translational modifications. 

o MALDI-TOF MS is effective for peptide mass mapping, and LC-
MS/MS is a powerful technique for protein/peptide sequencing and
for localizing the site of structural changes. 

o For human hemoglobin, many mutations and post- or co-
translational modifications have been found associated to 
biological functions and disease states. 

o In this presentation, we demonstrate the pattern-based 
identification of peptide structural changes for MALDI-TOF MS 
data. These pattern changes can be in intensity or in isotopic peak 
distribution, or both. 

o LC-MS/MS measurements of these samples confirmed their 
identification based on the MS results.
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Hemoglobin: Gene and Expressed Protein

Stable/unstable variants

Stable variants + PTMs
Protein-based 
MS analysis

Gene-based 
DNA analysis

ID + correlate

- heterotetramer (alpha and beta chains): 65 KDa
- binds heme and transports oxygen/HCO3
- SNIPs may results in unstable hemoglobin and disease phenotype

a2g2

a2b2

a2d2

a2b2
gluocos

e

a2b2

a2g2

x2e2

a2e2

x2g2

formula

2 %
95 %
3 %
diabetes

-
-

-
-
-

Expressed

F
A
A2

Alc

adult

A
F

fetus

Gower I
Gower II
Portland I

embryo

namehemoglobinepsilon gamma delta beta

3'5'

3'5'

alpha 2 alpha 1zeta 2 zeta 1

Alpha and Beta globin gene clusters

Hb F Hb A2 Hb A

A G

Chromosome 11, 16: 4 alpha, 2 beta and 2 delta chains.
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>1200 known
responsible for many diseases

>100 known 
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Amino Acid Sequences of Human Hemoglobins

a VLSPADKTNV KAAWGKVGAH AGEYGAEALE RMFLSFPTTK TYFPHFDLSH GSAQVKGHGK
b VHLTPEEKSA VTALWGKVNV DEVGGEALGR LLVVYPWTQR FFESFGDLST PDAVMGNPKV
d VHLTPEEKTA VNALWGKVNV DAVGGEALGR LLVVYPWTQR FFESFGDLSS PDAVMGNPKV
g VHLTPEEKSA VTALWGKVNV DEVGGEALGR LLVVYPWTQR FFESFGDLST PDAVMGNPKV

61 KVADALTNAV AHVDDMPNAL SALSDLHAHK LRVDPVNFKL LSHCLLVTLA AHLPAEFTPA
KAHGKKVLGA FSDGLAHLDN LKGTFATLSE LHCDKLHVDP ENFRLLGNVL VCVLAHHFGK
KAHGKKVLGA FSDGLAHLDN LKGTFSQLSE LHCDKLHVDP ENFRLLGNVL VCVLARNFGK
KAHGKKVLGA FSDGLAHLDN LKGTFATLSE LHCDKLHVDP ENFRLLGNVL VCVLAHHFGK

121 VHASLDKFLA SVSTVLTSKYR
EFTPPVQAAY QKVVAGVANA LAHKYH
EFTPQMQAAY QKVVAGVANA LAHKYH
EFTPPVQAAY QKVVAGVANA LAHKYH

Small "single protein database" of the 4 predominantly expressed chains of human 
hemoglobin. Trypsin sites are shown in red and amino acid differences in the delta 
and gamma chains are shown in blue. The sickle cell mutation E6V is located in 
the beta chain. 

For our proteomics approach we search against these databases as standard 
database search approaches fail due to high degree of homology which result in 
false negatives/positives and limits % coverage.
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DNA

Enzymes

MS

MS/MS
RP-HPLC+

• Peptide mass mapping

Proteolysis

• Accurate peptide mass mapping

capLC-MS/MS

Sample

• Mass of intact Protein
• Top-down sequencing

MALDI-FT-MS

• Automated sequencing
• Automated variant identification
• Automated PTM identification 

ESI-FT-MS/MS

MALDI-TOF-MS

HemoglobinCPC

Clinical

MS

Clinical Analysis of Hemoglobin Samples by MS

We have employed a large number of different MS approaches to characterize 
hemoglobin variants. Each MS method yields increasingly accurate results and 
these end results are always correlated with other analyses

Here we characterize SNIPs of human hemoglobin using statistical tools such as 
pattern recognition/PCA/FA and correlate the data to the database search results 
in order to more accurately identify variant hemoglobins.

