Organization and Strategic Direction for the HUPO Human Proteome Project (HPP)
GS Omenn1; R Aebersold2; A Bairoch8; C Costello4; WI Hancock5; P Legrain6; E Lundberg9; 
YK Paik7; MP Snyder3
1University of Michigan, Ann Arbor, MI; 2ETH, Zurich, Switzerland; 3Stanford University, Palo 
Alto, CA; 4Boston University, Boston, MA; 5Northeastern University, Boston, MA; 6Commissariat à l'Energie Atomique, Fontenay aux Roses, France; 7Yonsei Proteome Research 
Center, Seoul, Korea; 8Swiss Institute of Bioinformatics, Geneva, Switzerland; 9Royal Institute 
of Technology (KTH), Stockholm, Sweden

Abstract
The HUPO Human Proteome Project announced in Sydney and launched in Geneva is now fully 
implemented. Many scientists are engaged with specific roles on the HPP-EC, Senior Scientific 
Advisory Board, Chromosome-centric C-HPP EC and Principal Investigators Council of 18 
chromosome-specific teams, Biology and Disease-driven B/D-HPP EC and Principal 
Investigators Council of a dozen organ, biofluid, disease, model organism, and stem cell 
initiatives, and the Antibody-based, MS-based, and Knowledge-based resource pillar committees. 
A web portal has been established at www.thehpp.org, with a corresponding 
working group. Protein capture datasets will be organized along the lines of the Human Protein 
Atlas and Antibodypedia. Submission of MS-datasets is standardized through the 
ProteomeXchange, PRIDE, and PeptideAtlas, with reanalysis using TPP and stringent FDR (1% 
at the protein level). The PeptideAtlas for SRM Experimental Libraries has been launched, 
along with spectral libraries and peptide resources that facilitate and democratize SRM studies 
by groups worldwide. The C-HPP and B/D-HPP programs collaborate in building the parts list 
of proteins corresponding to the 20,300 protein-coding genes, plus PTMs, splice variants, and 
SNPs; the C-HPP aims to reveal co-expressed proteins of co-located genes; the B/D-HPP is 
defining a framework of protein networks and interactions. HPP investigators will analyze 
unusual specimens (nasal epithelium, placenta, fetus, brain regions) to detect “missing proteins”, 
use ultrasensitive methods for low-abundance proteins, identify and differentiate protein 
families, splice variants, and PTMs and deduce their functional features. Initial publications are 
Legrain et al, MCP 2011; Uhlen et al, MCP 2012; Paik et al, NBT 2012; and Paik et al, JPR 
2012. The C-HPP is preparing a special issue of JPR for January 2013; the B/D-HPP will do so 
in coming years