Susan R. Doctrow, PhD

Research Associate Professor, Medicine

(617) 638-4866
72 E. Concord St Housman (R)

Biography

Research interests include:

-Development & study of synthetic metal-based “mito-protective” superoxide dismutase/catalase (SOD/cat) mimetics.

-SOD/cat mimetics as potential mitigators of radiation injury and combined injury, for example, in a radiological accident or terrorism scenario.

-Broader interest in the role of mitochondrial oxidative injury in neurodegenerative and certain other pathological processes.

Over a number of years, beginning at the small pharmaceutical company Eukarion, we developed and have studied synthetic “mito-protective” superoxide dismutase/catalase (SOD/cat) mimetics as potential therapeutic agents for pathologies in which reactive oxygen species (ROS) and reactive nitrogen species (RNS) are implicated. We have focussed on two classes of compounds: (1) Salen manganese complexes that catalytically scavenge ROS and RNS and protect tissues in many experimental models for injury, disease, and degeneration. Examples of these compounds include the “classic” mimetics EUK-8 and EUK-134, the more lipophilic analog EUK-189, and the more biologically-stable cyclic analog EUK-207. All are active in vivo when administered by injection and infusion and, in some cases, topically. (2) Low molecular weight porphyrin manganese complexes, for example EUK-451, with oral bioavailability and anti-apoptotic activity.

In recent years, we’ve had a particular interest in SOD/cat mimetics as potential mitigators of delayed radiation injury. Our lab has conducted this work as part of two BioShield funded, NIAID administered multi-institution “Centers for Medical Countermeasures Against Radiation (CMCR)”. Our CMCRs have studied novel agents for their ability to mitigate delayed injury to kidney, lung, CNS, GI and skin in scenarios relevant to radiological terrorism. Delayed injury to these organ systems is expected to occur weeks, months or years after radiation exposure in survivors of the initial exposure. Such tissue damage is hypothesized to result from chronic oxidative stress through such mechanisms as “proinflammatory” cascades and/or mitochondrial dysfunction. Mitigating effects of SOD/cat mimetics support this hypothesis, and our ongoing research is aimed at elucidating this further. With Dr. John Moulder’s laboratory (Medical College of WI, MCW), we’ve found that EUK-207, initiated weeks after radiation, mitigates chronic renal injury induced by total body irradiation in rats. (This is of potential relevance not only to addressing consequences of radiological accidents or terrorism but also to long-term kidney damage seen in cancer patients undergoing bone marrow transplantation.) Other collaborating CMCR laboratories observe substantial radiation mitigating effects of EUK-207 in the lung (e.g. Mahmood et al., 2011) and brain. More complex scenarios involve “combined injury”, for example radiation and trauma. With collaborators in the labs of Dr Zela Lazarova (MCW) and Dr. Moulder, we’ve found that systemic EUK-207 given beginning 48 hrs after radiation, improves both skin inflammation and wound healing, including angiogenesis, in a rat combined injury (radiation/wounding) model (Doctrow, Lopez et al., 2012). Such data, along with their preservation of microvasculature in irradiated lung (Gao et al., 2012) and inhibition of radiation induced capillary endothelial cell apoptosis (Vorotnikova et al., 2010) suggest that SOD/cat mimetics mitigate injury, at least in part, at the level of the microvascular endothelial cell.

