Using Mobile Technology to Enhance Patient Outcomes

January 30, 2018

Christopher Shanahan, MD, MPH
Assistant Professor of Medicine

Rebecca G. Mishuris, MD, MPH
Assistant Professor of Medicine
Associate CMIO, BMC

Jeffrey Kalish, MD
Associate Professor of Surgery
Associate CMIO, BMC
Learning Objectives

• Explain key functionality available through mobile apps
• Describe importance and key features of user centered design in designing health IT interventions
• Identify resources at BU and BMC to develop and implement mobile health technology for research and operational needs
Key Smartphone Technology Domains

• Users
• Hardware
• Software
• Infrastructure
• Backend
Key Domains: Users

• Clinicians
• Patients
• Allied Health Professionals
• Nurses, Counselors, Pharmacists, Patient Navigators, Case Managers, etc.
Software Functionality:

• Inform re: health risks, healthy behaviors, & resources;
• Train new behaviors: provide text messages, calls, pictures, or videos that model desired behaviors;
• Real-time behavior monitor: unobtrusive, automatic to reduce self-monitoring burden;
• Shape healthy behaviors via real-time monitoring: feedback, prompts, reminders, encouragement, & rewards
• Support development & maintenance of healthy behavior routines via linkage to peers, friends, family, or healthcare workers for social support & instrumental support services;
• Link to healthcare or diagnostic test results.
Key Domains: Hardware

• Native
 • Touch Screen / GUI
 • Camera / Light / Light sensor
 • Audio (Speaker / Microphone)
 • Phone / Broadband
 • Biometric Sensors
 • GPS / Accelerometer

• Add on (Plugin module/ USB Wired)
 • Electrodes / Glucometer / Sphygmomanometer

• External (Wireless/Bluetooth)
 • E.g. Scale
Key Domains: Software

- ~165,000 health-related apps (Apple iOS & Google's Android).
- PwC, a consulting firm, predicted by 2017 such apps will have been downloaded 1.7 billion times. Mar 10, 2016
Key Domains: Infrastructure

- Wireless (Cellular Broadband)
- Bluetooth
- Hardwired (USB, etc.)
- NFC (Near Field Communication)
Key Domains: Backend

• Databases
 • Private & Public
 • Real-time
• Rules engines (algorithms)
• Secure communication interfaces
Users: Health Care Professionals

- **Time Management**
 - Schedule appointments / meetings

- **Information Capture & Management (Personal & EHR)**
 - Notes (Write / Dictate / Exams)
 - Audio / image capture

- **Communications**
 - Voice / Video / Texting / E-mail / Video conf. / Social networking
 - eConsultation

- **Reference & CME**
 - Medical literature / Literature search portals
 - Clinical Decision Support Tools & Calculators
 - Treatment guidelines / Differential diagnosis aids
 - Laboratory test interpretation
 - Med Ed & Training / CME / Board prep / Assessment
 - Simulation / Skill assessment
Design & Develop a mHealth Application

• Identify a problem that needs to be solved
 • define problem being solved, know why an mHealth app best way to solve it.
 • Must add value

• Know Target Audience
 • Must know who will use this new app, and why.

• Design for simplicity, scalability and sustainability
 • Usable, supportable, and upgradable
 • Use existing models/frameworks then modify as needed, Use what worked before.
 • Ensure seamless Integration with other apps or portals,
 • Don’t change workflow or daily routine adversely.
 • Understand what people are already using.
 • Provide upgrades & new services at back end, through a dynamic interface.

• Test. Test. Test. Test.
• Get app reviewed by privacy & security experts
• Make app accessible to encourage widespread use (optional)
(End-)User Centered Design

• Directly impacts implementation success, utility and effectiveness
 • Decrease development time
 • Increase transparency to design process
 • Ensure end product reflects operational processes

• Early in design phase

• 5 Considerations (from the 5 Rights of Clinical Decision Support)
 • Right Information
 • To the right Person
 • In the right Intervention format
 • Via the right Channel
 • At the right Time in the Workflow
Quantitative and qualitative user centered design processesref

- Agile rapid-cycle design
- End-user testing: record, transcribe, code, analyze
 - Surveys
 - Interviews
 - Think-aloud: ease of use
 - Near live: workflow, adoption
 - Live: workflow, adoption
- Coding categories
 - Usability
 - Visibility
 - Workflow
 - Content
 - Understand-ability
 - Practical Usefulness
 - Medical Usefulness
 - Navigation
Fig. 6 Rapid cycle iterative designs – evolution of the dashboard and data view
Fig. 4 Phase 2 Usability Interview Design

