An Amplitude and Frequency Stabilized High Power Oscillator for Mass Filtering and **Multipole Ion Guides**

BOSTON UNIVERSITY

<u>Tzu-Yung Lin¹, Raman Mathur², Cheng Lin¹, Konstantin Aizikov¹, Weidong Cui¹, Ronald W. Knepper¹, and Peter B. O'Connor³</u> 1) Boston University, Boston, MA; 2) Thermo Fisher Scientific, San Jose, CA; 3) University of Warwick, Coventry, United Kingdom

Introduction

In mass spectrometry, quadrupole ion guides are commonly driven by high voltage oscillators. Such "power supplies" usually provide sine waves which can be described by the electric potential Φ :

> $\Phi = U + V \cos \omega t$ (1)

where V_{o} is the zero-to-peak amplitude of a radio-frequency (RF) potential oscillating with angular frequency ω , and U is a DC voltage applied [1]. When a DC bias is applied to the sine wave (namely, when U is not zero), a quadrupole system can be operated as a mass filter.

As shown in Figure 1, two pairs of rods are connected with oppositepolarity RF signal applied electrically, and establish a two-dimensional field in the x-y plane. When the ions travel in the z direction, they will oscillate in the x-y plane while traveling along the z direction [1].

$$\Phi_0 = \Phi_{x-pair} - \Phi_{y-pair} = 2(U + V \cos \omega t)$$

(2)

The quadrupolar potential at point (x, y) is: $\Phi_{(x,y)} = \Phi_0(x^2 - y^2)/2r^2$ (3)

Therefore, the x-direction force F_x acting on this ion at point (x, 0) is:

$$\mathbf{F}_{x} = ma_{x} = m\frac{d^{2}x}{dt^{2}} = -ze\left(\frac{d\Phi}{dx}\right)_{y=0} = -ze\frac{\Phi_{0}x}{r^{2}} \qquad (4)$$

$$= 1.6 \times 10^{-19} \text{ C}$$

$$= \text{ numbers of e}$$

By substituting (2) into (4), it will become a Mathieu Equation:

$$\frac{d^{2}u}{d\xi^{2}} + (a_{u} - 2q_{u}\cos 2\xi)u = 0$$
(5)

where $a_u = a_x = -a_y = \frac{8zeU}{m\omega^2 r^2}$ and $q_u = q_x = -q_y = \frac{-4zeV}{m\omega^2 r^2}$ (6)

The solutions to the Mathieu equation can be interpreted in terms of ion trajectory stability in the stability diagrams [1].

Stability Diagram

- as long as they still go through the stability areas.

- "top."

In order to achieve 10⁻⁴ stability:

- ion guides.

Previous Design

There are multiple stability regions (where ion motions are stable

By scanning the U and V (while keeping U/V constant) across the tip of the stability regions, a steeper line provides a higher resolution,

The previous design doesn't provide more than ~1% stability.

Automatic Gain Control (AGC) will be built in to maintain the output amplitude.

The Matching Network will be introduced between the circuit output and the multipoles.

Simulation Results

Bias potential

HV supply

The schematic in Fig 7 was implemented by transistor ZTX658 from ZETEX and crystal ECS-10-13-1H from ECS Inc to verify the Spice simulation.

Future Works

- To use the developed Spice models to verify new oscillator design ideas.
- To implement the new design and to verify the performance with the FT-ICR mass spectrometer.

Fig 8. Testing circuits with 270V power supply

References

- 1. March, R. E.; Todd, J. F. J.: Quadrupole Ion Trap Mass spectrometry, 2nd ed., Wiley–Interscience, Hoboken, NJ, 2005.
- 2. E. de Hoffmann; V. Stroobant: Mass Spectrometry: Principles and Applications, 3rd ed., John Wiley & Sons, Ltd, Chichester, England.
- 3. O'Connor, P. B.; Costello, C. E.; Earle, W. E.: A High Voltage RF Oscillator for Driving Multipole Ion Guides. J. Am. Soc. Mass Spectrom., 2002, 13, 1370–1375.
- 4. Mathur, R.; O'Connor, P. B.: Design and implementation of a high power RF oscillator on a printed circuit board for multipole ion guides. Rev. Sci. Instrum., 2006, 77, 114101.

Acknowledgement

Dr. Catherine E. Costello, Liang Han, Xiaojuan Li, Dr. David H. Perlman, Nadezda Sargaeva, Dr. Chunxiang Yao, NIH/NIGMS R01GM78293. Xiang Yu.

NIH/NCRR P41RR10888. NIH/NHLBI N01HV28178,