Laboratory of Molecular Neurobiology

10-3061-PHARMALABS-0092

Welcome to the Laboratory of Molecular Neurobiology at the Boston University School of Medicine. Under the direction of David H. Farb, PhD, the laboratory is involved in basic research on neurotransmitter receptor pharmacology, the mechanisms by which receptors are regulated and how activation of these receptors translates into modulation of neural network activity in vivo.  The laboratory uses in vitro and in vivo techniques to investigate drug targets.  Activities can broadly be divided into the following areas:

Electrophysiology

The Dancing Place Cells

The laboratory uses in vitro and in vivo electrophysiological techniques to investigate how drugs modulate neuronal activity. The Dancing Place Cells above were created from in vivo recordings of actual hippocampal neurons in the brains of freely behaving rodents. The Laboratory is working to identify changes in hippocampal function that underlie cognitive deficits associated with aging and disease and, to assess for the functional neural network correlates associated with effective therapeutics.  In vivo electrophysiological studies are conducted in freely behaving animal models using indwelling micro-electrode arrays to record drug-induced changes in neural network activity during performance of relevant behavioral tasks of learning and memory function.  The laboratory has three temperature controlled recording rooms, each with its own Plexon MAP system dedicated to this exciting work.  The Laboratory of Molecular Neurobiology is part of the Boston University Center for Systems Neuroscience.

In vitro electrophysiological research is currently carried out in three dedicated workrooms. Whole-cell patch clamp and two-electrode voltage clamp techniques are presently being used to study the modulation of GABA and glutamate receptors in both cultured neurons and in Xenopus oocytes that have been injected with mRNA coding for neurotransmitter receptors. A high-throughput electrophysiology (HTEP) station, developed in our laboratory, is used for rapid screening of chemical libraries.

Studies of drug-induced changes in post synaptic potentials and long-term potentiation are carried out using electrophysiological techniques in brain slice preparations.

Molecular Biology

One approach taken towards the study of neurotransmitter receptors in this lab is through the use of molecular biological techniques. Regulation of the subunit composition, and hence pharmacological specificity, of the receptors under study can take place at the genomic level. Examination of the promoter and coding sequences yields valuable information that complements the other approaches used in this laboratory.

Nanotechnology

Drug delivery via nanoparticles encapsulating hydrophilic or hydrophobic molecules are being engineered for delivery across the blood brain barrier. Nanoparticle composition is being tailored to better deliver drug to specific target sites. Neuroactive drugs and proteins, biomarkers for novel diagnostics, sensitive dyes for neural mapping, and many other applications are envisioned. The major advantage of this technique is the noninvasive delivery of molecules to the CNS via a peripheral injection.

 

For more detailed information, please click here