BU and BMC Resources for Development, Implementation

- Involve IT resources early and often
 - Identify technical possibilities and resources (FTE)
 - Budget for IT development, testing, implementation in grant
- Mobile and Electronic-Health ARC
 - Mobile app development resources – BU Spark! (http://www.bu.edu/spark/about/)
- Center for Implementation and Improvement Sciences
- BMC-based implementation
 - BMC IT
 - CMIO office (Rebecca Mishuris)
 - Align with hospital, departmental, clinical goals
 - Engage consultants for grant-related IT work
Mobile and Electronic Health-ARC

Belinda Borrelli, PhD, ARC Principal Investigator & Director
Professor, Boston University, Henry M. Goldman School of Dental Medicine

Lisa Quintiliani, PhD, ARC Co-Director
Assistant Professor, Boston University School of Medicine

Sponsored by:
• BU Evans Center for Interdisciplinary Biomedical Research
• BU Interdisciplinary Biomedical Research Office (IBRO)
Mission of Mobile and Electronic Health-ARC (ME-ARC)

To conduct state of the art research and training in mobile and electronic health to improve health across the lifespan with an emphasis on underserved and vulnerable populations.
ME-ARC (Purpose)

- To foster interdisciplinary collaboration among researchers across BU who strive to improve health outcomes through digital research and scholarship:
 - Medical informatics
 - Behavioral and clinical sciences
 - Biomedical engineering
 - Computer Science
 - Implementation Science
 - Global Health
 - Health literacy/disparities
- Develop a scientific vision and strategy for digital health at BU
- To provide training and mentorship in the area of e-Health and m-Health
- To serve as a resource for the Boston University community

- Enhance integration
- Foster innovation
- Build on multidisciplinary strengths
- Poised to answer major funding calls for grants
Activities of the ME-ARC

- Annual mobile and electronic health symposium
- Collate BU’s existing strengths in digital health
 - Website
 - Online assessment of current capacities
- Monthly seminars
- Two pilot projects
- Training for NIH K mentees & post-doctoral fellows
- Collaboration with other BU ARCs

http://sites.bu.edu/me-arc/
Mobile & Electronic Health Affinity Research Collaborative (ME-ARC)

The mission of the Mobile and Electronic Health-ARC (ME-ARC) is to conduct state-of-the-art research and training in mobile and electronic health to improve health and well-being, with a focus on underserved populations, across the lifespan. The ARC is transdisciplinary, consisting of a steering committee, external advisory board, trainees, and over 80 member affiliates across numerous schools at Boston University. Steering committee members have expertise in implementation science, behavioral science, medicine, informatics/bioinformatics, software development, health literacy, engineering, and global health.

Since January 2016, the ME-ARC has hosted invited speakers at monthly seminars, and has held a yearly ME Health symposium. The ME-ARC coalesces mobile health resources and researchers at Boston University, and conducts state of the art mobile
Director & PI: Belinda Borrelli
Co-Directors: Lisa Quintiliani

Cross-cutting Cores/Steering committee:
Resources for mHealth and eHealth Projects

- Center for Implementation and Improvement Sciences (Walkey)
- Behavioral Science Intervention Research (Borrelli, Quintiliani, Keysor, Paffai)
- Medical Informatics (Mishuris, Paschalidis, Adams, Shanahan)
- Mobile app development (Lapets, Jansen)
- Community-based Participatory Research and Health Disparities (Borrelli, Quintiliani)
- Health Literacy (Paasche-Orlow)
- Engineering (Klapperich, Paschalidis)
- Global Health (Don Thea)

Member Affiliates
Those who are not directly involved in the projects but benefit by, and contribute to, the ARC.

Resources for Members, Affiliates and BU Community
- Symposia/lectures
- Grant reviews
- Consultation
- mHealth registry
- Networking

External Advisory Board
- David Felson
- Sandro Galea
- Azer Bestavros

Post-docs/K Mentees
Romano Endrighi, PhD
Jacqueline You
Alaa Qari, DMD
Deepak Kumar, PhD
Brenda Heaton, PhD

Project 1
Pl: Borrelli
Co-I’s: Endrighi, Quintiliani, Keysor, G5DM dental faculty (TBN)

Project 2
Pl: Quintiliani
Co-I’s: Borrelli, Keysor, Oshry

Feasibility Study
Pl: Keysor
Co-I’s: Baker, Borrelli, Quintiliani

mHealth Registry
Pl: Quintiliani