More broadly, we have had a longstanding interest in the role of oxidative stress in neurodegenerative and other disease models, based on the effectiveness, including “structure-activity relationships”, of SOD/cat mimetics. One key target for these compounds is the mitochondrion, an organelle whose dysfunction is strongly implicated in certain neurodegenerative and other chronic disorders. Mice lacking the mitochondrial form of SOD (sod2-/- mice) suffer severe, lethal pathologies due to mitochondrial oxidative injury. With Dr. Simon Melov’s laboratory (Buck Institute), we’ve found that salen Mn complexes, especially the more lipophilic EUK-189, protect the brain and peripheral organs, extending lifespan about 3-fold (Melov et al., 2001; Doctrow et al., 2005). Of all agents, synthetic and natural products, that have been tested so far, EUK-189 continues to be the most “mito-protective” agent in this model, with EUK-207 showing similar activity (Doctrow, Liesa et al., 2012). Studies by Drs. Marc Liesa and Ivan Luptak and colleagues in the labs of Drs Orian Shirihai and Bill Colucci at BUMC have shown that EUK-207 prevents mitochondrial injury in a model for heart ischemia/reperfusion, including in a mouse strain (ABCme -/+) with a mitochondrial impairment (Liesa et al, 2011). (This research was a collaboration through the Mitochondria ARC in the Evans Center for Interdisciplinary Biomedical Research.) Salen Mn complexes also prevent delayed radiation-induced mitochondrial injury, for example in rat astrocytes (Rosenthal et al., 2011). Besides “mito-protection” another likely site of intervention of these SOD/cat mimetics is through suppression of ROS-associated “proinflammatory” transcriptional pathways. For example, they suppress activation of NF kappa B and AP-1 while protecting tissues such as the brain and liver in certain in vivo injury models. Such effects have implications not only in disease and injury, but also in age-associated degeneration. Several years ago, work with Dr. Gordon Lithgow’s lab (Buck Institute) showed that EUK-8 and EUK-134 increased lifespan of c elegans, wild type as well as a strain with a mitochondrial dysfunction (mev-1) (Melov et al., 2000). Other studies with Dr. Michel Baudry’s lab (USC) showed that in aged mice, chronically infused EUK-189 or EUK-207 improved cognitive function in behavioral models, while suppressing numerous biochemical indicators of oxidative stress in the brain (Liu et al., 2003; Clausen et al., 2010). We continue to explore, with our key collaborators, how modulation of mitochondrial function and certain ROS- and RNS-dependent signaling pathways can mediate the effects of SOD/cat mimetics in complex models for injury, aging, and disease. With Pulmonary Center colleagues, we have begun to study asthma, a very complex disorder in which both chronic inflammation and mitochondrial dysfunction have been implicated. In collaboration with Drs. Bill Cruikshank and Marty Joyce-Brady, we are studying the impact of synthetic mito-protective SOD/catalase mimetics, alone or in combination with anti-inflammatory or other experimental therapeutic strategies, in asthma models.

Education

  • Brandeis University, PhD
  • University of Rochester, BA

Publications

  • Published on 10/24/2016

    Raber J, Davis MJ, Pfankuch T, Rosenthal R, Doctrow SR, Moulder JE. Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav Brain Res. 2017 Mar 01; 320:457-463. PMID: 27789343.

    Read at: PubMed
  • Published on 5/24/2014

    Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Medhora M, Hill RP. Targeting the Renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):722-8. PMID: 24867538.

    Read at: PubMed
  • Published on 10/17/2013

    Kash JC, Xiao Y, Davis AS, Walters KA, Chertow DS, Easterbrook JD, Dunfee RL, Sandouk A, Jagger BW, Schwartzman LM, Kuestner RE, Wehr NB, Huffman K, Rosenthal RA, Ozinsky A, Levine RL, Doctrow SR, Taubenberger JK. Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice. Free Radic Biol Med. 2014 Feb; 67:235-47. PMID: 24140866.

    Read at: PubMed
  • Published on 4/23/2013

    Jelveh S, Kaspler P, Bhogal N, Mahmood J, Lindsay PE, Okunieff P, Doctrow SR, Bristow RG, Hill RP. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin. Int J Radiat Biol. 2013 Aug; 89(8):618-27. PMID: 23484491.

    Read at: PubMed
  • Published on 12/13/2012

    Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury with EUK-207 and genistein: effects in adolescent rats. Radiat Res. 2013 Feb; 179(2):125-34. PMID: 23237541.

    Read at: PubMed
  • Published on 11/29/2012

    Doctrow SR, Lopez A, Schock AM, Duncan NE, Jourdan MM, Olasz EB, Moulder JE, Fish BL, Mäder M, Lazar J, Lazarova Z. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol. 2013 Apr; 133(4):1088-96. PMID: 23190879.

    Read at: PubMed
  • Published on 10/7/2012

    Villasana LE, Rosenthal RA, Doctrow SR, Pfankuch T, Zuloaga DG, Garfinkel AM, Raber J. Effects of alpha-lipoic acid on associative and spatial memory of sham-irradiated and 56Fe-irradiated C57BL/6J male mice. Pharmacol Biochem Behav. 2013 Jan; 103(3):487-93. PMID: 23051895.

    Read at: PubMed
  • Published on 9/28/2012

    Gao F, Fish BL, Szabo A, Doctrow SR, Kma L, Molthen RC, Moulder JE, Jacobs ER, Medhora M. Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res. 2012 Nov; 178(5):468-80. PMID: 23020094.

    Read at: PubMed
  • Published on 1/1/2012

    Doctrow, S.R., Liesa, M., Melov, S., Shirihai, O.S., and Tofilon, P.J. Current Inorg. Chem. (in press). Salen Mn complexes are superoxide dismutase and catalase mimetics that protect the mitochondria. 2012.

  • Published on 1/1/2012

    Joyce-Brady, M., Cruikshank, W., and Doctrow, S.R. . Antioxidant strategies in the treatment of bronchial asthma. Bronchial Asthma (in press). InTech. 2012.

View 58 more publications: View full profile at BUMC

View all profiles