• Pattern recognition

MS: Database Search; Statistical Analysis

o MALDI-TOF mass spectra were acquired on a series of tryptic 
digests of human hemoglobin samples. The sets of samples were 
be broken down into 2 groups: 11 normal, and 13 sickle 
homozygote among the 24 samples.

o For proteomics MS database searches, a hand-annotated peak list 
of mass and intensity values was generated. This was searched 
against a "digital digest" of the 4 chains of hemoglobin. Observed 
masses which match theoretical masses allow for assignment of 
the tryptic peptides.

o Statistical analyses of the MALDI-MS data was performed using a 
series of clustering/ classification methodologies including factor 
analysis, principle component analysis, k means clustering, 
hierarchical clustering, etc.

o MALDI-MS data sets were analyzed in several formats: raw TOF 
data and calibrated m/z data with and without pre-classification 
and with and without different degrees of pruning and with and 
without supervision.
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The 2 highlighted peaks correspond to tryptic peptides of the beta chain of 
hemoglobin and are what we first look for in the MALDI mass spectrum. One peak 
is characteristic for normal (m/z 952.5) and the other for sickle cell (m/z 922.5). 
Other peaks are observed... are they interesting?

Comparative Analysis of Known Peaks

AA (beta chain) Sequence  [M+H]+ ∆ mass
Normal T1       VHLTPEEK  952.51  -29.98
Sickle T1       VHLTPVEK  922.55

Automated Identification Using BUPID: MP15 #324

BUPID search: 23 peaks matched to Hemoglobin chains via SP search. However, 
the initial MALDI-TOF MS database search may not obtain full coverage! With 
the use of the single protein databases we improved this result and increased 
the coverage of the hemoglobin chains to 95% and correctly identified the sickle 
mutation.

95% coverage
beta sickle E6V!

Alpha: ~ 85%

Beta: ~ 95%

Delta: ~ 60%

Gamma: ~ 72%
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MALDI-TOF MS: Example of Comparative Analysis

Visually we can compare MALDI-TOF mass spectra and look for similarities and 
differences. Not all of the spectra are good, some regions of the spectra yield 
minimal information. In this example 3 normals (A1,2,3) are compared with one SC 
sample (S12). The differences, shown in the first panel, indicate the addition of a 
"single" new peak in the mass spectrum. The remainder of the spectrum is 
essentially the same, with some differences only in peak intensities.
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Alternative Data Viewing of MALDI-TOF MS Data
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We can convert the MALDI TOF MS 
data from the usual m/z, %I scale as 
shown above, to a 2D plot as shown 
here: The file display is rotated 90o, 
and %I is scaled as a false color 
image.

This will allow us to simultaneously 
visualize and compare large numbers 
of data sets.

m
/z

10
00
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100    % Intensity 0
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Raw MALDI-TOF Data and m/z Data 
Binning/Truncation/Normalization

Results of binning the data: a decrease in the number of data points is acceptable 
to a certain point after which we lose resolution. A total of about 2,000 data points 
seems to be required. Truncation has also been performed as a means to reduce 
computational time and improve results. Normalization was also employed as a 
means to account for differences in absolute peak intensities.

Raw: bin100
15kb
1,860 data points

Raw: bin10
125kb
18,600 data points

Raw: bin1
800kb
186,000 data points

Region of “0 
values” which 
may be 
removed

... the more 
interesting data

Example of Data Reduction and Normalization

Results of binning the data: a decrease in the number of data points yielded about 
2,000 data points with minimal loss of information. Further reduction was 
accomplished via removal of zero values where S/N < 5 and the spectra were 
scaled to % relative intensity.
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MALDI-TOF MS of tryptic digests of human hemoglobin samples. All samples 
were processed identically. Data is: windowed: m/z 800-3000, Bin=100. Current 
samples set: A1-A11, S12-24: truncated data: not normalized.

MALDI-TOF MS Normal and Sickle Hemoglobins
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Quantitative Data Set = 245 Data!$A$2:$Y$246

Distance/Similarity Measure = Bray and Curtis

Cluster Method = Nearest Neighbor

Data: 254 data points

Hierarchical Clustering Results for m/z Data

Unsupervised Hierarchical clustering of the m/z data yielded 2 randomized 
clusters and 6 unique m/z values of interest. A highly curated data set was used.
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Unsupervised Hierarchical clustering of the Sample data yielded 2 clusters. One 
sample S17 was misclassified and one outlier S21 was observed. A highly 
curated data set was used.

Hierarchical Clustering Results for Sample Data

Factor loadings (axes F1 and F2: 68.23 %)
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Factor Analysis on 6 Unique MALDI-TOF MS Peaks

Principal factor analysis: Trans'!$B$1:$G$25 / 24 rows and 6 columns

Correlation: Pearson, Number of factors: 2: similar results with automatic 

Initial communalities: Squared multiple correlations, Convergence = 0.0001 

Factor analysis on the interesting peaks observed in the first pass clustering 
identified 2 groups for the m/z data and 2 groups for the sample data. 
Similar results were obtained using PCA analysis with similarity measurements 
via the Pearson coefficient. K means yielded slightly poorer results.
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Clustering of 6 Unique MALDI-TOF MS Peaks

Agglomerative hierarchical clustering (AHC): T'!$B$1:$G$25/ 24 rows, 6 columns

Similarity: Pearson correlation coefficient

Agglomeration method: Unweighted pair-group average, truncation: 2 classes

Dendrogram
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Agglomerative hierarchical clustering analysis on the interesting peaks observed 
in the first pass clustering identified the same 2 groups for the m/z data and the 
same 2 groups for the sample data. S21 was assigned correctly and S17 was 
misclassified . 

