Hans Dooms, PhD

Assistant Professor, Medicine

(617) 414-2506
72 E. Concord St Evans Building

Biography

The broad goal of my research is to understand the role of T cells in the pathogenesis of autoimmune diseases and to apply this knowledge for the development of new therapeutic interventions. My laboratory uses in vivo models of autoimmune diseases to follow T cell responses against tissues (e.g. pancreatic islets) and to identify molecules (e.g. cytokines) that orchestrate the autoimmune attack. In addition, we are developing novel gene-deficient and transgenic models to obtain mechanistic insights into the cytokine signaling pathways and transcription factors that drive autoreactive T cells.

To combine the capacity for potent protective responses against pathogens with the prevention of autoimmunity and tissue damage, the immune system works with “checks and balances” to generate the appropriate cellular response to foreign antigens while maintaining tolerance to self. Autoimmune diseases result from breakdowns of these control mechanisms, either due to defects in tolerance-inducing pathways or because autoreactive lymphocytes acquire resistance to proper regulation. I am particularly interested in the contribution of one type of lymphocytes, memory T cells, to the autoimmune process. Memory T cells possess superior effector capacity and long-term viability to fulfill their physiologic function of protecting the host against recurring infections and tumors. However, memory T cells that develop against self-antigens are, precisely due to these characteristics, a significant clinical problem and a major obstacle to restoring tolerance for the therapy of autoimmune diseases and the protection of transplants.

We are currently studying type 1 diabetes as a model of autoimmunity. Islet-specific memory T cells are present in animal models as well as patients with type 1 diabetes and perpetuate anti-islet immune responses, ultimately leading to the onset of hyperglycemia. We recently found that blocking the cytokine Interleukin-7 (IL-7) inhibits these pathogenic memory cells and stops further destruction of the insulin-producing cells in the pancreas. Cytokines such as IL-7 and IL-2 are important regulators for the differentiation, programming and maintenance of memory T cells and modulating their function is a promising approach for controlling memory responses. Ongoing projects in the lab focus on (1) elucidating the molecular and cellular mechanisms underlying IL-7’s role in type 1 diabetes, (2) understanding the dual function of IL-2 in immunity and tolerance and (3) identifying transcriptional programs in CD4+ memory T cells.

Other Positions

  • Assistant Professor, Microbiology, Boston University School of Medicine
  • Center Faculty Member, Arthritis Center, Boston University School of Medicine
  • Graduate Faculty (Primary Mentor of Grad Students), Boston University School of Medicine, Division of Graduate Medical Sciences

Education

  • Universiteit Gent, PhD
  • Universiteit Gent, MSc

Classes Taught

  • FC704
  • GMS MI713

Publications

  • Published on 5/17/2017

    Smith NM, Wasserman GA, Coleman FT, Hilliard KL, Yamamoto K, Lipsitz E, Malley R, Dooms H, Jones MR, Quinton LJ, Mizgerd JP. Regionally compartmentalized resident memory T cells mediate naturally acquired protection against pneumococcal pneumonia. Mucosal Immunol. 2017 May 17. PMID: 28513594.

    Read at: PubMed
  • Published on 3/29/2017

    Vazquez-Mateo C, Collins J, Fleury M, Dooms H. Broad induction of immunoregulatory mechanisms after a short course of anti-IL-7Ra antibodies in NOD mice. BMC Immunol. 2017 Mar 29; 18(1):18. PMID: 28356069.

    Read at: PubMed
  • Published on 2/8/2017

    Nicholas D, Proctor EA, Raval FM, Ip BC, Habib C, Ritou E, Grammatopoulos TN, Steenkamp D, Dooms H, Apovian CM, Lauffenburger DA, Nikolajczyk BS. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis. PLoS One. 2017; 12(2):e0170975. PMID: 28178278.

    Read at: PubMed
  • Published on 7/4/2013

    Dooms H. Interleukin-7: Fuel for the autoimmune attack. J Autoimmun. 2013 Sep; 45:40-8. PMID: 23831438.

    Read at: PubMed
  • Published on 11/16/2012

    Schoenbrunn A, Frentsch M, Kohler S, Keye J, Dooms H, Moewes B, Dong J, Loddenkemper C, Sieper J, Wu P, Romagnani C, Matzmohr N, Thiel A. A converse 4-1BB and CD40 ligand expression pattern delineates activated regulatory T cells (Treg) and conventional T cells enabling direct isolation of alloantigen-reactive natural Foxp3+ Treg. J Immunol. 2012 Dec 15; 189(12):5985-94. PMID: 23162126.

    Read at: PubMed
  • Published on 9/20/2012

    Van Belle TL, Dooms H, Boonefaes T, Wei XQ, Leclercq G, Grooten J. IL-15 augments TCR-induced CD4+ T cell expansion in vitro by inhibiting the suppressive function of CD25 High CD4+ T cells. PLoS One. 2012; 7(9):e45299. PMID: 23028916.

    Read at: PubMed
  • Published on 6/25/2012

    Penaranda C, Kuswanto W, Hofmann J, Kenefeck R, Narendran P, Walker LS, Bluestone JA, Abbas AK, Dooms H. IL-7 receptor blockade reverses autoimmune diabetes by promoting inhibition of effector/memory T cells. Proc Natl Acad Sci U S A. 2012 Jul 31; 109(31):12668-73. PMID: 22733744.

    Read at: PubMed
  • Published on 7/31/2011

    Katzman SD, Hoyer KK, Dooms H, Gratz IK, Rosenblum MD, Paw JS, Isakson SH, Abbas AK. Opposing functions of IL-2 and IL-7 in the regulation of immune responses. Cytokine. 2011 Oct; 56(1):116-21. PMID: 21807532.

    Read at: PubMed
  • Published on 10/29/2010

    Barron L, Dooms H, Hoyer KK, Kuswanto W, Hofmann J, O'Gorman WE, Abbas AK. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol. 2010 Dec 1; 185(11):6426-30. PMID: 21037099.

    Read at: PubMed
  • Published on 6/1/2010

    Dooms H, Abbas AK. Revisiting the role of IL-2 in autoimmunity. Eur J Immunol. 2010 Jun; 40(6):1538-40. PMID: 20458706.

    Read at: PubMed

View 15 more publications: View full profile at BUMC

View all profiles