Unsupervised Classification of RAW TOF Data

o Sample pre-processing
o Alignment: Types of alignment attempted:

o None (samples were fairly well aligned to begin with)
o Alignment to a random sample using MATLAB

o Peak detection
o Assume Gaussian noise model: background and intensity
o Assign z-scores to all observed intensities based on µ and σ 

of raw data (µ, σ not strongly affected by rare peaks)
o For each sample, pick time points with z ≥ 4
o Consider T, the union of time points selected for all samples: 

restrict raw data to time points in T

o Clustering 
o Mutual information - based distance clustering 
o k means clustering

o Predictor peak identification
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Clustering TOF: Mutual information and k means

o k-means clustering using MATLAB – find two groups (N vs. S) 
o On all timepoints (186K)
o On timepoints in T (z ≥ 4 set)

o Mutual Information 
o Compute mutual information table between all samples
o Entropy of samples differs, difference in entropy may exceed 

difference in mutual information
o Sample-sample differences are relatively small and expected 

to be mainly due to disease phenotype

o Building a tree
o Build a tree using furthest distance (complete) linkage
o Look at top two sub-trees

This aspect of the project was performed in 2 phases: 1 = RAW TOF data files 
were analyzed without any knowledge of the type of data or the types of sample, 
2 = samples were pre classified into N and S groups.

Clustering Results: Mutual information and k-means

o Mutual Information without pre-classification
o Sickle cell group:

o Precision: 91%, sensitivity: 77%, specificity: 91%
o Normal group:

o Precision: 77%, sensitivity: 91%, specificity: 77%
o Overall, with pruning:

o Precision: 83%
o Estimated p-value: 4.6 E -4

o Mutual Information using pre-alignment of samples (Pearson corr)
o Sickle cell group:

o Precision: 100%, sensitivity: 62%, specificity: 100%
o Normal group:

o Precision: 69%, sensitivity: 100%, specificity: 62%
o Overall, with pruning:

o Precision: 79%
o Estimated p-value: 6.1 E -4
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Mutual Information Clustering: Normal vs. Sickle

Normal Sickle cell

Mutual information clustering yielded 2 groups with 4 samples misclassified 
using the RAW MALDI-TOF MS data without any pre classification or supervision. 

Predictor peak identification

o z-scored peak data averaged across the predicted clusters
o z-difference between two clusters computed and weighted by 

exp(abs(log(z-ratio))) to emphasize outliers
o Secondary z-scores computed for all peaks
o Peak positions with z ≥ 4 were considered to be predictor peaks
o Predictor peaks tended to belong to the sickle cell group

o Summary of predictor peak results 
o To be determined in conjunction with the data from further 

experiments

o Predictor peak classification yielded results equivalent to the 
highly supervised methods shown earlier

o We also observed many additional peaks of interest and work is 
ongoing to determine the significance of the peaks
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Identification: Normal beta 1-8: MS/MS 476.762+

All peaks were subjected to LC-MS/MS in order to characterize them completely. 
This example here shows the MS/MS identification of the normal beta chain 
tryptic peptide 1-8. All peaks were assigned to tryptic peptides of hemoglobin.

PLGS 2.2 Database search results: LC-MS/MS of [M+2H]2+ m/z 476.76: beta 1-8.

LC-MS/MS of [M+2H]2+ = 466.78: beta 1-8. b,y ions indicated

Misclassified S17: SS (DNA) or AA (MS) ?

m/z920 970
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S12
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922.503

Our earlier classification results suggested that S17 was misclassified... However 
we have interrogated this sample repeatedly and each analysis yielded the same 
results which suggest that S17 is in fact not a Sickle homozygote mutation.....

? ?
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Prospective

o Classification:
o All methods employed for classification yielded increasingly 

favorable results with increasing manipulation of the data files
o But: such manipulation may not be possible with unknowns
o Information theory clustering yielded the best results on the 

RAW TOF data without any pre-treatment and identical results 
to the highly manipulated data when samples were pre-
classified

o Identification:
o Several m/z peaks were identified which allowed us to classify 

the Normal vs. Sickle samples
o Two of the peaks were apparently obvious resulting from 

tryptic peptides of the beta chain 1-8 with and without the 
sickle point mutation E6V: m/z 922.5 (Sickle) and m/z 952.5 
(Normal)

o Other defining peaks were observed

o Conclusions: statistical and other bioinformatics tools add a 
powerful new dimensionality to processing of MS data
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